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Chapter 1

Anonymity in Network
Communication

Anonymity is a fundamental right of a democratic society. In most democratic
nations, anonymity is very important and the laws and government regula-
tions have been set up to protect information privacy in every aspect of society
including the fast-developing computer and communication network. Users’
anonymity is one of the most important requirements to information privacy.
According to the Privacy Act Regulations [3], anonymity is an important prop-
erty in applications of network communication. Due to wide application of IT
and network techniques, user anonymity in network applications has become
a critical challenge of security of our society, especially in areas like finance
and terrorism and crime prevention. According to the Australian Federal Pri-
vacy Commissioner, the number of complaints and enquiries about anonymity
remains high [1] and IT and Internet issues have become very important [2]
in recent years. There are various motivations for this. Many participants of
network applications like e-finance, e-commerce and e-health want to conceal
their activity and identity so that their personal privacy can be protected. In
some other applications like e-voting the participants do not want their identi-
ties to be linked to their activities. In all these applications, anonymity has to
be implemented although their requirements for anonymity may be different.
A complicating factor is that computers and computer networks make it quite
easy to maintain and distribute digital information. Millions of bits can be
transferred without error, stored, and analyzed in seconds. People are aware
of the potential danger of this information processing power and are afraid of
losing control of their personal data in both their private and business lives.
Yet, their behavior is often inconsistent with that fear.

Without a satisfactory solution to anonymity of network communication,
many network applications cannot gain customers’ confidence and thus can-
not replace the traditional counterparts. For example, coins and notes in

1
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2 Anonymous Communication Networks: Protecting Privacy on the Web

traditional cash are indistinguishable and do not reveal consumers’ identi-
ties while each e-cash coin is a distinguishable string and may be linked to
a consumer. So a customer used to traditional cash and traditional shopping
manner may worry about his anonymity and be reluctant to use e-cash and
on-line shopping. In another example, in traditional paper-based election sys-
tems a scrambled ballot box can guarantee anonymity of the voters. If no
electronic scrambling is provided, the voters will be concerned about their
anonymity and be unwilling to vote, which is especially serious in a nation
with compulsory elections like Australia. In e-health systems, medical infor-
mation must be transfered, shared and viewed while the patients’ anonymity
must be protected. When anonymity is implemented, a good balance must be
kept with other security and practical properties like integrity, efficiency and
information recovery (in abnormal situations). For example, digital signature
is a normal tool to guarantee information integrity, but often violates users’
anonymity. In some network applications, special digital signature techniques
like group signatures and ring signatures are employed to achieve integrity
and anonymity simultaneously. However, group signatures and ring signa-
tures schemes are usually too inefficient for practical systems. So integrity,
anonymity and efficiency are contradictory in some applications. Another con-
tradiction is between personal privacy and national security. Individuals want
to reserve anonymity in communication while the government may want to
monitor suspicious communication. With a democratic social system facing a
serious terrorism threat, a government must achieve a good balance between
anonymity and national security. After September 11, the American govern-
ment began to limit usage of encryption in communication. However, this is
not necessarily a good solution. A more flexible method is to design recov-
erable anonymity such that messages through private communication can be
recovered with a court order.

1.1 Right to Be Anonymous

Privacy and anonymity are essential parts of today’s society. In some environ-
ments, such as medical treatments and banking, the privacy and anonymity
of individuals are protected by law. Other aspects of modern life may not
have such clear protections. Today, people are increasingly using computer
networks to accomplish activities that were always assumed to be private or
anonymous in the non-virtual world. The current protections provided by law
and law enforcement are slowly being driven to adapt to this new life in the
virtual world.

Computer and telecommunication technologies have generated great con-
cerns regarding the protection of privacy and anonmymity on global net-
works. Many scholars, policymakers and “netizens” have discussed appropriate
methods to protect privacy in electronic transactions and to ensure protec-
tion of personal identity on networks. International organizations, such as the
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Anonymity in Network Communication 3

Organization for Economic Cooperation and Development (OECD), have also
been active in providing relevant principles. As a result, various laws and
government policies, industry self-regulation, technological solutions and pri-
vate contract-based approaches have been suggested as appropriate methods
for privacy protection on the Internet, and respective responsibilities among
governments, businesses, users and international organizations have been the
focus of recent debates.

Anonymity as a mechanism for negotiating social relationships, especially
between individuals and external power institutions, has been developed and
defined in various ways. The traditional concept of anonymity is often against
public and private institutions with ability and power. The main focus was
the restriction of access to an individual, which was expected to mitigate the
power imbalance between these institutions and individuals. With the devel-
opment of new technologies that broaden and diversify the collectors and users
of personal information, there have been attempts to negotiate the individ-
ual’s relationship with the external environment by providing the individual
with control over information about himself or herself. But in the interactive
network, users’ anonymity cannot be dealt with effectively by current legal
and technological measures. In such a situation, what would constitute a fac-
tor that could ensure an individual’s self-autonomy and self-governance in
relationship with external forces? The greatest difficulty for individuals who
become the objects of surveillance in the current technological environment
is that users’ identities have become increasingly exposed, while the subjects
of surveillance and their activities have become less identifiable. Therefore,
the major impetus for the power imbalance between the subjects and objects
of surveillance in the network is their differences in identifiability. The right
not to be identified should be the most important component of privacy on
the Internet and that, by not being blatantly identified, individuals can pro-
tect themselves from the potential risk and threat of not easily identifiable
entities of surveillance and their activities. This right not to be identified
seems to reflect accurately the sentiment of individual users in the networked
environment. The sentiment seems to be a more complex or confusing one
than wanting to be left unidentified, which may be expressed as “please do
contact me and give me benefits, but I still do not want to fully give up
my control (but I do not know how to have that control)”. Thus, the issue
here is less one of restricting immediate access to the individuals than of the
welcoming permission of the access combined with a hope for the restriction
of some unknown, unidentifiable, future use of their information and iden-
tity. As such, with the new characteristics of interactive network media, the
elements that are needed to ensure self-autonomy and self-governance also
change. The right to be left unidentified was critical in maintaining one’s au-
tonomy, dignity and self-governance in the context of powerful governments
and new communications media such as print. But the networked environment
and subsequent sociocultural changes have influenced the relative importance
between being left unidentified and actively seeking control. Therefore, the
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4 Anonymous Communication Networks: Protecting Privacy on the Web

concept of anonymity changes dramatically from maintaining passive liberty
and freedom from an external institution’s interference to allowing limited
access without identification of the users when desired.

A network user is often faced with a choice between giving up the benefits
and services of the site and providing at least some kind of information, be-
cause the use of many sites or services is not allowed unless various personal
information is given. Choosing between providing personal information and
giving up the information and services that an individual wants from the net-
work is particularly difficult in the current technological environment because,
in many cases, it is not known what will happen to the personal information
once it is out on the network. Individual users, governments, data-using indus-
tries and all other potential users of information are uncertain about whether
and how personal information will be used in the future. So even if people do
voluntarily provide personal information and make conscious decisions, this
decision making process tends to be based on incomplete information and
uncertainty. Incomplete information is the reason why network users hesi-
tate to provide personal information, but at the same time do not want to
give up their activities on the network because of that unknown, potential
risk. When people are required to provide or reveal their information, they
hesitate, but if the calculated benefits are greater than potential risks, they
give in. Many people later have regrets, especially when their mailboxes are
flooded with unsolicited emails or they receive notice of a summons based
on some of their activities on the network. Now they realize that not having
anonymity on the network is a risky business, and they may begin to conduct
self-censorship. Network anonymity becomes an essential part of maintaining
the autonomy of network activities. Anonymity has long been discussed as an
important element comprising privacy, but network anonymity in particular
has become a widely discussed topic recently. The emergence of anonymous
remailers that conceal a sender’s identity and location has sparked so much
controversy that sometimes laws are enacted to prohibit anonymous messages.
Many argue against anonymous communication on the network, focusing on
extreme cases such as anonymous threats and libellous messages. However,
Froomkin [38] conducted an analysis of the costs and benefits of anonymity,
acknowledging that anonymity has both valuable and harmful consequences.
The most often cited cost of allowing anonymous communication is the dif-
ficulty in detecting illegal and immoral activities [38]. One of the primary
reasons for monitoring Internet users is to prohibit infringement of intellec-
tual property rights or to prevent cybercrime. Even some software products
contain secret links to servers that allow them to pass along a variety of infor-
mation regarding when consumers use the software, where, how long and the
like, often without their knowledge. It is also possible that the manufacturer
could command and control the software or even remotely disable the software
if it seems to be working on the “wrong machine”. In such an environment,
network anonymity is completely compromised in the name of the often cited
justification of piracy control. It has been argued that in cyberspace, the right
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Anonymity in Network Communication 5

to read anonymously that is protected in real space would be totally lost by
copyright management systems and fee-based approaches to online activities.

What is often missing in the data about network anonymity is its advan-
tages, as Froomkin [38] suggests. Important for considerations of free speech
and democracy, anonymity may be the only way for ordinary individuals to
protect themselves from governments’ and private corporations’ active use
and profiling of their personal information in the networked environment [38].
Under the current conditions, the only way for network users to be ensured a
minimum amount of privacy on the internet would be to conceal their identity
or give a false one. Concealing an individual’s information has been discussed,
as well as practised and allowed, relatively more than disguising his or her
identity. But if individuals do not want to identify themselves on the network
while still being free to pursue all their activities, a logically possible solution
is to provide false information. Concealing one’s identity on the internet can
be achieved by providing incorrect registration information or using a false
identity. Many people do conceal their identity and many commercial books
have been published on how to conceal identity on the internet. To have a
right to protect themselves from revealing their personal information, con-
sumers should be assisted by the right to lie. But will this right to lie be
acknowledged by society or the law? Opinions vary, but those with author-
ity and commercial power tend to say no at present. A number of statutory
and regulatory restrictions on anonymous or pseudonymous communication
in the United States exist and the constitutional protection of anonymous or
pseudonymous communication is not clear, especially in non-political speech
[39]. The difficulty and costs of concealing and disguising one’s identity on
the network also surpass the legal realm. ISPs and websites require correct
registration information and if registrants or users are found to have provided
a false identity or information, they are at a clear legal, social and cultural
disadvantage when damages or disputes occur. Because of these disadvan-
tages resulting from providing false personal information, a right to conceal
and disguise one’s identity is not yet widely recognized in a practical sense
on the network. This may pose a serious risk to individual privacy because it
might be the most effective and sometimes the only practically available way
of ensuring privacy and anonymity on the network.

The ways in which people interact with the information environment are
changing. The development of telecommunications technology and its con-
vergence with computer technology has generated dramatic changes in the
ways in which information can be collected and managed. Understanding the
changes in the information environment and what it means to people’s lives
and experiences is critical in formulating a new conception of privacy as a
changed social condition and proceeding with policymaking endeavors. In the
current technological and regulatory scheme, individual privacy in terms of
anonymity is less protected on the Internet than in real space. For example,
in real space, people usually have a right not to be listed in the telephone
directory or to read without always revealing their identity. But on the net-
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6 Anonymous Communication Networks: Protecting Privacy on the Web

work, anonymity cannot be ensured without a practical option to disguise user
identity and conceal personal information. In addition, given the voluntary
nature of revealing and providing personal information, to apply traditional
policy measures that attempt to “provide” privacy “for” individuals by limit-
ing identifiable data users’ information activities to the network environment
is ineffective and futile. Users’ self-solutions, enabled by their right to secrecy
and deception on the network, are a logical and practical approach to en-
sure the least amount of network anonymity and privacy needed for personal
autonomy. The most pertinent method to achieve this purpose seems to be
providing individual network users with some right to engage in Internet ac-
tivities without being visibly identified and allowing for an active search for
network anonymity both legally and technically. Therefore, policy measures
for network privacy should focus on ensuring individual users’ searches for
anonymity by recognizing the right to be silent about their identities and the
right to disguise their identities rather than providing restrictions on easily
identifiable external forces and institutions.

It is not difficult to imagine that the solution suggested here would face
challenge and opposition. However, many of the concerns are based on social
and cultural reflections rather than on legal or logical foundations. Our society
seems to favour disclosure over secrecy and speech over silence. The sentiment
that concealing data is a bad thing and more than less information is better
seems to be a deeply-held social value. Therefore, privacy as a tool to give the
right to prevent personal information-sharing may have a natural and inherent
disadvantage that can be compared to the obvious distinction between “sun-
light” and “shadow”. A close review of society’s customs and practices suggests
that secrets and lies are essential elements of society’s function. Every soci-
ety tolerates, and even respects, some forms of untruth. People tell lies about
themselves and their motives and actions, a reality reflected in many cases of
secrecy exercised in government and the news media. Wikileaks lists the occa-
sions of government secrecy, including military relations, diplomacy, juvenile
proceedings and the identity of information sources, as examples of such sanc-
tioned secrecy. There are many circumstances in which attaining knowledge is
considered undesirable and these circumstances are supported by various jus-
tifications such as national interest and protection from foreign entities. Iron-
ically, in the case of undercover operations, deception is used legitimately to
uncover other deception and secrets. Therefore, deception can be good or bad,
much as we distinguish between white and black lies, or between small and
big lies. The basis for such distinctions, in the case of government secrets and
undercover operations, is that when the benefits outweigh potential harm and
risk, secrecy and deception seem to be justified. Also, good purpose and good
intention seem to be other justifications for this kind of deception. Thus, the
clearly negative connotations associated with deception, disguise, dishonesty
and concealment may have a rather relative meaning when applied to specific
circumstances. Concealing and deceiving identity to gain anonymity on the
current network environment is a tool for protection from unknown harm or
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invasion and for the maintenance of individual control over private space. This
kind of “defensive lying” has clear benefits and a positive purpose and often
is permitted in society. It is argued here that, similarly, activities with the
purpose of gaining anonymity on the network deserve social permission.

Furthermore, transparency and certainty are always sought by those who
want order and discipline in a society. There is a close connection between de-
ceit and power, as deception is often used by people to seek power or avoid its
exertion on them. Lies may function to protect the weak from the strong. In
that sense, the right to conceal and disguise one’s identity on the network is a
very important tool to influence the distribution of social and political power.
In the interactive network, anonymity is the most important element for indi-
viduals to have a mechanism of counterbalance against powerful invaders and
unknown risks. Network anonymity works as a critical device for mitigating
power relations. Therefore, the right to actively seek one’s anonymity so as
not to be easily identified, rather than the right to be left alone, deserves to be
the centre of the privacy concept on the network. The question that confronts
us is this: are we ready and willing to allow a right to lie for the sake of a right
to privacy? In this new networked environment, perhaps we cannot have one
without the other. Are we willing to sacrifice transparency and bureaucratic
efficiency for the sake of network privacy? In the networked environment, we
cannot have both. Thus, it would be futile to discuss technical and social
methods to achieve privacy when we have not decided whether we are ready
to change our fundamental moral concept to achieve it. It is one thing to claim
that privacy is an important right, but it is quite another to actually sacrifice
other important values for it. Only after we answer these questions can we
approach the greater issue of privacy and self-autonomy, which has significant
financial, social and human consequences for the future.

In summary, worrying about their privacy and anonymity and taking mea-
sures to protect them is a right of the users of network communication al-
though it is sometimes negotiable. At the 2000 RSA Security Conference,
privacy law expert Stewart Baker observed that there are four basic rules of
privacy and anonymity opinion and behavior today:

• Each individual firmly believes that he or she has a right to complete
anonymity in all situations.

• Each individual also firmly believes that other people do not have that
right. Messages or letters from anonymous callers are always seen as
suspicious, if not outright threatening. Individuals are also concerned
that while they would never do so, others might employ anonymity to
commit crimes.

• If an individual chooses to give up some private personal information,
that information cannot be recovered.

• Most individuals choose to give up private information in exchange for
trivial things, such as access to a web site or to register a new purchase.
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While disheartening, these attitudes do not constitute a reason to aban-
don privacy and anonymity research. Rather, it is due to the lack of good
alternatives that these rules have evolved.

1.2 When We Need to Be Anonymous

Usage of Tor, one of the most famous anonymous networks, is investigated and
analysed in [23]. The investigation provides a deep analysis of the Tor network
in the wild, by setting several exit nodes and distributing them worldwide.
Taking special cautionary measures to comply with the legal and ethical as-
pects of users’ privacy, it performed an analysis of the application usage of the
Tor network through a deep packet inspection (as opposite to a simple port-
based classification), and show that most of the traffic exchanged through
Tor is undesirable BitTorrent traffic. The study also observed an important
fraction of “unknown” traffic. It reveals that the vast majority of this traf-
fic is actually encrypted BitTorrent traffic. The analysis shows then that the
BitTorrent traffic on top of Tor accounts for much more traffic size than com-
monly believed. It also studied the HTTP and BitTorrent usage over Tor and
compared Tor user behaviors to those of typical Internet users.

As explained in [23] and will be detailed later, Tor is a circuit-based low-
latency anonymous communication service. Its main design goals are to pre-
vent attackers from linking communication partners and from linking multiple
communications to or from a single user. Tor relies on a distributed overlay
network and onion routing to anonymize TCP-based applications like web
browsing, secure shell, or peer-to-peer communications. When a client wants
to communicate with a server via Tor, he selects n nodes of the Tor system
and builds a circuit using those selected nodes. Messages are then encrypted
n times using the following onion encryption scheme: messages are first en-
crypted with the key shared with the last node (called the exit node of the
circuit) and from noden−1 to node1n. As a result of this onion routing, each in-
termediate node only knows its predecessor and successor, but no other nodes
of the circuit. In addition, the onion encryption ensures that only the last node
is able to recover the original message. A Tor client typically uses multiple
simultaneous circuits. As a result, all the streams of a user are multiplexed
over these circuits. For example, a BitTorrent user can use one of the circuits
for his connections to the tracker and other circuits for his connections to the
peers. Finally, some ISP may block access to Tor network by filtering the IP
addresses of Tor nodes. To circumvent this censorship, the Tor project has
created the so-called bridges. These are new types of Tor routers that are not
listed in the main Tor directory, and hence cannot be blocked. Tor restricts
access to this list and gives a small subset (3 bridges IP addresses) per unique
requester IP for a fixed period of time.

Tor has gained in popularity through the years, and its related traffic has
certainly evolved. So it is interesting to analyse its traffic through deep packet
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inspection, and not through a simple port-based classification. This provides
more accurate classification of the traffic that is exchanged through the Tor
network. In this way, a clear picture can be obtained about what applications
are typically used on top of Tor. The statistics in [23] show that among all
the Tor traffic, HTTP takes 34.3%, BitTorrent takes 25.3%, SSL takes 1%,
other P2P/file-sharing than BitTorrent take 0.26%, insecure services like ftp,
telnet and email take 1.3%, instant massaging takes 1.2%, other recognised
protocols take 3.4%, and 29% packets are not recognised.

It is noticed in [23] that a significant part of the traffic is still unclassi-
fied. It represents more than 25% of the entire volume. This behavior sug-
gests that such traffic likely belongs to any of the P2P protocols. To verify
this, Chaabouni analyzed the distribution of destination ports for those un-
classified connections. They observed that destination ports were uniformly
distributed, which can lead to a belief that such traffic is BitTorrent traffic. In
fact, to avoid port-based detection, BitTorrent clients choose a random port at
installation time. This results in uniformly distributed ports. Although these
proofs suggest BitTorrent to be responsible for this traffic, the analysis does
not recognize it. This is most likely because this traffic is encrypted and thus
unrecognizable. A step further is then to compute the entropy of sample data.
The computed high entropy value confirmed that this data is either encrypted
or compressed.

So most traffic in anonymous communciation on Tor networks belongs to
BitTorrent. A torrent is a set of peers sharing the same content. To join a
torrent, a user sends an announce message to the tracker that maintains the
list of all peers in that torrent. The announcement is an HTTP GET message
containing the identifier of the requested torrent. Such identifier is known
as the infohash of the torrent and is unique. Once the tracker receives the
announce message for a specific torrent identified by the infohash, it selects a
random subset of peers in that torrent and returns the endpoints (the IP and
port of a peer) of those peers. Then, the user establishes a TCP connection and
sends a handshake message to each peer. Finally, popular BitTorrent clients,
e.g., νTorrent and Vuze, configure SOCKS proxies and give the option to use
the proxies for connections to the tracker, to the peers, or both. Therefore,
a BitTorrent client can use Tor, configuring the Tor interface as a SOCKS
proxy, for communication to the tracker or the peers independently. The user
can then decide to connect to the tracker via Tor, but have a direct connection
to peers in order not to have performance penalty.

HTTP protocols take a large part of the anonymous traffic as well. The
analysis in [23] shows that the HTTP protocol carries a wide spectrum
of data going from simple text to rich media such as images and video.
Furthermore, a large variety of applications are embedded into browsers
to enrich the end user environment. Analyzing this data allows the read-
ers to have a more comprehensive view of how the web is used on top of
Tor. More precisely, among all the packets transported on Tor networks,
31.7% are for pictures, 27.9% are for text/html, 18% are for applications,
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11.1% are for flashes, and 8.9% are for other services. The most significant
content is, as expected, images and text/html. Surprisingly, applications (e.g.,
rar and zip) content represents a significant proportion of the observed traffic.
In addition, it is noticed that 6% of the entire traffic is originating from Direct
Download Link (DDL). This can be explained by the fact that some users may
have switched from P2P networks known to be heavily monitored to DDL-
based content, much harder to control. This behaviour switching has already
been noticed in residential broadband Internet. On the other hand, flash and
video usage representing 13.5% of the observed content, shows that the latency
induced by the Tor relaying is not an actual brake for browsing Web 2.0.

An interesting question is which webs are most frequently visited through
Tor. The analysis in [23] shows that 14.45% are search engines or portals,
11.50% are pornography webs, 11.45% are computers/Internet webs, 9.52%
are social networking webs, 2.26% are blogs/web communication sites, 1.82%
are streaming-media/MP3 webs, 1.66% are webs providing software down-
loading, 0.3% are hacking webs, 0.18% are political webs, 0.15% are ille-
gal/questionable webs, and 0.06% are illegal-drug webs. Another interesting
question is who uses Tor. The analysis in [23] shows that more than 70% of
the clients were originating from only 10 countries. Germany and U.S repre-
sent more than a quarter of the clients. Such a high ratio may be explained
by Internet demographics (especially the high Internet penetration in these
countries) on one hand, and also by the increase and strengthening of anti-
piracy and copyright laws during the past few years. The concentration of Tor
clients among this small subset of countries and in particular, the absence of
politically-sensitive countries among the top countries of the observed clients
coupled with the announcements of the Tor project that bridges are still in
their infancy and not yet often used by clients may be good indicators of
the common usage of Tor. Eastern European nations (Poland, Romania and
Russia) represent nearly 20% of the Tor clients and Chinese clients correspond
to 5.8% of overall clients.

1.3 The Current Situation and Where

We Start

In practice, achieving anonymity in network communication is not an easy
task. According to [66], the challenge of private information may be simply
stated: you can restrict it totally or you give it all:

• If privacy was guaranteed then every individual would have the capabil-
ity to act anonymously in the virtual world. Therefore, the individuals
could use the great power of the information processing systems for their
own benefits. The danger here is that everyone, including criminals and
terrorists, could use that power for their activities.
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• If law enforcement agencies are given the capabilities to undo anonymity,
then they can undo it for all people and have this great power to observe
everyone in greatest detail.

• There are also “complete non-anonymity” proponents. In his “Transpar-
ent Society” [18], Brin imagines a world in which all aspects of everyone’s
public life are subject to viewing by web cameras. He then proposed two
variants: one with the government and law enforcement being the only
ones who can view the images from the omnipresent cameras, and an-
other where everyone, individuals as well as government, will have full,
immediate access to any of the images via the Internet.

There may be no general solution to this all-or-nothing problem that sat-
isfies everyone. Even so, we should begin to address this problem now. We
suggest that initially focusing on application-specific anonymity techniques
may help. For instance, not all people should have the same ability to use
anonymity techniques, just as not all people have access to prescription drugs
(restriction to some persons). Similarly, absolute anonymity should be guar-
anteed in electronic elections (restriction of application). Thus, we have the
real challenge of how to achieve practical privacy through anonymity, i.e.,
while maintaining acceptable network performance. The rest of this chapter
will address this technical question and will present the important results of
the last twenty-plus years of research in this area.

The first attempt was made by Pfitzmann, whose definition and classi-
fication of privacy and anonymity from a technical angle in German were
translated by Kesdogana and Palme [66] as follows.

• Anonymity is the state of being not identifiable within a set of sub-
jects, known as the anonymity set. Anonymity in communications can
be further distinguished as sender and recipient anonymity.

• Unobservability is the state of an item of interest being indistinguishable
from any other item of interest.

• Unlinkability of two or more items or actions means that these items are
no more and no less related than they were previously (attacker gains
no information).

Unobservability can be reduced to a set of data items, senders or receivers.
For example, a concrete requirement for messages is that each message can-
not be linked to any potential sender or receiver from the set. At a higher
level, relationship unobservability requires that it is not discernable whether
anything is sent from a set of potential senders to a set of potential recipi-
ents. A definition of anonymity is incomplete if an attacker model (opponent
model) is not specified. The attacker model describes the demands placed on
the anonymity techniques and is also for the evaluation and comparison of
proposed solutions. In general, a direct relation exists between the strength
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of the attacker model and the quality of the protection provided by a given
solution. To guarantee formal and reliable anonymity, it is needed to assume
that anonymity is to be provided in the presence of a powerful attacker. Thus,
the capabilities of an attacker A may vary. For the sake of simplicity, it is as-
sumed here that the cryptography used is unbreakable. However, it is good to
keep in mind that it is inappropriate to provide or demand more anonymity
protection than the underlying cryptography can provide. Attackers may be
classified as follows according to [66].

A1 Passive attacker. Attacker can observe all communication links.

A2 Passive attacker with sending capabilities. The A2 attacker is not
much stronger than A1, yet the A2 attacker poses a bigger threat than
A3 because it is by definition undetectable. Attacker may take part in
the anonymity technique (i.e., attacker can send messages) if participa-
tion has not been explicitly forbidden for him.

A3 Active attacker. Attacker can control all communication links,
switches, etc. and can attack all messages with delete, replay, and send,
or delay actions.

By choosing the powerful attacker model it follows that a single trans-
mission by a single person can be neither anonymous nor unobservable. The
omnipresent attacker can observe the sender of a message (the sending act)
and follow the message to the receiver, thereby detecting the communica-
tion relation without needing to read the content of the message. Hence, it is
straightforward to notice that anonymity techniques require additional traf-
fic, called cover traffic. Having the additional traffic, it is feasible to employ
an embedding function for the subject traffic in order to confuse the adver-
sary and conceal the particular sender, recipient, and their communication
relationship. The following results are needed.

• Group function (cover traffic). Since single transmissions are observable
in the network, additional traffic is organized by the group function.
It is essential that the attacker not be able to gain control over this
additional traffic.

• Embedding function. The traffic generated by a particular user must be
efficiently and untraceably embedded into the cover traffic.

If the attacker can control the cover traffic, all anonymity is lost. To avoid
this and other attacks wherein the attacker exerts some control over the cover
traffic, the CUVE requirements must be met as explained in [99].

• Completeness. All users can verify that their messages have been cor-
rectly sent, received, or transmitted.
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• Un-reusability. Within any given session, 55A is the transmission of a
packet using an embedding function and sent in the presence of cover
traffic. No user can participate more than an allowed number of times.

• Verifiability. An adversary cannot change another user’s message with-
out being discovered by the system.

• Eligibility. Only authorized users can participate in a given session.

The embedding function has to be applied in an environment. The only
exception to this statement is in the case of recipient anonymity for broad-
casted messages. where there is no room for any attackers. This simplifying
assumption is needed in order to focus only on the anonymity techniques. This
is similar to the case of encryption, wherein the application of the encryption
algorithm has to be performed in a trusted environment. Otherwise, secu-
rity cannot be guaranteed, since the attacker will have full knowledge of the
process. However, unlike encryption, the users depend on other assumptions.
In general, encryption is a unilateral function and anonymity a multilateral
function, i.e., a user can encrypt his electronic diary on his machine but to
act anonymously he always needs additional users (due to the requirement of
cover traffic). Thus, while the security point of view recommends having the
embedding function applied only within the trusted domains of the sender and
receiver (the end-to-end solution), from a practical point of view it may be
preferable for the group function to use central Trusted Third Parties (TTPs).

The desired goal of anonymity is only achievable if at least two honest
participants work together. In general, it is always appropriate to assume that
n > 1 users participate in the application of a given anonymity technique. A
typical circumstance is where the network itself is unsecure and the trusted
domains of the users are secure. TTPs sit between these two trusted end points
and must fulfill some special trust requirements:

• A single point of outside trust should be avoided; the trust has to be
distributed equally over all used N TTPs.

• TTPs should be as transparent to the user as possible, i.e., the correct
functionality of the environment should be controlled by the user.

• TTPs should be independently designed and produced and have inde-
pendent operators.

If (n− 1) of the users providing the cover traffic are dishonest, then obvi-
ously the technique cannot provide any protection. Many of the previous works
in anonymity neglect to consider the corrupt user, and make the assumption
that all participating users are honest. Certainly in open environments like
the Internet, the attacker could be an alliance of (n − 1) dishonest persons.
Unfortunately, there is no technical means to test the honesty of people and,
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thus, no way of providing perfect protection. Note that using one-time pad
cryptography can provide perfect security in the technical sense.

Anonymity protocols belong to the family of group communication proto-
cols. Typically, networks (e.g., the Internet) are not designed to handle the
huge amount of traffic produced by these protocols. In general, the situa-
tion is even worse for anonymity techniques since they depend upon dummy
messages. To evaluate the performance of anonymity techniques, it may be
necessary to abstract from a concrete network structure and consider it as a
black box. In this network model, it is appropriate to assume that the cost of
sending a message without an anonymity-providing technique is one and the
transmission time is also one.

Since anonymity techniques need cover traffic in order to provide unobserv-
able communication, it is important to maximize the number of real messages
sent in a session. Consider a technique with a group function that handles
n > 1 messages from n distinct users. Suppose k of the messages are real and
m are dummy (m = n−k). With anonymity, something more (bits or energy)
has to be provided to meet the goal. So system effectiveness can be defined as
k/n. It is always less than 1, since there cannot be more real messages sent
than all of the messages sent. If the message is sent via several TTPs, then
these additional reroutings count as re-sending all of the messages again.

Clearly, it is desirable to have an anonymity technique with high system ef-
fectiveness approximately equal to one. Assuming that such a technique exists,
it would mean that there exists n people who want to send n real messages.
Since there are not always n people who want to send real messages within a
given time period, the technique has to wait for enough real messages before
beginning. The waiting time interval could be chosen with high probability
that n people will want to send something. Thus, the people may have to wait
until the specified time interval has elapsed. This time cost can be measured
as time efficiency t. Additionally, if the message is sent over several TTPs,
that time has to be counted as well.
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Chapter 2

Mix Networks

Mix networks are anonymous communication channels widely employed in
popular private network applications like e-voting [63, 70, 35] and e-auctions
[92]. They consist of multiple routing nodes that shuffle a batch of encrypted
messages in turn. The shuffling operation of each routing node re-orders (us-
ing a random permutation) and randomizes (e.g. re-encrypts) the encrypted
messages. The output of every routing node is shuffled by the next routing
node. In this way, the encrypted messages are repeatedly shuffled in succes-
sion by all the routing nodes in the mix network. If at least one routing
node conceals this permutation, the repeatedly shuffled encrypted messages
cannot be traced. The most popular application of mix network is electronic
voting, which employs a mix network to shuffle sealed votes before they are
opened.

Security of a mix network depends on the underlying shuffling operations.
To convincingly show that a mix network works properly, each routing node in
it needs to publicly prove that it does not deviate from the shuffling protocol.
This is a basic security requirement for shuffling. When it is not satisfied,
the mix network may go wrong. Of course, each routing node cannot reveal
its permutation in the proof of validity of shuffling. Proof and verification of
validity of shuffling create the bottleneck of computation in a mix network.
High cost for validity verification is not only a heavy burden for the users and
routing nodes, but also intolerable for an observer who is interested to check
that the mix network works well.

In this chapter, mix networks are introduced and the current mix networks
are classified. As proof and verification of validity of shuffling are the most
important and costly operations in mix networks, the first step to study mix
network in this chapter is to classify it according to its verification operations
into two categories: mix network with general verification and mix network
with separate verification. Then various methods to prove and verify validity
of shuffling efficiently are discussed in both categories. When the number of
shuffled messages is very large and the overhead is very heavy, messages are

15
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Figure 2.1: Mix Network

grouped and then shuffling is carried out in the groups such that each instance
of shuffling is not too costly. Special techniques are introduced to improve effi-
ciency in the grouped shuffling mechanism. Finally, the mix network schemes
are surveyed and analysed such that their concerns in security and efficiency
are addressed and their inappropriately functioning security and efficiency
properties are corrected. As a result security properties and efficiency of the
existing mix network schemes are precisely assessed and their application in
practice can be realistic.

2.1 Definition of Mix Network

The first mix network scheme was proposed by Chaum [25] to implement
anonymous email. After that, various mix networks have been proposed. Al-
though they are differently designed, they share some common properties. In
a mix network, there are several servers. A number of users of the mix network
submit their inputs anonymously. Each of them submits an encrypted input
to the mix network. One by one, those servers shuffle the inputs. The shuffling
operation of each server on its inputs includes two steps. The first step is to
process the inputs, which may use re-encryption or partial decryption, which
will be detailed in Section 2.2. The second step is to reorder the processed
ciphertexts. Finally, after the repeatedly shuffled ciphertexts are completely
decrypted a set of outputs unlinkable to the users is produced, which forms
a permutation of the plaintexts of the inputs. A typical mix network is illus-
trated in Figure 2.1. Usually, the following five properties must be satisfied in
a mix network.

1. Correctness: if all the participants are honest and do not deviate from
the mix network protocol, the outputs must be a permutation of the
plaintexts of the inputs.
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2. Privacy: if at least one server conceals his shuffling, the permutation
between the inputs and the outputs is unknown, so that the users cannot
be linked to their outputs.

3. Public verifiability: honesty of the participants can be verified publicly.

4. Soundness: passing the public verification guarantees that the output is
a permutation of the plaintexts of the inputs.

5. Robustness: the mix network can still work properly in abnormal situ-
ations, such as failure of one or more servers.

2.2 Classification of Mix Networks

Numerous mix network schemes have been proposed so far. Performance, ef-
ficiency and application areas vary. Different standards can be employed to
classify them.

2.2.1 Decryption Chain or Re-encryption

It is well known that mix networks can be classified into those employing de-
cryption chain and those employing re-encryption according to the way each
server shuffles its inputs [48]. In a DMN (decryption chain mix network), the
shuffling of a server is composed of decryption and permutation. Its charac-
terisation is as follows.

• Each input is encrypted with every server’s public key in sequence.

• Each server removes one layer of encryption on all his inputs by decrypt-
ing them using his private key. After that the system permutes them to
its outputs.

DMN is illustrated in Figure 2.2.
In a RMN (re-encryption mix network), the shuffling of a server is com-

posed of re-encryption and permutation. Its characterisation is as follows.

• Each input is encrypted only once with a public encryption key while the
corresponding private key is shared by several decrypting authorities.

• Each server re-encrypts all its inputs. After that it permutes them to its
outputs.

• In the end, the decrypting authorities (e.g., may be the servers) coop-
erate to decrypt the final encrypted outputs.

RMN is illustrated in Figure 2.3
A widely recognized drawback of DMN is lack of robustness. If a server

refuses to decrypt its inputs properly, the whole mix network fails and must be
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Figure 2.2: Decryption-chain Mix Network

re-run. A method to overcome this problem is to share every server’s private
key in a threshold way among the other servers. So when a server fails to
decrypt its inputs correctly, a number of other servers over the threshold
can cooperate to perform the decryption. This method is denoted as PKS
(private key sharing). However, this countermeasure sacrifices some privacy
as a collusion involving a number of servers over the threshold can breach
privacy of the mix network. Therefore, robustness is repaired at the cost that
privacy is weakened.

A not fully realized drawback of DMN is the expansion of ciphertext length
as a few layers of encryption are exerted on every input to the mix network.
Park et al. [84] proposed a special method to apply El Gamal encryption to
multi-layer encryption, such that the length of the ciphertext does not in-
crease. However, in their scheme after each server performs its decryption, it
has to re-encrypt each of its outputs to keep privacy. Therefore, decryption
chain and re-encryption must both be applied. This method is not worth-
while as it loses the advantages of RMN by adding decryption and keeps all
disadvantages of RMN. A pure RMN can do better.

Figure 2.3: Re-encryption Mix Network
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The only circumstance where DMN is necessary is when hybrid encryp-
tion is applied to shuffle long messages efficiently [81, 62]. As the inputs are
encrypted actually with symmetric encryption algorithms, which are not ran-
domised and thus do not support re-encryption, decryption chain must be
employed.

Ogata et al. [80], introduced a basic structure for re-encryption mix net-
works, which was further developed in many later papers. Suppose the El
Gamal encryption scheme is employed with private key x and public key
(g, y = gx). Several decrypting authorities share x by t-out-of-m threshold
verifiable secret sharing. The m servers Aj for j = 1, 2, . . . ,m form a mix
network to shuffle n encrypted inputs ci for i = 1, 2, . . . , n. Inputs to Aj

are cj−1,i for i = 1, 2, . . . , n while c0,i = ci for i = 1, 2, . . . , n. Outputs of
Aj are cj,i for i = 1, 2, . . . , n. On server Aj , input cj−1,i = (aj−1,i, bj−1,i) is
permuted to cj,πj(i) = (aj,πj(i), bj,πj(i)) = (grj,iaj−1,i, y

rj,ibj−1,i) where rj,i is
randomly chosen and πj is a secret random permutation from {1, 2, . . . , n} to
{1, 2, . . . , n}. The outputs of the mix network are c′i = cm,i for i = 1, 2, . . . , n.
The shuffling from n inputs to n outputs on every server is denoted as PN(n),
correctness of which must be verified. Finally, the decrypting authorities (e.g.,
the servers themselves) cooperate to decrypt c′i for i = 1, 2, . . . , n.

2.2.2 General or Separate Verification

According to how correctness is verified, mix networks can be classified into
GMN (general verification) and SMN (separate verification).

GMN does not provide a verification of correct shuffling by each server
separately. Instead, correctness of the shuffling by the whole mix network is
verified after the outputs are produced in plaintext. GMN [25, 84, 48, 92] is
illustrated in Figure 2.4.

An advantage of GMN is that schemes in this category are usually very
efficient as only one final verification for shuffling validity is needed. A key

Figure 2.4: General Verification Mix Network



✐

✐

“K13841” — 2014/3/4 — 15:45
✐

✐

✐

✐

✐

✐

20 Anonymous Communication Networks: Protecting Privacy on the Web

drawback of this category is that a malicious server and its invalid shuffling
cannot be found instantly. This leads to the following problems.

1. The shuffling of the mix network goes on after a malicious server does
his shuffling incorrectly. Time and resources are wasted unnecessarily.

2. A costly function must be employed to identify the cheating server when
the shuffling is found to be invalid.

3. In most GMN schemes, it is suggested that a SMN is employed to per-
form the mixing again if incorrect shuffling is found in GMN. That
means GMN cannot exist independently without support from SMN
always ready.

4. As correctness of the mix network must be publicly verifiable, some
outputs are revealed in plaintext when the mix network fails due to
invalid shuffling by a malicious server. Revealing of the outputs in this
case results in the following concerns.

• As some outputs are revealed, the users must not regenerate their
inputs in the following re-mixing. For example, if the mix network
is used to implement a selection, re-voting when some votes are re-
vealed is not fair as the voters may be affected by others’ selections.
That means DMN without PKS cannot be used.

• The mix network may be vulnerable to certain types of attacks as
pointed out in [48]. In these attacks, some server(s) (e.g., the first
server) may shuffle a certain user’s input incorrectly in a special
way (e.g., adding a value to it). In this way the user’s output can
be traced as an incorrectly shuffled output is distinguishable from
the correctly shuffled outputs and is in plaintext. The attacker can
recover the user’s original input in plaintext from the identified
incorrect output by undoing his change on the input. Additional
functions must be applied to overcome these attacks. For example,
double encryption is applied in [48] as a countermeasure.

In SMN, each server proves that his shuffling is correct. Whenever in-
correct shuffling is performed, it is detected and the mixing stops instantly.
Therefore no plaintext is obtained if the mixing is not correct. SMN is il-
lustrated in Figure 2.5 The most serious problem in this approach is inef-
ficiency. Some schemes use a partial proof of correctness on each server to
improve efficiency [60, 15]. However, that means some correctness is only
achieved with a probability and privacy is weakened (in [60] the probabil-
ity is not big enough for many applications and in [15], privacy is weak-
ened to a dangerous level if correctness is strong enough for most applica-
tions). Many other mechanisms are applied to various mix network schemes
[5, 6, 42, 74, 75, 52, 93, 90, 41, 51, 50, 86] to improve efficiency of complete
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Figure 2.5: Separate Verification Mix Network

proof of correctness in SMN. Abe [5, 6] uses several switching gates to con-
struct the mix network, so that a costly verification of the shuffling by a
server can be replaced by verification of validity of each of the server’s gates.
In [42, 41] verification of a special property of a matrix is employed to verify
validity of shuffling. Neff [74, 75] applies zero knowledge proof of equality of
products of exponents to verify correct shuffling by every server. The most
efficient SMN mix network schemes with complete proof of correctness are
[52, 93, 90, 51, 50, 86]. They achieve high efficiency, strong correctness and
acceptable privacy compared to others in this category.

There are very few (actually only one is known so far [81]) mix networks
without any verification of correctness of the servers’ operations. In [81] the
shuffling is correct if most servers are trusted to be honest. This type is denoted
as NMN (non-verified mix network).

2.2.3 Tag Attached to Input

In most mix networks, the function verifying the shuffling of a server or a
group of servers (all the servers in GMN) only take the inputs (ciphertexts of
the shuffled messages) and outputs (re-encryption or decryption of the inputs)
of the server(s) as its inputs. This type of mix network is denoted as WTMN
(without a tag).

In some mix networks, a special tag is attached to the messages or inputs
and acts as an input to the verification function. A tag to a message or input
can only be produced by its owning user and may be a signature [25, 84] or
a MAC [62]. This type of mix network is denoted as TMN (with tag). While
the tags may be helpful for efficient verification of shuffling validity, there are
two concerns in TMN.

1. Distribution of the keys for signature or MAC causes additional compu-
tation and communication.
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Table 2.1: Classification of mix networks

GMN SMN NMN

DMN [25] [62] [81]
[84]

RMN [48] [60]
[92]

[15]
[80]
[96]
[5, 6]

[42, 41]
[74, 75]
[52, 51]
[93]
[50]

[90, 86]

2. A user can change its message after the shuffling starts. With conspir-
acy of some server, this change cannot be detected. This is especially
dangerous when the mix network is used in auction. To solve this prob-
lem, one more round of shuffling of the commitments of the messages is
needed.

2.2.4 Summary

The classification is summarized in Table 2.1 where italic means TMN. From
the analysis and this table, the following conclusions can be drawn.

1. Re-encryption mix networks are more popular and suitable to more
applications.

2. Most mix networks apply separate verification as it achieves the desired
properties better.

3. Efficiency improvement in SMN is still needed in large-scale applications.

4. Mix networks employing general verification may be suitable for some
special applications because of their high efficiency, although incorrect
shuffling may cause some trouble.

2.3 Efficient and Secure GMN: a Simple

and Efficient Solution

In some applications, the mix network employed to implement the anonymous
channel must be very efficient, so a mix network employing general verification
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of shuffling validity should be chosen. Among the mix network schemes in this
category, Chaum’s mix network [25] was the original scheme, which was then
improved by Park et al. [84]. In [48], each encrypted input to the mix network
is attached with its hash function. Each server has to re-encrypt and permute
the inputs together with the attachments. Each server does not need to prove
that its shuffling is correct; instead it proves the product of the attachments
does not change after shuffling. This is a very efficient proof (costing O(1)
exponentiations) but not sufficient for the verification of validity of shuffling.
Actually, it is also proved in [48] that the product of the inputs does not
change. However this extra proof is meaningless as even with it the validity
of shuffling is not guaranteed without a final general verification. After all
the inputs and their attachments are shuffled and decrypted to plaintext, a
final check verifies that each output attachment is really the hash function
of the corresponding output. Golle et al. [48] were aware that an attack by a
malicious server against the privacy of a user is possible. The server can change
two or more users’ inputs, so that the hash relation between the input and
attachment becomes incorrect for those users while the product of the inputs
and attachments is not changed. The invalidity of shuffling can be found in the
final verification and the cheating server can be identified. But the attacked
user’s output can be traced as it is incorrectly shuffled and distinguishable
from other outputs. In other words, the malicious user breaks the attacked
user’s privacy at the cost of being identified as a cheater. To overcome this
attack, Golle et al. employ double-encryption in their mix network. When
the final verification is performed, only one layer of encryption is removed. If
incorrect shuffling is found, the second layer of encryption is not removed and a
SMN is employed to perform the mixing again. Correctness of this mix network
is dependent on an unusual assumption: if H() is a one-way and collision-
resistant hash function, it is infeasible to find

∏n
i=1 H(xi) =

∏n
i=1 H(yi) where

{xi|i = 1, 2, . . . , n} 6= {yi|i = 1, 2, . . . , n}. Moreover, a flaw in privacy was
found in [48] by Abe and Imai in [8].

Park et al. [84] proposed a decryption-chain mix network that employs two
rounds of shuffling. In the first round, the users choose their short-term private
keys and public keys and send the short-term public keys to be shuffled. The
servers do not prove correctness of their shuffling in the first round. At the end
of the first round, each user checks that his short-term public key is among
the published results of the first round. Any user can protest if the check
fails. In the second round, the users’ inputs signed by their short-term private
keys are shuffled and the outputs are published in plaintext. Again the servers
do not prove correctness of their shuffling, which can be verified by anyone
using signature verification. If any output cannot be verified to be correctly
signed with one public key published in the first round, the second round of
shuffling is known to be wrong. As in [48], revealing of outputs in plaintext
while the shuffling is not correct is a concern. In this scheme, a cut-and-choose
mechanism is used to divide every input into several pieces, which are shuffled
in the second round. In the end, all pieces of the output are decrypted and
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verified one by one and the decryption stops whenever the verification fails.
The probability that outputs are revealed when a malicious server performs
an invalid shuffling is low. As mentioned in Section 2.2, a decryption chain
mix network cannot achieve a good trade-off between robustness and strong
privacy, so a re-encryption mix network is preferred in practice.

Both schemes in [84] and [48] are efficient although an unproved assump-
tion is used in [48] and cut-and-choose causes more computational cost in
[84]. However, neither scheme supports unconditional fairness in practical ap-
plications like e-auction. In an auction scheme, the users are bidders and they
submit their bids as the inputs. The auctioneer can act as the server in the mix
network and share the decryption key using a threshold secret sharing. The
auctioneers can conspire with a bidder. The bidder waits for other bidders to
bid and the auctioneers decrypt the submitted bids. After knowing the other
bids from the colluding auctioneers, the colluding bidder chooses his own bid
(e.g., just a little higher than the other bids). That means confidentiality and
fairness of the auction depend on the auctioneers. Unlike bid privacy, confiden-
tiality and fairness are compulsory properties and should be achieved without
trust. The two current GMNs are not suitable for auction applications.

2.3.1 The GMN in [92]

Amix network [92] is proposed to optimise the previous GMN schemes [84, 48].
It is composed of two rounds. Each user commits to his inputs first and the
commitments are mixed in the first round. Any user can easily verify that
his commitment is shuffled correctly or protest if the verification fails. Any
protest can be publicly verified and the malicious server can be identified and
removed. The inputs are mixed in the second round. After the outputs are
produced, they can be verified publicly against the commitments published
in the first round. Both decryption chain and re-encryption can be applied to
implement the shuffling. In the following, the protocol is described in detail
in the case of shuffling by re-encryption. The employed encryption algorithm
can be any semantically secure encryption algorithm like El Gamal or Paillier.

1. The private key of the encryption function is shared among some de-
cryption authorities.

2. Each user Pi chooses an input bi and commits to it as ci = H(bi, vi)
where H() is a one-way and collision-resistant hash function and vi is a
random integer.

3. Commitments ci for i = 1, 2, . . . , n are encrypted to ei for i = 1, 2, . . . , n,
which are signed by the corresponding users and submitted to the mix
network.

4. Each server in the network re-encrypts and permutes ei for i = 1, 2, . . . , n
in sequence. The servers do not need to prove correctness of their shuf-
fling.
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5. Let e′i for i = 1, 2, . . . , n denote the shuffled outputs of the last server.
The decryption authorities cooperate to decrypt e′i for i = 1, 2, . . . , n to
c′i for i = 1, 2, . . . , n and publish them.

6. Each user Pi verifies that his commitment ci is among the published
shuffled commitments. Any user can complain if he cannot find his com-
mitment in the published outputs. Any dispute is solved as follows.

(a) The protesting user Pi publishes ei and his signature on ei.

(b) Each server (from the first one to the last one) has to prove his
shuffling of ei is correct by publishing his output for ei and the
random value used in the re-encryption. If any server has performed
an incorrect shuffling, it will be discovered and the next step is
skipped. Otherwise, some e′j will be revealed, which is Am’s output
for ei.

(c) Each server has to prove that it decrypted e′j correctly using a proof
of correct decryption. Any incorrect decryption can be found.

(d) If any server fails to prove his innocence, he is removed (or replaced
if necessary) and the mixing is performed again. If all the servers
prove their innocence, the protesting user is identified as a cheater
and removed.

7. The pair of input (bi, vi) is encrypted to the ciphertext pair (e1i, e2i)
and signed by Pi for i = 1, 2, . . . , n.

8. The encrypted inputs (e1i, e2i) for i = 1, 2, . . . , n are submitted to the
servers that perform the second round of mixing to mix them. As in
the first round, shuffling in the second round is also composed of re-
encryption and permutation and not proved by the servers to be valid.
Ciphertext pairs (e1i, e2i) for i = 1, 2, . . . , n are shuffled to (e1′i, e2

′
i) for

i = 1, 2, . . . , n.

9. The decryption authorities cooperate to decrypt the shuffled outputs
(e1′i, e2

′
i) for i = 1, 2, . . . , n and publish the result (b′i, v

′
i) for i =

1, 2, . . . , n.

10. Anyone can publicly verify that every published output is correctly
committed to a different commitment. If an output (b′i, v

′
i) of the sec-

ond round cannot be matched to any published commitments c′j for
j = 1, 2, . . . , n, the problem is solved as follows.

(a) Each server has to prove that its decryption to (b′i, v
′
i) is correct

using a proof of correct decryption (proof of equality of logarithms
if El Gamal encryption is employed). If an incorrect decryption is
found, the server performing it is identified as a cheater and the
next step is skipped. Otherwise, (e1′j , e2

′
j), the ciphertext corre-

sponding to (b′i, v
′
i) is revealed.
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(b) Each server (from the last one to the first one) has to prove its
shuffling leading to (e1′j , e2

′
j) is correct by publishing the input for

(e1′j , e2
′
j) and the random value used to re-encrypt the input to

(e1′j , e2
′
j). If any server has performed an incorrect shuffling, he

will be discovered.

(c) If any server fails to prove innocence, it is removed (or replaced
if necessary) and the mixing is performed again. If all the servers
prove their innocence, the output in dispute has been traced back
to an input of the mix network. The user submitting the input in
dispute is identified as a cheater and removed.

2.3.2 Analysis and Summary

The achieved properties of the GMN in [92] are as follows.

1. Correctness:
As the users do not want tampering of their input, they can supervise
that the first round of mixing is correct, namely the commitments to
their inputs are correctly mixed. As the hash function is one-way and
collision-resistant, incorrect shuffling by any malicious server in the sec-
ond round of mixing can be detected publicly by anyone.

2. Privacy:
As threshold trust is assumed, no inputs can be decrypted before they
are mixed and at least one server conceals its shuffling. The permutation
in the mix network is secret and privacy is achieved.

3. Robustness:
As demonstrated in Section 2.21, dishonest servers or users can be iden-
tified. As re-encryption is employed in this mix network, the identified
malicious parties can be removed while the mix can continue without
them.

Although correctness of the first round mix is not publicly verifiable, any in-
correct mixing of an input in the first round can be found by a user submitting
the input and the dispute can be solved publicly. As a user usually does not
want to be abused and is eager to protect his rights, any incorrect mixing in
the first round can still be found and verified publicly. Moreover, the method
is highly efficient as general verification is employed. The computational cost
of NGMN in the normal case is as follows where El Gamal re-encryption is
employed and there are m servers in the mix network.

• Re-encryption: 6 nm exponentiations (on every server, two exponenti-
ations for each El Gamal re-encryption while each input requires three
re-encryptions, one for the input, one for a random value and one for
their hash function).
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• Decryption: 3 mn exponentiations (one exponentiation per server for
each El Gamal decryption while each input requires three decryptions,
one for the input, one for a random value and one for their hash func-
tion).

A special property —independence of input— is also realized in this mix
network. Independence of input means that a user cannot choose or change his
inputs according to the other inputs. This property is necessary to implement
strict fairness in application like e-voting and e-auction. In this mix network,
every user’s commitment is published (anonymously) before any other user’s
input is submitted to the mix network. Even though a malicious user can
collude with a server to change its input (violating correctness) without being
detected, this change is restricted as follows.

• During the first round of shuffling, the malicious user can collude with a
server to change its commitment, thus actually changing its committed
input. However, during the first round of shuffling, even if he can get
collusion from all the servers the malicious user has no information about
the other users’ inputs if the hash function is one-way.

• During the second round of shuffling, the malicious user may get some
information about the other users’ inputs if he gets collusion of some
parties processing the decryption key(s) of the mix network. However,
if the hash function is collision-resistant he cannot change his input
during the second round as his commitment has been published in the
first round.

Therefore, a malicious user cannot change his input according to some other
users’ inputs if those users do not collude with him and the hash function is
one-way and collision-resistant. This is the advantage over the other schemes
[25, 84, 48]. This advantage makes NGMN especially suitable for applications
like e-voting and e-auction, as fairness can be guaranteed without any trust.

Comparison with the practical GMNs is presented in Table 2.2 where 10000
inputs are mixed. It is demonstrated in this table that the new mix network
is secure and efficient.

2.4 Efficient and Secure SMN: the Most
Important Mix Network

SMN is the most useful solution to mix network as it guarantees reliable cor-
rectness and strong flexibility. SMN is usually based on re-encryption as it
needs to support formal and strict privacy in proof of validity of shuffling.
Among the existing SMN schemes, the schemes in [62, 60, 15] are not secure
enough. The mix network in [62] is not publicly verifiable; while the mix net-
work schemes in [60, 15] only provide incomplete verification of validity of
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shuffling. The first completely verifiable mix network was proposed by Abe
[5]. In [5], correctness of every gate is still verified naively (zero knowledge
proof of 1-out-of-2 equality of logarithms). However, correctness proof and
verification in each gate are efficient (12 exponentiations and 16 exponentia-
tions respectively) and Abe claimed n log2 n− n+ 1 binary gates are needed
to realize a PN(n). So the computational costs for each server’s correctness
proof and verification become 12(n log2 n − n + 1) and 16(n log2 n − n + 1)
exponentiations. However, efficiency improvement on correctness verification
is achieved at the cost that re-encryption becomes less efficient. In [5], the cost
of re-encryption for each server is 4(n log2 n − n + 1) exponentiations while
in most mix network this cost is 2n exponentiations. However, in general,
acceptable efficiency is achieved in Abe’s scheme when the number of users
is not large. Despite its improved efficiency, Abe’s scheme has the following
drawbacks.

1. The precise extent of correctness of the mix network is not provided.
It is not specified exactly how difficult it is for an incorrect shuffling to
pass the verification.

2. The scheme is still not as efficient as desirable for some applications.

Later Abe modified his scheme with Hoshino [6]. They pointed out that in
the original scheme all the possible permutations are not equally likely. In
their new scheme, all the n! possible permutations are equally likely in the
mix network if the number of dishonest servers is no more than t. However,
the two drawbacks above were not overcome in [6].

Although naive verification using proof of partial knowledge [28] can ex-
plicitly guarantee the correctness of Aj ’s shuffling, it is too inefficient to be
practical. A more efficient verification technique uses the following equation.

logg (aj,1/aj−1,i) = logy (bj,1/bj−1,i) ∨

logg (aj,2/aj−1,i) = logy (bj,2/bj−1,i) ∨ . . . (2.1)

∨ logg (aj,n/aj−1,i) = logy (bj,n/bj−1,i) for i = 1, 2, . . . n

For simplicity and without losing generality, suppose logg (aj,1/aj−1,i) =
logy (bj,1/bj−1,i) and x1 = logg (aj,1/aj−1,i) is known to Aj . Then
logg (aj,1/aj−1,i) = logy (bj,1/bj−1,i) ∨ logg (aj,2/aj−1,i) = logy (bj,2/bj−1,i) ∨
. . . ∨ logg (aj,n/aj−1,i) = logy (bj,n/bj−1,i) can be proved as follows.

1. The prover chooses r1 from Z[G] randomly and calculates a1 = hr1 , b1 =
gr1 . The prover chooses wk and ck for k = 2, 3, . . . , n from Z[G] randomly
and calculates ak = gwk(aj,k/aj−1,i)

ck , bk = ywk(bj,k/bj−1,i)
ck for k =

2, 3, . . . , n. He sends ai and bi for k = 1, 2, . . . , n to the verifier.

2. The verifier chooses a random challenge c from Z[G] and sends it to the
prover.
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3. The prover calculates c1 = c−
∑n

k=2 ck mod [G] and w1 = r1−c1x1 mod
[G]. Then he sends ck and wk for k = 1, 2, . . . , n to the verifier.

4. The verifier checks c =
∑i

k=1 ck, ak = gwk(aj,k/aj−1,i)
ck and

bk = ywk(bj,k/bj−1,i)
ck for k = 1, 2, . . . , n.

This is an interactive proof. If a hash function imitating a random oracle
is used to generate the challenge, it can be transferred into a non-interactive
proof. The non-interactive protocol is denoted as CV (correctness verification)
in the rest of this thesis. The computational cost of proof and verification
of CV is n(4n − 2) and 4n2 exponentiations respectively.1 It is proved in
Theorem 1 that CV is enough for the correctness verification.

Definition 1 Aj(cj−1,µ, cj,ν) = 1 means Aj can efficiently calculate rj,ν sat-
isfying aj,ν = grj,νaj−1,µ and bj,ν = yrj,νbj−1,µ.

Theorem 1 If the shuffling by Aj is incorrect, CV can be satisfied with a
probability no more than 1/q without collusion of all the previous j−1 servers
and at least two users, assuming DL problem is intractable.

To prove Theorem 1, the following lemma is used.

Lemma 1 If the shuffling by Aj is incorrect and for every cj−1,µ with 1 ≤
µ ≤ n there exists some cj,ν with 1 ≤ ν ≤ n such that Aj(cj−1,µ, cj,ν) = 1, Aj

can efficiently calculate logg aj−1,i′ − logg aj−1,i′′ where 1 ≤ i′ < i′′ ≤ n.

Proof: If the shuffling is incorrect and for every cj−1,µ for µ = 1, 2, . . . , n,
there exists a cj,ν with 1 ≤ ν ≤ n satisfying Aj(cj−1,µ, cj,ν) = 1, there
must be two inputs cj−1,µ1 and cj−1,µ2 satisfying Aj(cj−1,µ1, cj,τ ) = 1 and
Aj(cj−1,µ2, cj,τ ) = 1 with 1 ≤ τ ≤ n. Otherwise there exists a permuta-
tion PM between the inputs and outputs such that cj,ν = PM(cj−1,µ) if
Aj(cj−1,µ, cj,ν), which is contradictory to the assumption that the shuffling is
incorrect.

Aj(cj−1,µ1, cj,τ ) = 1 and Aj(cj−1,µ2, cj,τ ) = 1 means Aj can efficiently
calculate λ1 and λ2, so that aj,τ = gλ1aj−1,µ1, bj,τ = yλ1bj−1,µ1, aj,τ =
gλ2aj−1,µ2 and bj,τ = yλ2bj−1,µ2. Therefore Aj can efficiently calculate
logg aj−1,µ1 − logg aj−1,µ2 = (logg aj,τ − λ1) − (logg aj,τ − λ2) = λ2 − λ1

✷

Proof of Theorem 1: As Aj cannot get collusion of all the previous j − 1
servers and at least two users and the DL problem is intractable, the inputs to
Aj are encrypted independently of each other in viewpoint of Aj and Aj can

1There are n instances of batch proof and verification. Each instance of proof is composed
of proof of n equations and costs 4n − 2 exponentiations, where four exponentiations for
each of the n − 1 incorrect equations and two exponentiations for the correct equation.
Every instance of verification is composed of verification of n equations, each of which costs
four exponentiations.
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efficiently calculate logg aj−1,i for at most one cj−1,i = (aj−1,i, bj−1,i) where
1 ≤ i ≤ n. This fact is denoted as limitation of a server’s knowledge. As a
result of this fact, if the shuffling by Aj is incorrect, there exists cj−1,µ, so
that Aj(cj−1,µ, cj,ν) 6= 1 for ν = 1, 2, . . . , n. Otherwise according to Lemma 1
Aj can efficiently calculate logg aj−1,i′ − logg aj−1,i′′ where 1 ≤ i′ < i′′ ≤ n,
which is contradictory to limitation of a server’s knowledge. So

logg (aj,1/aj−1,µ) = logy (bj,1/bj−1,µ) ∨

logg (aj,2/aj−1,µ) = logy (bj,2/bj−1,µ) ∨ . . .

∨ logg (aj,n/aj−1,µ) = logy (bj,n/bj−1,i)

can be proved in CV with a probability no more than 1/q as proof of equality
of logarithms in CV implies knowledge of logarithm (without knowledge of
the logarithm, Aj can only guess the challenge and the success probability of
the guess is 1/q).

Therefore, CV can be satisfied with a probability no more than 1/q. ✷

Even when Aj colludes with all previous j−1 servers and at least two users,
invalid shuffling of the honest users’ inputs will still be discovered in CV with
an overwhelmingly large probability. This conclusion is straightforward from
the proof of Lemma 1. In proof of Lemma 1, it is illustrated that the only
possible attack against correctness is for a malicious server to collude with
two or more malicious users and all the previous servers to tamper with any
of these malicious users’ inputs. Since an honest user will not conspire with
the malicious server and will conceal the randomising factor in his encrypted
input, the attack against the integrity of his input can only succeed with a
negligible probability if the DL problem is intractable.

Among the efficient SMN schemes proposed in recent years [52, 93, 90, 41,
102, 51, 50, 86], the most efficient solution in computation is the scheme in [93].
However, unlike all the other shuffling protocols it only allows a shuffling node
to choose a permutation from a small fraction of all the possible permutations.
So it is not a complete shuffling and is weak in privacy. The techniques in
[52, 90, 41, 102, 51, 50, 86] are usually employed to implement efficient and
secure mix networks. Suppose input ciphertexts c1, c2, . . . , cn are shuffled to
output ciphertexts c′1, c

′
2, . . . , c

′
n. Most of them [52, 90, 102, 51, 86, 50, 86]

employ the same main idea: if

RE(
∏n

i=1 c
ti
i ) =

∏n
i=1 c

′t
′
i

i (2.2)

and ti for i = 1, 2, . . . , n are random integers and t′1, t
′
2, . . . , t

′
n is a per-

mutation of t1, t2, . . . , tn then D(c′1), D(c′2), . . . , D(c′n) is a permutation of
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D(c1), D(c2), . . . , D(cn) with an overwhelmingly large probability where RE()
and D() denote re-encryption function2 and decryption respectively.

In the mix network schemes depending on (2.2) [52, 90, 102, 51, 86, 50, 86],
several encryption algorithms may be employed. They can be classified into
two types: additive homomorphic encryption algorithms and multiplicative
homomorphic encryption algorithms. An additive homomorphic encryption
algorithm with decryption function D() requires thatD(c1c2) = D(c1)+D(c2)
for any ciphertexts c1 and c2. A typical example of additive homomorphic
encryption algorithm is Paillier encryption [83]. A multiplicative homomorphic
encryption algorithm with decryption function D() requires that D(c1c2) =
D(c1)D(c2) for any ciphertexts c1 and c2. A typical example of multiplicative
homomorphic encryption algorithm is El Gamal encryption.

2.4.1 SMN Employing Multiplicative Homomorphic
Encryption Algorithm

Let’s recall the parameter setting of El Gamal encryption in mix networks.

• G1 is a cyclic group with order q and multiplication modulus p where
p−1 = 2q and p, q are large primes. More generally, p−1 is a multiple of
q and (p− 1)/q may be larger than 2. For simplicity and without losing
generality, the most usual setting in shuffling with El Gamal encryption
is adopted: p− 1 = 2q.

• Let g1 be a generator of G1. Private key x is chosen (usually gener-
ated and shared by multiple parties) from Zq and public key y = gx1 is
published.

• The message space is G1. A message m is encrypted into E(m) =
(gr1,myr) where r is randomly chosen from Zq.

• A ciphertext c = (a, b) can be re-encrypted into RE(c) = (agr1 , by
r)

where r is randomly chosen from Zq.

• A ciphertext c = (a, b) is decrypted into b/ax.

• Product of two ciphertexts c1 = (a1, b1) and c2 = (a2, b2) is c1c2 =
(a1a2, b1b2).

Suppose the input ciphertexts are ci = (ai, bi) for i = 1, 2, . . . , n and
they are shuffled to c′i = RE(cπ(i)) = (a′i, b

′
i) for i = 1, 2, . . . , n where π()

is a random permutation of {1, 2, . . . , n}. Random L-bit integers ti for i =
1, 2, . . . , n are chosen (e.g., by a verifier or multiple verifiers) where L is a

2Re-encryption is a probabilistic operation on a ciphertext and outputs another cipher-
text containing the same message. It is supported by various probabilistic encryption al-
gorithms like El Gamal encryption and Paillier encryption. More details can be found in
descriptions of those encryption algorithms.
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1. Anyone can publicly calculate Legendre symbols of
a′1, b1, a

′
2, b

′
2, . . . , a

′
n, b

′
n to check validity of the output ciphertexts.

2. c′i is valid iff both a′i and b′i have Legendre symbols 1 as they are only
valid when they are quadratic residues.

3. Any invalid ciphertext c′i is adjusted to −c′i.

Figure 2.6: Checking and Adjusting Output Ciphertexts

security parameter and 2L < q. The shuffling node proves satisfaction of
(2.2).

Note that the setting requiring that the p is prime p − 1 = 2q message
space is G1 and 2L < q is a little more strict than in some shuffling schemes.
Theorem 2 and a special check-and-adjustment mechanism3 in Figure 2.6
demonstrate that such a setting helps to guarantee soundness of shuffling and
is suggested to be adopted by the mix network schemes depending on (2.2).
If message G1 is not suitable for an application (e.g., requiring a message
space in the form of Zρ), it is suggested to employ an additive homomorphic
encryption algorithm and use the technique in Section 2.4.2.

Theorem 2 When a′1, b1, a
′
2, b

′
2, . . . , a

′
n, b

′
n are in G1, the probability that

(2.2) is successfully proved and verified but D(c′1), D(c′2), . . . , D(c′n) is not a
permutation of D(c1), D(c2), . . . , D(cn) is a negligible concrete probability.

To prove Theorem 2, a lemma is proved first.

Lemma 2 Suppose yi, zi ∈ G1 for i = 1, 2, . . . , n. Let ti for i = 1, 2, . . . , n
be random integers such that ti < 2L. If Pr [ t1, t2, . . . , tn ∈ {0, 1, . . . , 2

L −
1} | logg1

∏n
i=1 y

ti
i = logy

∏n
i=1 z

ti
i ] > 2−L, then logg1 yi = logy zi for i =

1, 2, . . . , n.

Proof: Pr [ t1, t2, . . . , tn ∈ {0, 1, . . . , 2L − 1} | logg1
∏n

i=1 y
ti
i =

logy
∏n

i=1 z
ti
i ] > 2−L implies that for any given integer v in {1, 2, . . . , n}

there must exist integers t1, t2, . . . , tn and t′v in {0, 1, . . . , 2L − 1} such that

logg1
∏n

i=1 y
ti
i = logy

∏n
i=1 z

ti
i (2.3)

logg1((
∏v−1

i=1 ytii )y
t′v
v
∏n

i=v+1 y
ti
i ) = logy((

∏v−1
i=1 ztii )z

t′v
v
∏n

i=v+1 z
ti
i ) (2.4)

Otherwise, for any (t1, t2, . . . , tv−1, tv+1, . . . , tn), there is at most one tv to
satisfy logg1

∏n
i=1 y

ti
i = logy

∏n
i=1 z

ti
i . This implies that among the 2nL pos-

sible choices for (t1, t2, . . . , tn) (combination of 2(n−1)L possible choices for
(t1, t2, . . . , tv−1, tv+1, . . . , tn) and 2L possible choices for tv), there are at

3This check-and-adjustment mechanism is necessary for soundness of shuffling although
it is sometimes ignored (e.g., in [52]).
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most 2(n−1)L choices to satisfy logg1
∏n

i=1 y
ti
i = logy

∏n
i=1 z

ti
i , which is a

contradiction to the assumption that Pr [ t1, t2, . . . , tn ∈ {0, 1, . . . , 2
L −

1} | logg1
∏n

i=1 y
ti
i = logy

∏n
i=1 z

ti
i ] > 2−L.

Equation (2.3) divided by (2.4) yields

logg1y
tv−t′v
v = logyz

tv−t′v
v

Namely

(tv − t′v)logg1yv = (tv − t′v)logyzv mod q

Note that tv 6= t′v and tv, t
′
v < 2L < q. So tv − t′v 6= 0 mod q and

logg1yv = logyzv

Therefore, logg1 yi = logy zi for i = 1, 2, . . . , n as v can be any integer in
{1, 2, . . . , n}. ✷

Proof of Theorem 2: Let A1 be the event that D(c′1), D(c′2), . . . , D(c′n) is a
permutation of D(c1), D(c2), . . . , D(cn); A2 be the event that (2.2) is correct;
A3 be the event that the shuffling passes the verification of (2.2); and P (A)
denote the probability of event A.

P (A3/Ā1) = P ((A3 ∧ A2)/Ā1) + P ((A3 ∧ Ā2)/Ā1)

= P (A3 ∧ A2 ∧ Ā1)/P (Ā1) + P (A3 ∧ Ā2 ∧ Ā1)/P (Ā1)

= P (Ā1 ∧ A2)P (A3/Ā1 ∧A2)/P (Ā1) +

P (A3 ∧ Ā2 ∧ Ā1)P (Ā2 ∧ Ā1)/(P (Ā1)P (Ā2 ∧ Ā1))

= P (A2/Ā1)P (A3/Ā1 ∧ A2) +

P (Ā2/Ā1)P (A3 ∧ Ā2 ∧ Ā1)/P (Ā2 ∧ Ā1)

= P (A2/Ā1)P (A3/Ā1 ∧ A2) +

P (Ā2/Ā1)P (A3 ∧ Ā2 ∧ Ā1)/(P (Ā2)P (Ā1/Ā2))

P (Ā1/Ā2) = 1 as P (A2/A1) = 1. So

P (A3/Ā1) = P (A2/Ā1)P (A3/Ā1 ∧ A2) +

P (Ā2/Ā1)P (A3 ∧ Ā2 ∧ Ā1)/P (Ā2)

≤ P (A2/Ā1)P (A3/Ā1 ∧ A2) + P (Ā2/Ā1)P (A3 ∧ Ā2)/P (Ā2)

≤ P (A2/Ā1)P (A3/Ā1 ∧ A2) + P (Ā2/Ā1)P (A3/Ā2)

≤ P (A2/Ā1)P (A3/Ā1 ∧ A2) + P (A3/Ā2)

If P (A2/Ā1) > 2−L, then when Ā1 happens the probability that (2.2) is
correct is larger than 2−L. Namely, when Ā1 happens,

RE(
∏n

i=1 c
ti
i ) =

∏n
i=1 c

′tπ(i)

i
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with a probability larger than 2−L where π() is a permutation of {1, 2, . . . , n}.
Namely, when Ā1 happens,

RE(
∏n

i=1 c
ti
i ) =

∏n
i=1 c

′ti
π−1(i)

with a probability larger than 2−L .
According to multiplicative homomorphism of the employed encryption

algorithm, when Ā1 happens,
∏n

i=1(ci/c
′
π−1(i))

ti = E(1)

with a probability larger than 2−L. Namely, when Ā1 happens

logg1
∏n

i=1(ai/a
′
π−1(i))

ti = logy
∏n

i=1(bi/b
′
π−1(i))

ti

with a probability larger than 2−L.
So, according to Lemma 2, when Ā1 happens,

logg1(ai/a
′
π−1(i)) = logy(bi/b

′
π−1(i)) for i = 1, 2, . . . , n

and thus D(c′1), D(c′2), . . . , D(c′n) is a permutation of D(c1), D(c2), . . . , D(cn),
which is a contradiction. So P (A2/Ā1) ≤ 2−L must be true to avoid the
contradiction.

As with multiplicative homomorphic encryption, algorithm (2.2) is proved
using a standard Chaum-Pedersen proof of equality of discrete logarithms [27],
P (A3/Ā1 ∧ A2) = 1 and P (A3/Ā2) < 2−L′

where L′ is the bit length of the
challenge in the Chaum-Pedersen proof of equality of logarithms. Therefore,

P (A3/Ā1) ≤ P (A2/Ā1) + P (A3/Ā2) = 2−L + 2−L′

✷

2.4.2 SMN Employing Additive Homomorphic
Encryption Algorithm

Let’s recall the parameter setting of Paillier encryption in mix networks. Other
factorization-based homomorphic encryption algorithms like [82] can be em-
ployed in the same way. Suppose Paillier encryption [83] or Paillier encryption
with distributed decryption [37] is employed. The latter may be more suit-
able as in shuffling applications like e-voting and it is usually desired that the
private key is shared by multiple parties.

• The multiplication modulus is N2 where N = p′q′ and p′, q′ are large
primes.

• A message m is encrypted into c = gmrN where g is a public integer
generated by the key generation algorithm (see [37] for more details)
and r is randomly chosen from Z∗

N .
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• A ciphertext c is re-encrypted into c′ = RE(c) = crN where r is ran-
domly chosen from Z∗

N .

Suppose the input ciphertexts are ci for i = 1, 2, . . . , n and they are shuffled
to c′i = RE(cπ(i)) for i = 1, 2, . . . , n where π() is a random permutation of
{1, 2, . . . , n}. Random L-bit integers ti for i = 1, 2, . . . , n are chosen (e.g.,
by a verifier or multiple verifiers) where L is a security parameter and 2L <
min(p′, q′). The shuffling node proves satisfaction of (2.2). Theorem 3 formally
and precisely guarantees soundness of mix network with Paillier encryption.

Theorem 3 With Paillier encryption, the probability that (2.2) is success-
fully proved and verified but D(c′1), D(c′2), . . . , D(c′n) is not a permutation of
D(c1), D(c2), . . . , D(cn) is a negligible concrete probability.

To prove Theorem 3, a lemma is proved first.

Lemma 3 If
∏n

i=1 y
ti
i is an N th residue with a probability larger than

2−L where t1, t2, . . . , tn are randomly chosen from {0, 1, . . . , 2L − 1}, then
y1, y2, . . . , yn are N th residues.

Proof:
∏n

i=1 y
ti
i is an N th residue with a probability larger than 2−L im-

plies that for any given integer v in {1, 2, . . . , n} there must exist integers
t1, t2, . . . , tn and t′v in {0, 1, . . . , 2L − 1}, x and x′ such that

∏n
i=1 y

ti
i = xN (2.5)

(
∏v−1

i=1 ytii )y
t′v
v
∏n

i=v+1 y
ti
i = x′N (2.6)

Otherwise, for any (t1, t2, . . . , tv−1, tv+1, . . . , tn) in {0, 1, . . . , 2
L−1}n−1, there

are at most one tv in {1, 2, . . . , 2L − 1} such that
∏n

i=1 y
ti
i is an N th residue.

This implies that among the 2nL possible choices for (t1, t2, . . . , tn) (com-
bination of 2(n−1)L possible choices for (t1, t2, . . . , tv−1, tv+1, . . . , tn) and 2L

possible choices for tv) there are at most 2(n−1)L choices to construct N th

residue
∏n

i=1 y
ti
i , which is a contradiction to the assumption that

∏n
i=1 y

ti
i is

an N th residue with a probability larger than 2−L.
Equations (2.5) and (2.6) imply ytv−t̂v

v is an N th residue. According to
Euclidean algorithm there exist integers α and β to satisfy β(tv− t̂v) = αN +
GCD(N, tv − t̂v). GCD(N, tv − t̂v) = 1 as tv, t̂v < 2L < min(p′, q′). So

y
β(tv−t̂v)
v = yαNv yv. Thus,

yv = yβ(tv−t̂v)
v /yαNv = (y(tv−t̂v)

v )β/yαNv = (x/x′)Nβ/(yαv )
N = ((x/x′)β/yαv )

N

So yv is an N th residue. Therefore, y1, y2, . . . , yn are N th residues as v can be
any integer in {1, 2, . . . , n}. ✷

Proof of Theorem 3: Let A1 be the event that D(c′1), D(c′2), . . . , D(c′n) is a
permutation of D(c1), D(c2), . . . , D(cn); A2 be the event that (2.2) is correct;
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A3 be the event that the shuffling node successfully proves (2.2); and P (A)
denote the probability of event A.

P (A3/Ā1) = P ((A3 ∧A2)/Ā1) + P ((A3 ∧ Ā2)/Ā1)

= P (A3 ∧ A2 ∧ Ā1)/P (Ā1) + P (A3 ∧ Ā2 ∧ Ā1)/P (Ā1)

= P (Ā1 ∧ A2)P (A3/Ā1 ∧ A2)/P (Ā1) +

P (A3 ∧ Ā2 ∧ Ā1)P (Ā2 ∧ Ā1)/(P (Ā1)P (Ā2 ∧ Ā1))

= P (A2/Ā1)P (A3/Ā1 ∧ A2) +

P (Ā2/Ā1)P (A3 ∧ Ā2 ∧ Ā1)/P (Ā2 ∧ Ā1)

= P (A2/Ā1)P (A3/Ā1 ∧ A2) +

P (Ā2/Ā1)P (A3 ∧ Ā2 ∧ Ā1)/(P (Ā2)P (Ā1/Ā2))

P (Ā1/Ā2) = 1 as P (A2/A1) = 1. So

P (A3/Ā1) = P (A2/Ā1)P (A3/Ā1 ∧ A2) +

P (Ā2/Ā1)P (A3 ∧ Ā2 ∧ Ā1)/P (Ā2)

≤ P (A2/Ā1)P (A3/Ā1 ∧ A2) +

P (Ā2/Ā1)P (A3 ∧ Ā2)/P (Ā2)

≤ P (A2/Ā1)P (A3/Ā1 ∧ A2) + P (Ā2/Ā1)P (A3/Ā2)

≤ P (A2/Ā1)P (A3/Ā1 ∧ A2) + P (A3/Ā2)

If P (A2/Ā1) > 2−L, then when Ā1 happens the probability that (2.2) is
correct is larger than 2−L. Namely, when Ā1 happens,

RE(
∏n

i=1 c
ti
i ) =

∏n
i=1 c

′tπ(i)

i

with a probability larger than 2−L where π() is a permutation of {1, 2, . . . , n}.
Namely, when Ā1 happens,

RE(
∏n

i=1 c
ti
i ) =

∏n
i=1 c

′ti
π−1(i)

with a probability larger than 2−L.
According to additive homomorphism of the employed encryption algo-

rithm, when Ā1 happens,

∏n
i=1(ci/c

′
π−1(i))

ti = E(0)

with a probability larger than 2−L. Namely, when Ā1 happens,
∏n

i=1(ci/c
′
π−1(i))

ti

is an N th residue with a probability larger than 2−L.
So, according to Lemma 3, when Ā1 happens ci/c

′
π−1(i) is an N th residue

for i = 1, 2, . . . , n, and thus D(c′1), D(c′2), . . . , D(c′n) is a permutation of
D(c1), D(c2), . . . , D(cn), which is a contradiction. P (A2/Ā1) ≤ 2−L must be
true to avoid the contradiction.
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As with Paillier encryption, (2.2) is proved using a standard proof of knowl-
edge of root [53], P (A3/Ā1 ∧ A2) = 1 and P (A3/Ā2) < 2−L′

where L′ is the
bit length of the challenge in the proof of knowledge of root. Therefore,

P (A3/Ā1) ≤ P (A2/Ā1) + P (A3/Ā2) = 2−L + 2−L′

✷

With help of Lemma 3, we can prove that the probability that
D(c′1), D(c′2), . . . , D(c′n) is not a permutation of D(c1), D(c2), . . . , D(cn) but

knowledge of (
∏n

i=1 c
′tπ(i)

i /
∏n

i=1 c
ti
i )

1/N is no more than 2−L + 2−L′

where
L′ is the bit length of challenge in the ZK proof in [53]. Theorem 3 guaran-
tees that if the shuffling verification is passed, the plaintexts encrypted in the
output ciphertexts are permutations of the plaintexts encrypted in the input
ciphertexts with an non-negligible probability.

2.5 Grouped Shuffling: a Trade-off to Improve
Efficiency of Mix Networks

Grouped shuffling is a mechanism to improve efficiency of mix networks with-
out compromising its security in practice. Let us start discussing it by recalling
the work by Abe. When the server Aj in a mix network performs El Gamal
re-encryption and permutation πj and Equation (2.1) is employed to verify
the correctness of shuffling, the following properties are achieved.

1. A dishonest server Aj can prove its incorrect shuffling to be correct
with probability no more than 1/q without collusion of all the previous
j − 1 servers and at least two users. Even when Aj colludes with all the
previous j − 1 servers and at least two users, invalid shuffling of honest
users’ inputs will still be discovered in CV with an overwhelmingly large
probability.

2. Identified incorrect shuffling can be removed and the mix network can
recover efficiently.

3. Computational costs for the prover and verifier of the correctness ver-
ification of a server’s shuffling are n(4n − 2) and 4n2 exponentiations
respectively.

4. If at least one server is honest, all the n! permutation are equally possible
in the mix network and if the number of malicious decrypting authorities
is no more than t, privacy is achieved.

This mix network is denoted as S-Mix-1 in [93]. However there are still some
drawbacks of this solution:
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• When two users conspire with the first server, correctness is not guar-
anteed.

• When n is large, O(n2) exponentiation is still a high cost.

To solve these problems, an idea of Abe [5, 6] is used: divide a PN(n) into a
few smaller shufflings, verification of whose correctness is efficient. However,
switching gate PN(2) is not applied to avoid complex construction of gate
circuits. Instead, a simpler grouped shuffling technique is employed in [93] to
improve efficiency.

2.5.1 Group Shuffling in [93]

On each server the n inputs are divided into groups with same size k, while re-
encryption and random permutation are applied to each group. For simplicity,
suppose n = ku. There are z = ku−1 groups. Usually m ≤ u as the number
of servers is often small. The grouping function on every server is specially
designed according to a general rule: if an input to the mix network is able to
be permuted to a certain set of outputs after the shuffling of the first j servers,
any two of these outputs (inputs to the j+1th server) cannot be divided into a
same group on the j+1th server. This rule can provide the greatest diffusion,
and thus as strong privacy as possible.

Before the shuffling, each server Aj randomly generates vj,i ∈ G for i =
1, 2, . . . , n. Inputs to the mix network ci for i = 1, 2, . . . , n are sorted to
c0,i = (a0,i, b0,i) for i = 1, 2, . . . , n, so that a0,i +

∑m
j=1 vj,i mod p increases

as i increases. On server Aj , the shuffling is as follows (refer to Figure 2.7 for
the details of the grouping where k = 3).

1. Grouping

• Under this grouping mechanism, diffusion of the mix network in-
creases server after server. After the jth server’s shuffling, a com-
plete mixing is realized for every kj successive inputs, which is
called a shuffling range. In other words, the wth shuffling range in
the inputs is mixed to the wth shuffling range in the outputs where
any input in the wth shuffling range may be shuffled to any output
in the wth shuffling range with a uniform probability distribution.
Before the work of the first server, the size of the shuffling range
is 1. After its shuffling, the size of the shuffling range is k. Then
the outputs are regrouped so that the second server can use its
shuffling to extend the size of the shuffling range to k2.

• Aj get inputs cj−1,i for i = 1, 2, . . . , n from Aj−1. So far c0,kj−1w+1,
c0,kj−1w+2, . . . c0,kj−1w+kj−1 have been shuffled to cj−1,kj−1w+1,
cj−1,kj−1w+2, . . . cj−1,kj−1w+kj−1 for w = 0, 1, . . . , ku−j+1 − 1. De-
note cj−1,kj−1w+1, cj−1,kj−1w+2, . . . cj−1,kj−1w+kj−1 as shuffling
range Rj−1,w+1, then Aj in fact receives ku−j+1 shuffling ranges
Rj−1,1, Rj−1,2, . . . , Rj−1,ku−j+1 .
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• Aj regroups in every k successive shuffling ranges. The k in-
puts in the xth position in each shuffling range of the yth k suc-
cessive shuffling ranges are regrouped into the xth group in the
yth k successive shuffling ranges in the outputs. Namely, input
cj−1,i is mapped to cj,α,β , which is the βth element in Group
α, where α = ((i − 1)/kj)kj−1 + ((i − 1) mod kj−1) + 1 and
β = ((i − 1) mod kj)/kj−1 + 1.

2. Re-encryption and permutation
cj,α,β = (aj,α,β , bj,α,β) is permuted to

c′j,α,πj,α(β)
= (a′j,α,πj,α(β), b

′
j,α,πj,α(β)) = (grj,α,βaj,α,β , y

rj,α,βbj,α,β)

for α = 1, 2, . . . , z and β = 1, 2, . . . , k where rj,α,β is randomly cho-
sen and πj,α for α = 1, 2, . . . , z are random secret permutations from
{1, 2, . . . , k} to {1, 2, . . . , k}.

3. De-grouping
cj,i = c′j,α,β where i = k(α− 1) + β

Shuffling of Aj is verified by Aj+1 before it starts its own shuffling using
the following equation.

logg (a
′
j,α,1/aj,α,β) = logy (b

′
j,α,1/bj,α,β)

∨ logg (a
′
j,α,2/aj,α,β) = logy (b

′
j,α,2/bj,α,β)

∨ . . . ∨ logg (a
′
j,α,k/aj,α,β) = logy (b

′
j,α,k/bj,α,β)

for α = 1, 2, . . . , z and β = 1, 2, . . . , k (2.7)

Realization of verification of Equation (2.7) using existing zero knowledge
proof techniques is denoted as GCV (grouped correctness verification). If the
verification fails, Aj+1 gets the outputs of Aj−1, verifies them, and uses them
as its inputs if they are valid. If Aj−1’s outputs are invalid too, it gets the
outputs of the previous server until it finds a set of valid outputs as its inputs.
After the shuffling of the last server, the outputs are decrypted as in S-Mix-1.
This mix network applying grouped shuffling is denoted as S-Mix-2 in [93].

Theorem 4 is presented here for soundness of verification by Equation (2.7).

Theorem 4 If the group shuffling by Aj is incorrect, Equation (2.7) can be
satisfied with a probability no more than 1/q without collusion of all the pre-
vious j − 1 servers and at least two users in a same group on Aj , assuming
DL problem is intractable.

Proof: According to Theorem 1, if the shuffling in the αth group by Aj is
incorrect, the probability that

logg (a
′
j,α,1/aj,α,β) = logy (b

′
j,α,1/bj,α,β)
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∨ logg (a
′
j,α,2/aj,α,β) = logy (b

′
j,α,2/bj,α,β)

∨ . . . ∨ logg (a
′
j,α,k/aj,α,β) = logy (b

′
j,α,k/bj,α,β)

for β = 1, 2, . . . , k

is satisfied is no more than 1/q without collusion of all the previous j − 1
servers and at least two users in a same group on Aj , assuming DL problem
is intractable. ✷

When a conspiracy of all the previous servers and at least two mali-
cious users is available, attack against correctness is more difficult than in
S-Mix-1. As the grouping function is dependent on vj,i for j = 1, 2, . . .m and
i = 1, 2, . . . , n, if at least one server is trusted to generate them randomly, the
grouping on any server is random. So if only static attack (all colluding users
and servers are chosen before the attack starts) is considered and at least one
server Aj is honest to choose vj,i for i = 1, 2, . . . , n randomly, the probabil-
ity that the colluding users are in the same group on any server is low. For
example, even if A1 colludes with two users, they happen to fall in a same
group with a probability 1/z. That means although attacks involving more
than one user and the first few servers against correctness are still possible,
they succeed with a low probability.4 As in S-Mix-1, the probability to tam-
per with an honest user’s input successfully is negligible if DL is intractable.
Therefore, correctness property is improved.

The computational cost to produce the proof is n(4k−2) exponentiations.
The computational cost to verify the proof is 4nk exponentiations.5 Better
efficiency is achieved compared to S-Mix-1.

Privacy of S-Mix-2 is achieved if the number of malicious decrypting au-
thorities is no more than t. The extent of privacy is measured by two factors:
diffusion of any single input and diffusion of the inputs as a whole. As stated
before, in normal applications m < u. So, if a dishonest server reveals its
shuffling, it makes no difference to the situation where this server performs
re-encryption without permutation. Therefore, the only impact of this attack
on the privacy of the shuffling of the whole mix network is to degrade the mix
network to a mix network containing one fewer server. The shuffling of the
other servers is not affected and can still provide strong privacy protection.

• Diffusion of any single input: each input may be permuted to any of a
set of kǫ outputs with an equal probability, where ǫ is the number of
honest servers.

4As k is usually small, z is large when n is large and the probability is very low when n

is very large as in a large-scale voting.
5There are n instances of batch proof and verification. Each instance of proof is composed

of proof of k equations and costs 4k−2 exponentiations, where four exponentiations for each
of the k − 1 incorrect equations and two exponentiations for the correct equation. Every
instance of verification is composed of verification of k equations, each of which costs four
exponentiations.
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• Diffusion of the inputs as a whole: (k!)zǫ possible permutations from the
inputs of the mix network to its outputs are equally likely.

If m ≥ u, greater privacy is possible.

• When ǫ = u, diffusion of single input may be as great as that in S-Mix-1
(any input to n equally likely outputs).

• When ǫ > u, diffusion of the inputs as a whole may be as great as that
in S-Mix-1 (all n! possible permutations are equally likely).

However, it depends on the distribution of the honest servers.
Efficiency of correctness verification of S-Mix-2 is better compared to that

of S-Mix-1. However it is still costly when n is large. Batch verification tech-
nique can be employed to improve the efficiency further. If every server Aj

uses a unique permutation πj to replace πj,α for α = 1, 2, . . . , z and the con-
cept of correctness is slightly changed in Definition 2, according to Theorem 3,
Equation (2.7) can be batched to Equation (2.8).

Definition 2 In S-Mix-3, group shuffling by Aj is correct if for any 1 ≤ α ≤
z, the same permutation exists between |D(cj,α,β)| for β = 1, 2, . . . , k and
|D(c′j,α,β)| for β = 1, 2, . . . , k where D() denotes decryption.

logg

z
∏

α=1

(a′j,α,1/aj,α,β)
tj,α = logy

z
∏

α=1

(b′j,α,1/bj,α,β)
tj,α

∨ logg

z
∏

α=1

(a′j,α,2/aj,α,β)
tj,α = logy

z
∏

α=1

(b′j,α,2/bj,α,β)
tj,α (2.8)

∨ . . . ∨ logg

z
∏

α=1

(a′j,α,k/aj,α,β)
tj,α = logy

z
∏

α=1

(b′j,α,k/bj,α,β)
tj,α

for β = 1, 2, . . . , k

To reduce the number of full-length exponentiations (a division is assumed to
have the same cost of a full-length exponentiation), Equation (2.8) is simplified
to Equation (2.9).

logg(

z
∏

α=1

a′
tj,α
j,α,1/

z
∏

α=1

a
tj,α
j,α,β) = logy(

z
∏

α=1

b′
tj,α
j,α,1/

z
∏

α=1

b
tj,α
j,α,β)

∨ logg(
z
∏

α=1

a′
tj,α
j,α,2/

z
∏

α=1

a
tj,α
j,α,β) = logy(

z
∏

α=1

b′
tj,α
j,α,2/

z
∏

α=1

b
tj,α
j,α,β) (2.9)

∨ . . . ∨ logg(
z
∏

α=1

a′
tj,α
j,α,k/

z
∏

α=1

a
tj,α
j,α,β) = logy(

z
∏

α=1

b′
tj,α
j,α,k/

z
∏

α=1

b
tj,α
j,α,β)

for β = 1, 2, . . . , k
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where tj,α for α = 1, 2, . . . , z are random integers with length l. The verifica-
tion in Equation (2.9) for any β by employing existing zero knowledge proof
techniques is denoted as BGCVj,β . If BGCVj,β holds for β = 1, 2, . . . , k, it
is denoted as BGCV (j − 1→ j), which means the correction verification for
Aj is passed. BGCV (j − 1 → j) is checked for j = 1, 2, . . . ,m to ensure the
correctness of the mix network.

This mix network is denoted as S-Mix-3 in [93].
To apply Equation (2.9), the construction of the mix network must be

changed slightly as follows. After the shuffling of all the servers, the outputs of
the mix network are decrypted. Every decrypted messageMi for i = 1, 2, . . . , n
is checked to be in G by testing whether M q

i = 1. If M q
i 6= 1, an additional

computation is performed: Mi = −Mi = gq0Mi.

2.5.2 Another Grouped Shuffling Protocol to Support
Efficient SMN

The grouped shuffling mechanism in [93] suggests use of very small groups and
thus cannot achieve very strong privacy. To guarantee stronger privacy the
group size must be larger, especially when the number of shuffled ciphertexts
is large. This idea is adopted in [86] to support strong privacy in grouped
shuffling-based mix networks. When multiple instances of grouped shuffling
employ the same permutation, their validity can be proved in a batch to
improve efficiency. More precisely, in [86] the ciphertexts to be shuffled are
divided into multiple groups and the same permutation is employed to shuffle
the ciphertexts in each group, such that it is feasible to prove and verify
validity of shuffling in all the groups in a batch. After being shuffled, we know
which group each output ciphertext is from, but every output ciphertext is
computationally indistinguishable from the other output ciphertexts in the
same group. The mix network in [86] is designed for applications with a large
number of inputs, so that strong privacy can be achieved. Unlike in [93], large
group size is supported at a low cost in [86], such that strong privacy can be
efficiently achieved.

An additive homomorphic semantically secure encryption algorithm (e.g.,
Paillier encryption [83] or modified El Gamal encryption [67, 68]) with re-
encryption function RE() and decryption functionD() is employed for encryp-
tion in [86]. Private key of the encryption algorithm is kept secret (e.g., shared
by multiple parties). The shuffling node receives ciphertexts c1, c2, . . . , cn and
shuffles them into c′1, c

′
2, . . . , c

′
n as follows.

1. Group size k is chosen, which is large enough for privacy requirement.
For simplicity of description assume that k is a divider of n.

2. c1, c2, . . . , cn are randomly divided into n/k groups G1, G2, . . . , Gn/k

where Gj contains k ciphertexts cj,1, cj,2, . . . , cj,k.
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3. An additional group of ciphertexts, G0, is generated and contains
c0,1, c0,2, . . . , c0,k where c0,i = H(c1,i, c2,i, . . . , cn/k,i) and H() is a pseu-
dorandom function (e.g., implemented through a hash function).

4. The shuffling node chooses π(), a permutation of {1, 2, . . . , k}, and out-
puts

c′j,i = RE(cj,π(i), rj,i) for j = 0, 1, . . . , n/k and i = 1, 2, . . . , k (2.10)

as its shuffling result where rj,i is randomly chosen from Q.

5. A challenger (e.g., trusted parties, independent observers or a pseudo-
random function) randomly chooses L-bit integers si and s′i for i =
1, 2, . . . k.

6. The shuffling node proves that the challenger can find integers ti and t′i
for i = 1, 2, . . . k in polynomial time, such that

∑k
i=1 siD(c0,i) =

∑k
i=1 tiD(c′0,i) (2.11)

∑k
i=1 s

′
iD(c0,i) =

∑k
i=1 t

′
iD(c′0,i) (2.12)

∑k
i=1 sis

′
iD(c0,i) =

∑k
i=1 tit

′
iD(c′0,i) (2.13)

∑k
i=1 siD(cj,i) =

∑k
i=1 tiD(c′j,i) for j = 1, 2, . . . , n/k (2.14)

Note that an additional group of random ciphertexts, G0, is shuffled using
the same permutation and proved to be valid in the same batch. This ad-
ditional group is necessary to satisfy a certain linear ignorance assumption.
When H() is regarded as a random oracle, linear ignorance assumption on
the shuffling node with regard to D(c0,1), D(c0,2), . . . , D(c0,k) is automati-
cally satisfied without any trust.

Suppose Paillier encryption with distributed decryption [37] is employed
for encryption in [86]. Parameters and re-encryption function of the employed
encryption function are as follows.

• Multiplication modulus is N2 where N = p′q′ and p′, q′ are secret large
primes.

• RE(c) = crN mod N2 where r is randomly chosen from Z∗
N .

Re-encryption operation in (2.10) is implemented in [86] through

c′j,i = cj,π(i)r
N
j,i mod N2 for j = 0, 1, . . . , n/k and i = 1, 2, . . . , k

where rj,i is randomly chosen from Z∗
N for j = 0, 1, . . . , n/k and i = 1, 2, . . . , k.

The shuffling node instantiates proof of (2.11), (2.12), (2.13) and (2.14) as
follows.

1. The shuffling node chooses r′i from Z∗
N for i = 1, 2, . . . k and publishes

c′′0,i = c′
ti
0,ir

′N
i mod N2 for i = 1, 2, . . . k.
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2. The node then proves a knowledge statement:

ST ( ti, t
′
i, r

′
i for i = 1, 2, . . . k, R1, R2, R3, R4 (2.15)

| c′′0,i = c′
ti
0,ir

′N
i mod N2 for i = 1, 2, . . . k,

RN
1

∏k
i=1 c

si
0,i =

∏k
i=1 c

′′
0,i mod N2,

RN
2

∏k
i=1 c

s′i
0,i =

∏k
i=1 c

′t
′
i

0,i mod N2,

RN
3

∏k
i=1 c

sis
′
i

0,i =
∏k

i=1 c
′′t

′
i

0,i mod N2,

RN
4

∏k
i=1 c

si
j,i =

∏k
i=1 c

′ti
j,i mod N2 for j = 1, 2, . . . , n/k )

Knowledge statement (2.15) is proved in detail in Figure 2.8 where S de-
notes a shuffling node and V denotes a verifier. Note that unlike in [90] L
can be long (e.g., a full length like 1024 bits) in the new scheme. The only
restriction is 2L < p′ and 2L < q′. As p′ and q′ are full length integers,
the challenges can be full length integers as well. With full length challenges,
not only stronger soundness can be achieved, but also the proof protocol
in Figure 2.8 can become non-interactive when necessary by generating the
challenges through a hash function. It will be illustrated that efficiency im-
provement in the new shuffling scheme is so great that efficiency is still very
high when full length challenges are employed.

It is straightforward that in [86] if the shuffling node is honest, the ci-
phertexts are correctly shuffled and the shuffling operations are successfully
verified. Theorem 5 guarantees public verifiability and soundness of the shuf-
fling protocol in [86].

Theorem 5 If si and s′i for i = 1, 2, . . . , n are randomly chosen from
{0, 1, . . . , 2L − 1} and the shuffling node can find ti and t′i in poly-
nomial time to satisfy Equations (2.11), (2.12), (2.13) and (2.14) with
a probability larger than 2−L, then there is an identical permutation
from D(cj,1), D(cj,2), . . . , D(cj,k) to D(c′j,1), D(c′j,2), . . . , D(c′j,k) for j =
0, 1, . . . , n/k.

To prove Theorem 5, Lemma 4, Lemma 5, Lemma 6 and Lemma 7 are
needed. Lemma 4, Lemma 5, Lemma 6 in this paper are Lemma 1, Lemma
4, Lemma 5 respectively in [90] while Lemma 7 in this paper is Theorem 1 in
[90]. Their proof is not repeated here.

Lemma 4 If given random integers si from {0, 1, . . . , 2L − 1} for i =
1, 2, . . . , k, a party can calculate in polynomial time integers ti for i =
1, 2, . . . , k with a probability larger than 2−L, such that

∑k
i=1 simi =

∑k
i=1 tim

′
i, then he can calculate in polynomial time a matrix M such that

(m′
1,m

′
2, . . . ,m

′
k)M = (m1,m2, . . . ,mk).
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1. S −→ V : ai = c′
vi
0,ix

N
i mod N2 for i = 1, 2, . . . , k

f = WN
1 mod N2

a = (
∏k

i=1 c
′v

′
i

0,i)/W
N
2 mod N2

b = (
∏k

i=1 c
′′v

′
i

0,i)/W
N
3 mod N2

gj = (
∏k

i=1 c
′vi
j,i)/W

N
4,j mod N2 for j = 1, 2, . . . , n/k

where xi ∈R Z∗
N for i = 1, 2, . . . , k, W1, W2, W3 ∈R Z∗

N , W4,j ∈R
Z∗
N for j = 1, 2, . . . , n/k, vi, v

′
i ∈R {0, 1, . . . , 2

L−1} for i = 1, 2, . . . , k.

2. V −→ S : c ∈R ZN

3. S −→ V : αi = xir
′c
i mod N2 for i = 1, 2, . . . , k

z1 = W1R
c
1 mod N2

z2 = W2R
c
2 mod N2

z3 = W3R
c
3 mod N2

z4,j = W4,jR
c
4,j mod N2 for j = 1, 2, . . . , n/k

γi = cti + vi mod N for i = 1, 2, . . . , k

γ′
i = ct′i + v′i mod N for i = 1, 2, . . . , k

where R1 =
∏k

i=1(r
ti
0,ir

′
i) mod N2, R2 =

∏k
i=1(r

t′i
0,i) mod N2,

R3 =
∏k

i=1(r
tit

′
i

0,i r
′t

′
i

i ) mod N2, R4,j =
∏k

i=1 r
ti
j,i mod N2 for j =

1, 2, . . . , n/k, ti = sπ(i), t
′
i = s′π(i) and π() is the permutation used

in the shuffling.

Anyone can verify

aic
′′c
0,i = c′

γi

0,iα
N
i mod N2 for i = 1, 2, . . . , k

fCc
1 = zN1 mod N2

aCc
2z

N
2 =

∏k
i=1 c

′γ
′
i

0,i mod N2

bCc
3z

N
3 =

∏k
i=1 c

′′γ
′
i

0,i mod N2

gjC
c
4,jz

N
4,j =

∏k
i=1 c

′γi

j,i mod N2 for j = 1, 2, . . . , n/k

where C1 =
∏k

i=1 c
′′
0,i/

∏k
i=1 c

si
0,i mod N2, C2 =

∏k
i=1 c

s′i
0,i mod N2, C3 =

∏k
i=1 c

sis
′
i

0,i mod N2 and C4,j =
∏k

i=1 c
si
j,i mod N2 for j = 1, 2, . . . , n/k.

Figure 2.8: Public Proof and Verification of (2.15) in [86]
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Lemma 5 If given random integers si from {0, 1, . . . , 2L − 1} for i =
1, 2, . . . , k, a party can calculate a n × n non-singular matrix M and inte-
gers ti for i = 1, 2, . . . , k in polynomial time such that (m1,m2, . . . ,mk) =

(m′
1,m

′
2, . . . ,m

′
k)M and

∑k
i=1 simi =

∑k
i=1 tim

′
i where (m1,m2, . . . ,mk) and

(m′
1,m

′
2, . . . ,m

′
k) are two vectors, then (s1, s2, . . . , sk)M = (t1, t2, . . . , tk) un-

der linear ignorance assumption on the party with regard to m1,m2, . . . ,mk.

Lemma 6 If
∑k

i=1 yisi = 0 with a probability larger than 2−L for random
integers s1, s2, . . . , sk from {0, 1, 2, . . . , 2L− 1}, then yi = 0 for i = 1, 2, . . . , k.

Lemma 7 If si and s′i are randomly chosen from {0, 1, . . . , 2L − 1} for i =
1, 2, . . . , n and the shuffling node can find ti and t′i in polynomial time to satisfy
Equations (2.16), (2.17) and (2.18) with a probability larger than 2−L, there
exists an n×n permutation matrix M such that (D(c′1), D(c′2), . . . , D(c′n))M =
(D(c1), D(c2), . . . , D(cn)) under linear ignorance assumption on the shuffling
node with regard to D(c1), D(c2), . . . , D(cn).

∑n
i=1 siD(ci) =

∑n
i=1 tiD(c′i) (2.16)

∑n
i=1 s

′
iD(ci) =

∑n
i=1 t

′
iD(c′i) (2.17)

∑n
i=1 sis

′
iD(ci) =

∑n
i=1 tit

′
iD(c′i) (2.18)

Proof of Theorem 5:
If given random integers si and s′i ∈ {0, 1, . . . , 2

L − 1} for i = 1, 2, . . . , k,
the shuffling node can calculate integers ti and t′i for i = 1, 2, . . . , k
in polynomial time to satisfy Equations (2.11), (2.12), (2.13) and (2.14),
then the following deductions can be made with the help of Lemma 7,
Lemma 4 and a fact: linear ignorance assumption on any party with regard
to D(c0,1), D(c0,2), . . . , D(c0,k) is automatically satisfied in the random oracle
model without any trust assumption.

According to Lemma 7, Equations (2.11), (2.12) and (2.13) imply that
there exists a permutation matrix M such that

(D(c′0,1), D(c′0,2), . . . , D(c′0,k))M = (D(c0,1), D(c0,2), . . . , D(c0,k))

According to Lemma 5,

(s1, s2, . . . , sk)M = (t1, t2, . . . , tk) (2.19)

According to Lemma 4 and Lemma 5, Equation (2.14) implies that there
exist matrices Mj such that

(D(c′j,1), D(c′j,2), . . . , D(c′j,k))Mj = (D(cj,1), D(cj,2), . . . , D(cj,k))

for j = 1, 2, . . . , n/k

and

(s1, s2, . . . , sk)Mj = (t1, t2, . . . , tk) for j = 1, 2, . . . , n/k (2.20)
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Subtracting (2.20) from (2.19) yields

(s1, s2, . . . , sn)(M −Mj) = (0, 0, . . . , 0) for j = 1, 2, . . . , n/k

According to Lemma 6, every column vector in matrix M − Mj contains
k zeros for j = 1, 2, . . . , n/k. So M = Mj for j = 1, 2, . . . , n/k. Therefore
there is an identical permutation (matrix) from D(cj,1), D(cj,2), . . . , D(cj,k)
to D(c′j,1), D(c′j,2), . . . , D(c′j,k) for j = 0, 1, . . . , n/k. ✷

As the encryption algorithm suitable for shuffling is at most semantically
secure against a polynomial adversary, no stronger privacy can be achieved in
any shuffling if every variable possible to reveal the permutation (including
the output ciphertexts) is taken into account. Although some existing shuffling
schemes claim stronger privacy (e.g., perfect ZK), they only cover incomplete
shuffling transcripts and ignore some ciphertexts which reveal the permuta-
tion to an unlimited adversary. In the following, complete shuffling transcript
including all the possible information-revealing variables is used to formally
prove computational ZK of the new shuffling scheme.

Theorem 6 The shuffling scheme in [86] is computational ZK.

To prove Theorem 6, a lemma is proved first.

Lemma 8 When k = n and there are only two groups, the shuffling scheme
in [86] is computational ZK.

Proof of Theorem 6: Mathematical induction is used in this proof. When there
are two groups, Lemma 8 illustrates that this theorem is correct.

If this theorem is correct when there are m groups, it is correct as well
when there are m + 1 groups due to the follow deduction. If this theorem
is incorrect when there are m + 1 groups, as it is correct when there are m
groups, there must exist a certain group Gl such that l ∈ {1, 2, . . . ,m+1}, the
proof in G0, . . . Gl−1, Gl+1, . . . , Gm+1 is computational ZK, and the proof in
Gl is not computational ZK. So the proof in G0, Gl is not computational ZK.
This is contradictory to Lemma 8. Therefore, this theorem is correct when
there are m+ 1 groups.

This theorem is proved when there are two groups and induction from m
groups to m+ 1 groups is proved. So this theorem is correct. ✷

2.6 Survey and Analysis of SMN

When employing the existing mix network schemes to implement anonymous
communication in practice, we need to be aware that some of them have draw-
backs and limitations. Especially, the SMN schemes often need to make some
trade-offs in security to improve efficiency. More precisely, some of them can
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only work under some conditions; some of them have some security concerns;
some of them may even fail in functionality. An appropriate mix network
scheme for a certain application must be chosen very carefully.

2.6.1 The Assumptions Needed in the Mix Networks
in [51] and [52]

Groth proposes a mix network scheme [52] and then cooperates with Lu to
improve its efficiency in [51]. In [52], it is suggested to prove validity of the
shuffling by showing

∏n
i=1 D(ci)

ti =
∏n

i=1 D(c′i)
tπ(i) (2.21)

where π() is a permutation of {1, 2, . . . , n} and ti for i = 1, 2, . . . , n are random
integers. Unfortunately, Equation (2.21) cannot be proved or verified explicitly
since the messages and π() must be kept secret. Groth requires a homomor-
phic encryption algorithm like El Gamal encryption and proves satisfaction
of Equation (2.21) by showing

∏n
i=1 c

ti
i =

∏n
i=1 c

′tπ(i)

i . (2.22)

Then he proposed a technique to publicly compute c =
∏n

i=1 c
ti
i and c′ =

∏n
i=1 c

′tπ(i)

i without revealing π(). Finally D(c′/c) = 1 can be proved and
verified. For simplicity, his prototype protocol instead of his final optimised
protocol is described as follows since the latter only optimises some calculation
details and both protocols share the same method.

1. El Gamal encryption is employed. Private key X̂ is chosen from Zq̂ and

public key (ĝ1, Ŷ = ĝX̂1 ) is published. A messagem in Ĝ is encrypted into
(ĝr1,mŶ r) where r is randomly chosen from Zq̂. Re-encryption function

RE(c, r′) re-encrypts ciphertext c = (a, b) to c′ = (a′, b′) = (ĝr
′

1 a, Ŷ r′b)
where r′ is randomly chosen from Zq̂. A ciphertext c = (a, b) is decrypted

into b/aX̂ .

2. The routing node publishes si ∈ Zq̂ and Si = ĝ
sπ(i)

1 ĝri2 for i = 1, 2, . . . , n
where π() is a permutation of {1, 2, . . . , n} and ri is randomly chosen
from Zq̂. The node proves that si for i = 1, 2, . . . , n are permuted and
committed in Si for i = 1, 2, . . . , n where the permutation π() is kept
secret as detailed in [74, 52].

3. The routing node gets ci = (ai, bi) for i = 1, 2, . . . , n and shuffles them
to c′i = RE(cπ(i)) = (a′i, b

′
i) for i = 1, 2, . . . , n.

4. Random integers ti ∈ Zq̂ for i = 1, 2, . . . , n are chosen by a verifier.

5. The routing node publishes Ti = ĝ
tπ(i)

1 ĝ
r′i
2 for i = 1, 2, . . . , n where r′i is

randomly chosen from Zq̂. It proves that the same permutation used to
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shuffle and commit si for i = 1, 2, . . . , n in Si for i = 1, 2, . . . , n is used
to shuffle and commit ti for i = 1, 2, . . . , n in Ti for i = 1, 2, . . . , n while
the permutation π() is kept secret as detailed in [74, 52].

6. The routing node calculates a′ = ĝγ1
∏n

i=1 a
′tπ(i)

i and b′ = Ŷ γ
∏n

i=1 b
′tπ(i)

i

where γ is randomly chosen from Zq̂ and provides a ZK proof

ZP ( γ, tπ(1), tπ(2), . . . , tπ(n), r′1, r
′
2, . . . , r

′
n

| a′ = ĝγ1
∏n

i=1 a
′tπ(i)

i , b′ = Ŷ γ
∏n

i=1 b
′tπ(i)

i ,

Ti = ĝ
tπ(i)

1 ĝ
r′i
2 for i = 1, 2, . . . , n )

which can be implemented using ZK proof of knowledge of logarithm
[98] and ZK proof of equality of logarithms [27].

7. The routing node proves

logĝ1(a
′/
∏n

i=1 a
ti
i ) = logŶ (b

′/
∏n

i=1 b
ti
i ) (2.23)

using the proof of equality of logarithms [27].

From the viewpoint of batch shuffling verification (see [93] for details),
validity of shuffling in [52] actually depends on Hypothesis 1.

Hypothesis 1 Suppose yi ∈ Zp̂, zi ∈ Zp̂ and ti ∈ Zq̂ for i = 1, 2, . . . , n.
If logĝ1

∏n
i=1 y

ti
i = logŶ

∏n
i=1 z

ti
i , then logĝ1 yi = logŶ zi for i = 1, 2, . . . , n

except for a negligible probability.

However, in Hypothesis 1 there is an implicit assumption: yi and zi for
i = 1, 2, . . . , n are in Ĝ. When this assumption is satisfied, Hypothesis 1 is
correct. When it is not satisfied, Hypothesis 1 may fail. For example, when

zj /∈ Ĝ, logĝ1 yj = logŶ ĝ
(p̂−1)/2
0 zj and i ≤ j ≤ n, the verification equation

logĝ1
∏n

i=1 y
ti
i = logŶ

∏n
i=1 z

ti
i can still be satisfied when tj is even. As (p̂−1)/q̂

has at least one factor 2, this attack can work with a probability of at least
0.5. When (p̂− 1)/q̂ has other factors than 2, the probability for Hypothesis 1
to fail under this attack is even larger.

Dependency of Hypothesis 1 on the assumption shows that security of the
shuffling protocol in [52] depends on an assumption: (ai, bi) and (a′i, b

′
i) for

i = 1, 2, . . . , n are valid ciphertexts in Ĝ2. As (ai, bi) for i = 1, 2, . . . , n are
input ciphertexts in the shuffling, they may be from a trusted source and thus
guaranteed to be in Ĝ2. However, there is no reason to take it for granted
that (a′i, b

′
i) for i = 1, 2, . . . , n are in Ĝ2 without any verification as they are

the output of the routing node, whose operations are not trusted and must be
publicly verified in any shuffling scheme. When the output ciphertexts (a′i, b

′
i)

for i = 1, 2, . . . , n are not verified to be valid ciphertexts in Ĝ2, a malicious
routing node can break security of the shuffling protocol as follows.
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• The routing node shuffles cπ(i) to c′i = (a′i, ĝ
(p̂−1)/2
0 b′i) where (a′i, b

′
i) =

RE(cπ(i)) for some i in {1, 2, . . . , n} while shuffling all the other input
ciphertexts honestly. When tπ(i) is even, Equation (2.23) is satisfied and
this shuffling can pass Groth’s verification.

• If the verifier always chooses odd ti the dishonest server can still pass the

verification by shuffling two inputs cπ(i) and cπ(j) to c′i = (a′i, ĝ
(p̂−1)/2
0 b′i)

and c′j = (a′j , ĝ
(p̂−1)/2
0 b′j) and shuffling all the other input ciphertexts

honestly where (a′i, b
′
i) = RE(cπ(i)) and (a′j , b

′
j) = RE(cπ(j)).

• All in all, this attack can always succeed with a probability no less than
0.5. When (p̂ − 1)/q̂ has other factors than 2, the probability for its
success is even larger.

The essence of the attack is that a ciphertext encrypting a message in Ĝ can
be incorrectly shuffled to a ciphertext encrypting a message in Z∗

p̂−Ĝ without
being detected with a non-negligible probability. Obviously, if (ai, bi) and
(a′i, b

′
i) for i = 1, 2, . . . , n are verified to be in Ĝ2, the attack can be prevented.

However, membership test of the ciphertexts in Ĝ2 is not specified in the
protocol description or counted in the cost estimation in [52]. Therefore, the
shuffling protocol in [52] must specify the membership test and its efficiency
estimation should be adjusted to include the additional cost.

In [51], the shuffling protocol is simplified into a three-move zero knowledge
proof to illustrate validity of the shuffling. The commitment in the first move in
the zero knowledge proof in [51] is a computationally binding commitment6 of
the secret permutation used in the shuffling. More precisely, the commitment
function is com(w1, w2, . . . , wk, r) =

∏k
i=1 g

wi

i hr where g1, g2, . . . , gk, h are
generators of a cyclic group and the secret permutation matrix used in the
shuffling is committed to in multiple instances of this function. Security of the
shuffling protocol in [51] is based on an assumption: the binding property of the
commitment function is computationally unbreakable such that in the third
move the prover is forced to use the unique set of secret integers committed in
the first move to generate his response to the random challenge in the second
move (see the two theorems in [51] for more details of this assumption). In
[52, 102, 103] it is illustrated and emphasized that when batch proof (e.g., the
proof in [51]) is used, security of shuffling fails if the prover can adjust the
committed permutation after it receives the challenge.

When the cyclic group is large enough (e.g., containing 1024-bit integers)
this assumption is sound. However, in [51] the cyclic group contains 240-bit
integers for the sake of high efficiency. So an adversary can search for loggi gj
or loggi h in a space no larger than 2240 (e.g., using Pollard’s lambda method)
to break the binding property of the commitment function. Searching for
discrete logarithm in a space with a size 2240 is not always difficult enough in

6A binding commitment cannot be opened in two different ways, so the message com-
mitted in it is unique.
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the current standard of cryptography. Therefore, the assumption is not always
unquestionable (especially when there is a powerful adversary) and security
in the shuffling is not so strong as in other shuffling schemes, which employ
much larger cyclic groups and have much stronger security. As a result, in some
cases (e.g., with a critical security standard or powerful adversary) a dishonest
routing node cannot be absolutely prevented from passing the verification
with an invalid shuffling in [51]. In summary, [51] improves efficiency of a mix
network but weakens its security. Our suggestion is that in applications with
critical security requirements like mix networks for e-voting, a larger cyclic
group should be employed in the shuffling scheme in [51] to strengthen its
security. Although that means lower efficiency, sometimes security is more
important.

2.6.2 Security Concerns in [90] and [102]

The mix network scheme in [90] employs some incorrect operations such that
it may go wrong even if every participant is honest and strictly follows the
protocol. In description of their shuffling scheme in Section 3 in [90], three
equations they call (31), (32) and (33) in their paper are proved in a four-step
protocol as follows where more details like complete parameter setting can be
found in [90].

1. The shuffling party randomly chooses W1 ∈ Z∗
N , W2 ∈ Z∗

N , W3 ∈ Z∗
N ,

vi ∈ ZN for i = 1, 2, . . . , n, v′i ∈ ZN for i = 1, 2, . . . , n and xi ∈ Z∗
N for

i = 1, 2, . . . , n. He calculates

ai = c′
vi
i xN

i mod N2 for i = 1, 2, . . . , n

f = WN
1 mod N2

a = (
∏n

i=1 c
′v

′
i

i )/WN
2 mod N2

b = (
∏n

i=1(c
′′v

′
i)/WN

3 mod N2

2. The shuffling party calculates c = H(f, a, b, a1, a2, . . . , an) where H() is
a random oracle query implemented by a hash function with a 128-bit
output.

3. Integers

z1 = W1R
c
1 mod N2

z2 = W2/R
c
2 mod N2

z3 = W3/R
c
3 mod N2

αi = xir
′c
i mod N2 for i = 1, 2, . . . , n

γi = vi + cti mod N for i = 1, 2, . . . , n (2.24)

γ′
i = ct′i − v′i mod N for i = 1, 2, . . . , n (2.25)
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are calculated as responses to 128-bit challenge c where vi, v
′
i ∈ ZN ,

ti, t
′
i ∈ Z2L and ZN is the message space of the employed Paillier en-

cryption algorithm and L is a security parameter.

4. Equation

c = H( zN1 /Cc
1 , Cc

2/(z
N
2

∏n
i=1 c

′γ
′
i

i ),

Cc
3/(z

N
3

∏n
i=1 c

′′γ
′
i

i ),

c′
γi

i αN
i /c′′i

c
for i = 1, 2, . . . , n )

is verified.

As the orders of c′i and c′′i are not N in [90], calculation of c′
γ′
i

i , c′′
γ′
i

i and c′
γi

i in
the verification raises bases to exponents calculated with a modulus unequal
to their orders. So (2.24) and (2.25) use wrong moduli. Therefore, even if the
prover is honest and strictly follows the protocol, the verification may fail,
while the parameter setting of c, vi, v

′
i, ti, t

′
i decides that the probability of

failure is non-negligible.
A similar mistake occurs in [102], which describes its shuffling protocol in

a so-called Protocol 2. As Protocol 2 is a complex seven-step proof protocol,
it is not recalled here in its complete form and interested readers can find
its complete description in [102]. We only focus on its incorrect operations as
follows where definition of all the involved integers can be found in [102].

• In Step 6 of Protocol 2 in [102], the prover calculates and publishes

ei = cti + si mod 2K2+K4+2K5 (2.26)

e′i = ct′i + s′i mod 2K2+K4+2K5 (2.27)

di = cpπ(i) + ri mod 2K3+K4+K5 (2.28)

e = ct+ s mod 2K2+NK3+K4+K5+log2 N (2.29)

e′ = ct′ + s′ mod 2K2+K5+log2 N (2.30)

where K2,K3,K4,K5 are integers defined in [102] as security parame-
ters.

• In Step 7 of Protocol 2 in [102], verifications are

bc
iγi = heibdi

i−1 (2.31)

b′c
iγ

′
i) = he′igdi (2.32)

(bc1α1, (V/b2)
cα2, W cα3) =

(gf1
∏N

i=1(u
′
i)

di , g−f2
∏N

i=1(v
′
i)

di , (2.33)

gfr′
∏N

i=1(gi)
di)

(bc
iγi, (b′c

iγ
′
i) = (heibdi

i−1, he′igdi) (2.34)

(g−
∏N

i=1 pibN )cγ = he (2.35)

(g−
∑N

i=1 pi
∏N

i=1 b
′
i)

cγ = he′ (2.36)
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Note that

• The order of h is (p− 1)(q− 1)/2 instead of 2K2+K4+2K5 and cti + si,
ct′i + s′i distributes beyond 2K2+K4+2K5

• The order of gi is q as set in Section 2 of [102] instead of 2K3+K4+K5

and cpπ(i) + ri distributes beyond 2K3+K4+K5

• The parameter setting of the encryption algorithm in Section 4 of [102]
implies that the order of u′

i is q instead of 2K3+K4+K5 and cpπ(i) + ri
distributes beyond 2K3+K4+K5

• In Section 4.5 of [102], the author assumes mi ∈ Gq, so the order of v′i is
q instead of 2K3+K4+K5 and cpπ(i) + ri distributes beyond 2K3+K4+K5

• The order of h is secret and not 2K2+NK3+K4+K5+log2 N and ct + s
distributes beyond 2K2+NK3+K4+K5+log2 N

• The order of h is secret and not 2K2+K5+log2 N and ct′ + s′ distributes
beyond 2K2+K5+log2 N

where p, q and q are secret system parameters defined in [102] and cannot
be used by the prover. So (2.31), (2.32), (2.33), (2.34), (2.35) and (2.36) may
not be satisfied even if the prover is honest and strictly follows the protocol.

The security problem in [90] and [102] seldom occurs in secure protocols.
Usually, secure protocols always run smoothly when all the participants are
honest and strictly follow the protocols. Their failure is usually discussed in
the case that some dishonest participant deviates from the protocols. The
possibility of automatic failure of secure protocols when every operation is
legal is usually not large, but needs to be understood.

2.6.3 Failure in Functionality of the Mix Network
by Wikstrom

The shuffling protocol in [102] shows validity of shuffling by proving knowledge
of secret integers ρ1, ρ2, . . . , ρn to satisfy

∏n
i=1 c

′ρi

i = D(
∏n

i=1 c
pi

i ) (2.37)

where p1, p2, . . . , pn are primes randomly chosen from a range [2K3−1, 2K3−1]
and ρ1, ρ2, . . . , ρn is a permutation of p1, p2, . . . , pn. To guarantee that
ρ1, ρ2, . . . , ρn is a permutation of p1, p2, . . . , pn without revealing the permu-
tation (which is actually the permutation used in the shuffling), the following
three conditions are explicitly required in [102] where the relation between K
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and K3 is not explained in [102].7

∏n
i=1 pi =

∏n
i=1 ρi; (2.38)

∑n
i=1 pi =

∑n
i=1 ρi; (2.39)

−2K + 1 ≤ ρi ≤ 2K − 1 for i = 1, 2, . . . , n

to guarantee that no ρi can be the product

of multiple pis

However, in [102] only proof of satisfaction of the first two conditions are
provided, while proof of satisfaction of the third condition is not specified in
description of the shuffling protocol. It is interesting to note that it is easy
and efficient to prove satisfaction of the first two conditions (using simple zero
knowledge proof primitives like zero knowledge proof of equality of discrete
logarithms [27]) while proof of satisfaction of the third condition, n instances
of range proof, is a complex and costly technique. Boudot has explained in
[17] that each range proof costs at least scores of exponentiations unless in
a special case with a large expansion rate where an integer in a range is
proved to be in another much larger range (at least trillions of times larger
than the range the integer is actually in).8 Although only needing a constant
cost independent of the size of the range, the existing range proof techniques
[17, 69, 87] cost quite a few exponentiations, not to mention [87] had not
been proposed by the time [102] was published. According to the efficiency
estimation and analysis in [87], at least 25 exponentiations are needed for one
instance of range proof. As ρ1, ρ2, . . . , ρn is a permutation of p1, p2, . . . , pn and
thus the range proof of ρi in {−2

K+1,−2K+2, . . . , 2K−1} is not the special
case with a large expansion rate, proof of satisfaction of the third condition
costs at least 25n exponentiations and has a great influence on efficiency of
the shuffling protocol in [102]. So, if Wikstrom includes proof of satisfaction
of the third condition in his shuffling protocol but omits its specification in
his protocol description for the sake of simplicity, its existence can still be
noticed in the cost estimation of the shuffling protocol in [102]. However, we
are surprised to find that the shuffling protocol in [102] is claimed to cost
only 3.5n exponentiations (exactly the cost for proof of satisfaction of the
first two conditions) in its cost estimation, which implies that the n instances
of range proof are not included! Therefore, there is an obvious contradiction:
the n instances of range proof are explicitly required in the shuffling protocol
in [102] but disappear from its protocol description and cost estimation. As a
result, whether the third condition is necessary in proof of validity of shuffling
in [102] becomes a mystery and a doubt is cast upon security of the shuffling
protocol in [102].

7Obviously, choice of K depends on K3, otherwise the third condition is not helpful to
prevent any ρi from being a product of pis and guarantee validity of shuffling. Actually we
guess that it is probable K = K3.

8In [17], expansion rate is used to describe this special case and measure by how many
times the range is expanded. So the special case can be called range proof with a large
expansion rate.
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In [103], a different argument is proposed: satisfaction of (2.38) and (2.39)
is enough to guarantee that ρ1, ρ2, . . . , ρn is a permutation of p1, p2, . . . , pn and
thus that the shuffling is valid, while the third condition (satisfaction of the n
instances of range inclusion) is not needed. Instead of easing the doubt about
security of the shuffling scheme in [102, 103], this new argument shows failure
of its security, although it is attempted in [103] to prove correctness of the
argument. The reason is simple: in existence of concrete counter-examples, any
argument or proof is in vain. A simple counter-example against this argument
is n = 10, p1 = p2 = · · · = p10 = 2 while ρ1 = ρ2 = ρ3 = ρ4 = 4, ρ5 = ρ6 = 2,
ρ7 = ρ8 = 1 and ρ9 = ρ10 = −1. Another simple counter-example is n = 10,
p1 = p2 = 2, p3 = p4 = 3, p5 = p6 = 5, p7 = p8 = 7, p9 = p10 = 11 while
ρ1 = ρ2 = 22, ρ3 = ρ4 = 15, ρ5 = ρ6 = −7, ρ7 = ρ8 = ρ9 = ρ10 = −1. Readers
can easily verify that these two examples can satisfy both Equation (2.38) and
Equation (2.39) while ρ1, ρ2, . . . , ρn is NOT a permutation of p1, p2, . . . , pn.
Interested readers can easily find more counter-examples.

Our counter examples show that the third condition is necessary to guar-
antee validity of shuffling in [102, 103] and proof of its satisfaction must be
provided and taken into account in cost estimation. So the n instances of range
proof are needed in the shuffling scheme in [102, 103]. Therefore, at least 25n
additional exponentiations are inevitable although including them means its
efficiency will be greatly deteriorated. As a result, to redeem its security, the
shuffling scheme in [102, 103] will lose its claimed advantage in efficiency over
the previous shuffling schemes and become one of the least efficient shuffling
schemes.

2.7 Efficiency of SMN: Claim and Reality

The mix network schemes in [52, 93, 90, 102, 51] claim much higher efficiency
than the other SMN schemes and are usually regarded as efficient solutions to
anonymous communication. For example, the shuffling proof in [51] is scores
of times more efficient than that in [42, 41]. However, when carefully studying
the principles and operations of their shuffling proof, we find that the shuf-
fling proof mechanisms of the recent shuffling schemes are not much simpler
than those of their predecessors, and some of the recent shuffling schemes are
even more complex. For example, the shuffling schemes in [52] and [90] are
developments of that in [74] using the same principle, the shuffling scheme
in [102] needs additional range proofs, and the shuffling in [51] slightly mod-
ifies that in [42, 41] and extends it to a more complicated proof. How do
the recent shuffling schemes achieve much higher efficiency without evolu-
tionary breakthrough in shuffling proof? The reason partially lies in unfair
claims and comparisons in efficiency. Some recent shuffling schemes employ
much shorter exponents than usual in many computations, while assuming the
previous shuffling schemes still employ exponents with normal length. Some
recent shuffling scheme employs an efficiency improvement technique, which
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is appliable to the previous shuffling schemes as well but assumed not to ap-
ply to them. Some recent shuffling scheme even ignores its own very costly
operations in efficiency claim and comparison. Those unfair factors in their
efficiency claim and comparison will be detailed in this section.

2.7.1 Unfair Usage of Short Exponents

In public key cryptology, exponentiations are much more costly than multi-
plications and other basic computations, so they represent the dominant part
of the computational cost of cryptographic protocols like shuffling. The cost
of an exponentiation is approximately linear in the length of its exponent. In
public key cryptographic applications, the bases of exponentiation computa-
tions are usually large integers in a large cyclic group. So a straightforward
way to improve efficiency of the exponentiation computations is to shorten
their exponents.

The first attempt to improve efficiency of shuffling schemes using this
method is made in [93, 90]. In the shuffling schemes in [93, 90], after the ci-
phertexts are shuffled, some random integers are generated as challenges to
the prover, who should respond to the challenges to carry on his proof of va-
lidity of his shuffling. Obviously, the longer the challenges are, the larger range
they are randomly chosen from and the more difficult it is for an invalid shuf-
fling to pass the following verification. As the challenges act as exponents in
many exponentiation computations and greatly affect efficiency of the shuffling
schemes, there is a conflict between soundness and efficiency. Long challenges
support strong soundness but cause higher cost; short challenges improve ef-
ficiency but weaken soundness. In [93, 90], very short challenges (e.g., 20 bits
long challenges) are used to achieve high efficiency, while soundness is weak-
ened as a trade-off. Although this trade-off is acceptable for [93, 90] in some
applications, an efficiency comparison with the previous shuffling schemes is
unfair: it is assumed that the previous shuffling schemes use 1024-bit full-
length challenges in their shuffling proof. Moreover, the sacrifice in soundness
as a result of short challenges is not mentioned in [93, 90]. Obviously, if the
previous shuffling schemes make the same sacrifice and employ challenges as
short as 20 bits in their shuffling proof, their efficiency can be improved as
well. To clearly and fairly show exactly how much efficiency improvement is
achieved by the more advanced shuffling proof technique in [93, 90] over the
previous shuffling schemes, the same security standard should be adopted and
the same length should be chosen for their challenges. Therefore, the claim
and comparison of efficiency in [93, 90] are unfair.

The same efficiency improvement mechanism using short challenges in
shuffling proof is employed in [102] to improve efficiency. Again it assumes
that the shuffling schemes before [93] employ full-length challenges. In [51],
not only the challenges in shuffling proof but also the random exponents used
in commitments are shortened where secret messagesm1,m2, . . . ,mk are com-
mitted in com(m1,m2, . . . ,mk, r) =

∏k
i=1 g

mi

i hr and r is a random integer. It
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is not mentioned in [51] that short r weakens bindingness9 of the commitment
algorithm com() and thus soundness of the shuffling scheme and other shuf-
fling schemes can employ the same mechanism to achieve higher efficiency.
As in [93, 90] and [102], it is assumed in [51] that the shuffling schemes be-
fore [93] employ full-length exponents. Therefore, the claim and comparison
of efficiency in [102] and [51] are unfair as well.

2.7.2 Other Unfair Factors in Efficiency Claim
and Comparison

Besides short exponents, there are some other unfair factors in efficiency
claim and comparison in the recent shuffling schemes. In [51], multiple se-
crets are committed in one commitment using only one random exponent to
improve efficiency. Although the same commitment function can be employed
in [52, 42, 41] to improve their efficiency too, it is assumed in [51] that the
shuffling schemes in [52, 42, 41] still must commit to each secret in a separate
commitment using a separate random exponent. In Section 5 of [52], an effi-
ciency improvement mechanism is applied solely to itself and not employed in
the previous shuffling schemes although it is appliable to them as well.

2.7.3 Re-evaluating Efficiency

As the efficiency advantages of the recent mix network schemes [52, 93, 90,
102, 51] over the other mix network schemes are not so great as they claim,
their costs have to be re-estimated and their claimed efficiency advantage
needs to be re-evaluated. Re-evaluation of the mix network schemes and a
comparison against the existing claim of efficiency and security are given in
Table 2.3. When computational cost of the shuffling schemes is estimated,
the exponentiations are counted. For simplicity, they are counted in terms of
multiples of n. As the re-encryption operation is efficient and costs almost
the same in all the shuffling schemes, as in most existing shuffling schemes, in
this paper only the shuffling proof is taken into account of the evaluation and
comparison. For fairness of comparison, all the shuffling schemes are treated
equally, especially in employment of efficiency improvement mechanisms. As
stated before, applying an efficiency improvement mechanism to some shuffling
schemes and excluding it from other shuffling schemes is unfair as all the
efficiency improvement mechanisms discussed in this paper are simple and
general techniques applicable to other schemes. So, for the sake of fairness and
to show exactly how advanced the shuffling proof is in every shuffling scheme,
the efficiency improvement mechanisms are not employed in any shuffling
scheme in the estimation in Table 2.3. More precisely,

9Bindingness of a commitment algorithm guarantees that the committed secret is unique
and cannot be changed.
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Table 2.3: Comparison of shuffling schemes

Shuffling Claimed computational cost Fixed computational cost

[5, 6] 16n log2 n 16n log2 n
[42] 6n 6n

[74, 75] 10n 10n
[41] 7n 7n
[52]1 6n+ 3n/κ 12n
[93] < n 24n
[90] 5n 13n
[102] ≤ 3.5n 35n
[51] < n 8n
[50]2 not claimed 35n
[86] 2n 4n

1κ is a security parameter used in the efficiency improvement mechanism in Section 5 in

[52].
2The shuffling scheme in [50] is very special in comparison with other shuffling schemes.

While the other shuffling schemes focus on computation in efficiency analysis as their com-

municational cost is approximately linear in their computational cost; the shuffling scheme

in [50] achieves high efficiency in communication by sacrificing computational efficiency. So

although communicational efficiency is not the subject of this paper, for the sake of fairness,

we have to mention that the shuffling scheme in [50] has an advantage in communicational

efficiency.

• All the exponentiations are supposed to have exponents with the same
length and counted equally.

• The efficiency improvement mechanism in Section 5 in [52] is not em-
ployed.

• Each secret integer is committed in a separate commitment.

Moreover, ignored but necessary operations are taken into account and we
suppose that the existing most efficient range proof technique [17] is employed
to implement the n instances of range proof in [102].

The result of the re-evaluation is somewhat surprising. The efficiency ad-
vantage of the recent shuffling schemes over their predecessors is trivial, not
to mention two of them have incomplete correctness and need fixing and one
of them has to weaken its privacy. The most efficient secure shuffling scheme
[42] is a very early proposal.
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2.8 Summary

In summary, mix networks shuffle a batch of encrypted messages though mul-
tiple mixing servers such that the messages are re-encrypted (or partially
decrypted) and reordered randomly. They are not traceable if at least one
server conceals its shuffling and thus anonymous communication is realized.
There are a few existing solutions to mix networks and they can be classi-
fied into different categories, according to how they randomise the shuffled
ciphertexts (by partial decryption or re-encryption), how they prove validity
of shuffling, and whether tags are used.

Proof and verification of validity of shuffling is the key operation in mix
networks and can be implemented through general verification or separate
verification. The former is suitable for applications with stronger requirement
for efficiency and weaker requirement for security and flexibility; the latter is
suitable for applications with weaker requirement for efficiency and stronger
requirement for security and flexibility. In large-scale mix networks, grouped
shuffling can be employed to achieve a better trade-off between privacy and
efficiency. Some of the mix network schemes are successful and some others
present concerns and problems in security and efficiency. They are surveyed
and re-assessed so that appropriate solutions can be recommended to different
applications of anonymous communication.
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Chapter 3

Application of Mix
Network to E-Voting:
a Case Study

It has been stated in Chapter 2 that an important application of mix networks
is electronic voting. In this chapter, application of mix networks to e-voting is
studied in details. This practical case study is carried out in four steps. Firstly,
a practical mix network protocol especially suitable for e-voting is described.
Secondly, mix network based e-voting is designed. Thirdly, practical security
concerns about the design are investigated and a solution is given. Fourthly,
off-line pre-computation is employed to improve efficiency of mix networks in
e-voting.

3.1 Mix Network for E-Voting

The existing mix network schemes cannot provide ideal support to e-voting.
Among the well known mix network schemes [5, 6, 74, 42, 52, 93, 90, 102,
51, 50, 89], the most recent of them [52, 93, 90, 102, 51, 50, 89] (initially
proposed in the past decade) are more efficient where the scheme in [41] is an
extended journal version of [42] and the scheme in [75] is a formal publication
of [74]. In the recent mix network schemes, the shuffling protocol in [93] is
very efficient. However, unlike all the other shuffling protocols it only allows
the routing node to choose its permutation from a small fraction of all the
possible permutations. So it is not a complete shuffling and is weak in privacy.
The other recent mix network schemes employ the same idea: given random
integers ti for i = 1, 2, . . . , n, if

RE(
∏n

i=1 c
ti
i ) =

∏n
i=1 c

′t
′
i

i (3.1)

63
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and t′1, t
′
2, . . . , t

′
n is a permutation of t1, t2, . . . , tn, thenD(c′1), D(c′2), . . . , D(c′n)

is a permutation of D(c1), D(c2), . . . , D(cn) with an overwhelmingly large
probability. This idea is simple and effective and actually will be employed
in the new mix network as well. However, its usage by the recent mix net-
work schemes has two drawbacks. Firstly, they do not give a formal proof for
soundness of shuffling guaranteed by this approach. Secondly, their methods
to prove that t′1, t

′
2, . . . , t

′
n is a permutation of t1, t2, . . . , tn in (3.1) are not

efficient enough as explained in Section 3.1.1.
In this section, a new proof protocol is proposed to prove that t′1, t

′
2, . . . , t

′
n

is a permutation of t1, t2, . . . , tn in (3.1). The new proof method is simpler
and more efficient than the existing ones. Moreover, for the first time a for-
mal soundness analysis is given in a proposed mix network to illustrate why
its satisfaction of (3.1) guarantees soundness of shuffling when t′1, t

′
2, . . . , t

′
n is

a permutation of t1, t2, . . . , tn. Therefore, both drawbacks in the recent mix
network schemes [52, 93, 90, 102, 51, 50, 89] are overcome. To show their ad-
vantages, a comparison is made between the new mix network with the recent
mix network schemes. The comparison avoids the imprecision, exaggeration
and unfairness in the existing comparisons and is more fair and objective. To
show its practical value, extending the new mix network to flexible environ-
ments and applying it to e-voting are discussed.

3.1.1 The Recent Mix Network Schemes

As stated before, the current methods to prove that t′1, t
′
2, . . . , t

′
n is a permu-

tation of t1, t2, . . . , tn in (3.1) is complex and inefficient. In the mix network
based on [52], a routing node firstly commits to a permutation π() and then
permutes t1, t2, . . . , tn using π() and commits them in T1, T2, . . . , Tn using a
commitment function Com(). Neff’s proof technique [74] is then employed to
prove that t1, t2, . . . , tn are permuted and committed in T1, T2, . . . , Tn using
the permutation committed in the first step. Finally, the routing node pub-

lishes c =
∏n

i=1 c
ti
i , c

′ =
∏n

i=1 c
′tπ(i)

i and proves ZP ( t′1, t
′
2, . . . , t

′
n | c

′ =
∏n

i=1 c
′t

′
i

i , Ti = Com(t′i) for i = 1, 2, . . . , n ) and that c′ is a re-encryption of c
where ZP ( x1, x2, . . . , xk | y1, y2, . . . , yl ) denotes ZK (zero knowledge) proof
of knowledge of integers x1, x2, . . . , xk to satisfy conditions y1, y2, . . . , yl.

In the mix network based on [90], given random integers ti and t′i for
i = 1, 2, . . . n, a routing node has to prove that it knows secret integers si and
s′i for i = 1, 2, . . . n, such that

∑n
i=1 tiD(ci) =

∑n
i=1 siD(c′i) mod q

∑n
i=1 t

′
iD(ci) =

∑n
i=1 s

′
iD(c′i) mod q

∑n
i=1 tit

′
iD(ci) =

∑n
i=1 sis

′
iD(c′i) mod q

where s1, s2, . . . , sn and s′1, s
′
2, . . . , s

′
n are permutations of t1, t2, . . . , tn and

t′1, t
′
2, . . . , t

′
n respectively.
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In the mix network based on [102], t1, t2, . . . , tn (denoted as p1, p2, . . . , pn)
are randomly chosen from a special range and t′1, t

′
2, . . . , t

′
n (denoted as

ρ1, ρ2, . . . , ρn) is guaranteed to be a permutation of t1, t2, . . . , tn by proving
satisfaction of

∏n
i=1 ti =

∏n
i=1 t

′
i (3.2)

∑n
i=1 ti =

∑n
i=1 t

′
i (3.3)

and that t′1, t
′
2, . . . , t

′
n are in the same range. Besides the complexity in proving

satisfaction of (3.2) and (3.3), the proof that t′1, t
′
2, . . . , t

′
n are in the same range

is left unimplemented and its cost is not included in efficiency estimation in
[102]. Although it is vaguely mentioned in [102] that “We then note that a
standard proof of knowledge over a group of unknown order also gives an
upper bound on the bit-size of the exponents, i.e., it implicitly proves that
ρi ∈ [−2K + 1, 2K − 1]”, there is no more efficient way to prove that a secret
integer chosen from a range is in the same range than the proof protocol in
[17]1, whose cost in n instances of proof is much higher than the claimed total
cost of shuffling in [102].

The mix network in [52] is optimised into two schemes in [51] and [50],
concentrating on computational efficiency and communicational efficiency re-
spectively; while the mix network in [90] is optimised into a scheme in [89].
The mix network schemes in [51, 50] and [89] prove that t′1, t

′
2, . . . , t

′
n is a

permutation of t1, t2, . . . , tn in (3.1) as well and their proof techniques follow
the same principles in [52] and [90] respectively. In summary, the proof tech-
niques in the recent mix network schemes are complex and costly. However,
all of them claim high efficiency and the shuffling protocol in [51] even claim
to prove validity of shuffling of n ciphertexts at a cost lower than n exponenti-
ations. The reason for their claimed extraordinarily high efficiency is that the
recent mix network schemes employ unfair estimations and comparisons to
exaggerate their advantage in efficiency over the previous work. Most of them
[93, 90, 102, 51, 50, 89] employ much shorter exponents than usual in many
computations, while assuming the previous mix network schemes still employ
exponents with normal length. In this way, they can count multiple expo-
nentiations with short exponents as one exponentiation with a normal-length
exponent. For example, the shuffling protocol in [51] counts multiple times of
n exponentiations it needs to prove validity of shuffling as a number smaller
than n. In Section 5 of [52], an efficiency improvement mechanism is applied
solely to itself and not employed in the previous shuffling schemes although
it is applicable to them as well. When those efficiency improvement mecha-
nisms are employed in the previous mix network schemes, their efficiency can
be dramatically improved as well. So the efficiency comparisons in the recent
mix network schemes are not very fair and do not precisely measure efficiency
of different mix network schemes.

1As shown in Section 3.1.2, although there is no more efficient method to prove that a
secret integer chosen from a range is in the same range, a secret integer chosen from a range
can be proved to be in another much larger range efficiently.
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3.1.2 The New Mix Network

The main idea in the new mix network technique is that a simpler and
more efficient proof is given to prove that t′1, t

′
2, . . . , t

′
n is a permutation of

t1, t2, . . . , tn in (3.1). We find that satisfaction of
∑n

i=1 ti =
∑n

i=1 t
′
i as proved

in [102] is not helpful to guarantee validity of shuffling. Moreover, to limit
t′1, t

′
2, . . . , t

′
n in a certain range is essential in efficient proof of validity of shuf-

fling. For example,2 when t1, t2, . . . , tn are primes,
∑n

i=1 ti =
∑n

i=1 t
′
i and

∏n
i=1 ti =

∏n
i=1 t

′
i but they are not limited in any range, t′1, t

′
2, . . . , t

′
n may not

be a permutation of t1, t2, . . . , tn. To guarantee that t′1, t
′
2, . . . , t

′
n is a permu-

tation of t1, t2, . . . , tn, we randomly choose primes t1, t2, . . . , tn from a range
R = {2T , 2T + 1, 2T+1 − 1} and then prove that

∏n
i=1 ti =

∏n
i=1 t

′
i (3.4)

and t′1, t
′
2, . . . , t

′
n are in R where T is a security parameter. Since the product

of any integers in R is out of R and t1, t2, . . . , tn, t
′
1, t

′
2, . . . , t

′
n are in R, sat-

isfaction of
∏n

i=1 ti =
∏n

i=1 t
′
i guarantees that t′1, t

′
2, . . . , t

′
n is a permutation

of t1, t2, . . . , tn. Depending on the concrete employed encryption algorithm,
the concrete proof of satisfaction of (3.1) and (3.4) is different. In the new
design, the proof is described based on a popular encryption algorithms in
mix network, Paillier encryption. Moreover, a very efficient proof mechanism
is employed to prove that t′1, t

′
2, . . . , t

′
n are in R. It is different from the range

proofs in [102] and so can be much more efficient than the normal range proof
techniques like [17].

Proof of Satisfaction of Equations (3.1) and (3.4)

The message space of Paillier encryption is ZN where N is a composite with
large secret factors. The multiplicative modulus is N2 and the public key is
g, a large number with secret order modulo N2. Encryption of a message m
is gmrN mod N2 where r is randomly chosen from Z∗

N . More details of it can
be found in [83]. When Paillier encryption is employed, shuffling and proof of
its validity in the new mix network is as follows where 2T+1 is smaller than
the factors of N .

1. The routing node calculates and publishes c′i = cπ(i)r
N
i mod N2 where

π() is the permutation he chooses and ri is randomly chosen from Z∗
N .

2. Random primes t1, t2, . . . , tn in R are chosen by some verifier(s) or gen-
erated by a (pseudo)random function.

3. The routing node calculates and publishes C = rN
∏n

i=1 c
′t

′
i

i mod N2

where t′i = tπ(i) and r is randomly chosen from Z∗
N .

2A simple example is N = 10, t1 = t2 = · · · = t10 = 2 while t′
1
= t′

2
= t′

3
= t′

4
= 4,

t′
5
= t′

6
= 2, t′

7
= t′

8
= 1 and t′

9
= t′

10
= −1. Another simple example is N = 10, t1 = t2 = 2,

t3 = t4 = 3, t5 = t6 = 5, t7 = t8 = 7, t9 = t10 = 11 while t′
1
= t′

2
= 22, t′

3
= t′

4
= 15,

t′
5
= t′

6
= −7, t′

7
= t′

8
= t′

9
= t′

10
= −1.
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4. The routing node proves knowledge of a secret integer R′ =

r
∏n

i=1 r
t′i
i mod N such that R′N

∏n
i=1 c

ti
i = C mod N2 using ZK proof

of knowledge of root [53].

5. The routing node calculates and publishes ei = e
t′i
i−1h

r′i mod N2 where
e0 = g, h is an integer in the same cyclic group of g, logg h and logh g
are secret and r′i is randomly chosen from a large subset in ZN for
i = 1, 2, . . . , n.

6. The routing node proves ZP ( t′1, t
′
2, . . . , t

′
n, r, r

′
1, r

′
2, . . . , r

′
n | C =

rN
∏n

i=1 c
′t

′
i

i mod N2, ei = e
t′i
i−1h

r′i mod N2 for i = 1, 2, . . . , n ) as de-
tailed in Figure 3.1. Note that although wi and vi are calculated in Z,
the proof protocol in Figure 3.1 is statistically private once si is statis-
tically much larger than ct′i and ui is statistically much larger than cr′i.

7. The routing node proves knowledge of a secret integer R′′ =
∑n

i=1(r
′
i

∑n
j=i+1 t

′
j) such that en = g

∏n
i=1 tihR′′

mod N2 using ZK proof
of knowledge of discrete logarithm [98].

1. The routing node randomly chooses integers s1, s2, . . . , sn, u1,
u2, . . . , un from ZN and U from Z∗

N . It calculates and publishes

C′ = UN
∏n

i=1 c
′si
i mod N2

e′i = esii−1h
ui mod N2 for i = 1, 2, . . . , n.

2. Some verifier(s) or a (pseudo)random function generate a random
challenge

c ∈ ZL

where L is a security parameter.

3. The routing node publishes

wi = si − ct′i in Z for i = 1, 2, . . . , n

W = U/rc mod N

vi = ui − cr′i in Z for i = 1, 2, . . . , n.

Public verification:

C′ = CcWN
∏n

i=1 c
′wi

i mod N2 (3.5)

e′i = ewi

i−1h
vieci mod N2 for i = 1, 2, . . . , n. (3.6)

Figure 3.1: ZK Proof Protocol Employed in Paillier-Based Shuffling
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Security of the proof protocol to guarantee satisfaction of Equations (3.1)
and (3.4) is illustrated in Theorem 7 and Theorem 10.

Theorem 7 The routing node’s proof in Steps 4, 6 and 7 of the proof protocol
can successfully pass their verifications if the node is honest and strictly follows
the shuffling protocol.

Proof: If the routing node is honest and strictly follows the shuffling protocol,
Equations (3.1) and (3.4) are satisfied and t′1, t

′
2, . . . , t

′
n is a permutation of

t1, t2, . . . , tn. Then

R′N
∏n

i=1 c
ti
i = (r

∏n
i=1 r

t′i
i )

N
∏n

i=1 c
ti
i = rN (

∏n
i=1 r

t′i
i )

N
∏n

i=1 c
ti
i

= rN (
∏n

i=1 r
t′i
i )

N
∏n

i=1 c
tπ(i)

π(i) = rN (
∏n

i=1 r
t′i
i )

N
∏n

i=1 c
t′i
π(i)

= rN
∏n

i=1(cπ(i)r
N
i )t

′
i = rN

∏n
i=1 c

′t
′
i

i = C mod N2

and

en = e
t′n
n−1h

r′n = (e
t′n−1

n−2 h
r′n−1)t

′
nhr′n = . . . . . .

= g
∏n

i=1 t′ih
∑n

i=1(r
′
i

∑n
j=i+1 t′j) = g

∏n
i=1 t′ihR′′

= g
∏n

i=1 tihR′′

mod N2;

and in the proof in Figure 3.1

CcWN
∏n

i=1 c
′wi

i = (rN
∏n

i=1 c
′t

′
i

i )
c(U/rc)N

∏n
i=1 c

′si−ct′i
i

= UN
∏n

i=1 c
′si
i = C′ mod N2;

ewi

i−1h
vieci = e

si−ct′i
i−1 hui−cr′i(e

t′i
i−1h

r′i)c

= esii−1h
ui = e′i mod N2 for i = 1, 2, . . . , n

Therefore, the routing node’s proof in Steps 4, 6 and 7 of the shuffling protocol
successfully passes their verifications. ✷

Theorem 8 If the routing node’s proof in Steps 4, 6 and 7 successfully passes
their verifications, Equations (3.1) and (3.4) are satisfied.

Proof: If the routing node’s proof in Steps 4, 6 and 7 successfully passes
their verifications, the routing node can calculate in polynomial time integers
t′1, t

′
2, . . . , t

′
n, r, R

′, R′′, r′1, r
′
2, . . . , r

′
n such that the following equations hold as

the ZK proof primitives in the three steps (including ZK proof of knowledge
of root [53], ZK proof of knowledge of discrete logarithm [98] and ZK proof of
equality of discrete logarithms [27]) are sound and passing their verifications
guarantees their claimed knowledge and relation.
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R′N
∏n

i=1 c
ti
i = C mod N2 (3.7)

C = rN
∏n

i=1 c
′t

′
i

i mod N2 (3.8)

ei = e
t′i
i−1h

r′i mod N2 for i = 1, 2, . . . , n (3.9)

en = g
∏n

i=1 tihR′′

mod N2 (3.10)

(3.7) and (3.8) imply

R′N
∏n

i=1 c
ti
i = rN

∏n
i=1 c

′t
′
i

i mod N2

and so
∏n

i=1 c
′t

′
i

i = (R′/r)N
∏n

i=1 c
ti
i mod N2 = RE(

∏n
i=1 c

ti
i ).

(3.9) implies

en = e
t′n
n−1h

r′n = (e
t′n−1

n−2 h
r′n−1)t

′
nhr′n = . . . . . .

= g
∏n

i=1 t′ih
∑n

i=1(r
′
i

∑n
j=i+1 t′j) mod N2 (3.11)

So
g
∏n

i=1 tihR′′

= g
∏n

i=1 t′ih
∑n

i=1(r
′
i

∑n
j=i+1 t′j) mod N2

and thus

g
∏n

i=1 ti−
∏n

i=1 t′i = h
∑n

i=1(r
′
i

∑n
j=i+1 t′j)−R′′

mod N2

As the routing node can calculate in polynomial time
∏n

i=1 t
′
i and logg h

and logh g are secret and no information about the order of g is known, (3.10)
and (3.11) imply

∏n
i=1 ti =

∏n
i=1 t

′
i

due to the following reasons.

• If
∏n

i=1 ti 6=
∏n

i=1 t
′
i and

∏n
i=1 ti −

∏n
i=1 t

′
i is a multiple of the order of

g, then the routing node can calculate in polynomial time a multiple of
the order of g, which is a contradiction.

• If
∏n

i=1 ti 6=
∏n

i=1 t
′
i and

∏n
i=1 ti−

∏n
i=1 t

′
i is not a multiple of the order

of g, then

logh g = (
∑n

i=1(r
′
i

∑n
j=i+1 t

′
j)−R′′)/(

∏n
i=1 ti −

∏n
i=1 t

′
i)

and given the order of g the routing node can calculate logh g in poly-
nomial time, which is contradictory to the widely accepted hardness of
the discrete logarithm problem.

✷
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Specification of Efficient Range Proof

In Section 3.1.2, proof of satisfaction of (3.1) and (3.4) has been specified.
However, to guarantee that t′1, t

′
2, . . . , t

′
n is a permutation of t1, t2, . . . , tn and

thus D(c′1), D(c′2), . . . , D(c′n) is a permutation of D(c1), D(c2), . . . , D(cn), we
still need to prove that t′1, t

′
2, . . . , t

′
n are in the range R. Namely, n instances of

range proof are needed. The normal range proof techniques [17, 69, 49, 19, 23,
88, 87] are not efficient for mix networks. Even the most efficient two of them
[17, 87] still cost scores of exponentiations for one instance of range proof. So
we have to prove that t′1, t

′
2, . . . , t

′
n are in R in a different and more efficient

way.
Although there is no efficient method to prove that t′1, t

′
2, . . . , t

′
n are in R

when t′1, t
′
2, . . . , t

′
n are chosen from the primes in R, t′1, t

′
2, . . . , t

′
n can be proved

to be in R if they are primes chosen from a much smaller range. This idea is
not strange to the research community but to the best of our knowledge the
condition for it to work and the guideline to set its parameters have never
been formally discussed in detail. To use this idea, there are some additional
requirements on parameter setting in the proof of satisfaction of (3.1) and
(3.4) in Section 3.1.2 besides statistical privacy. Its parameter setting needs
to be modified as follows. Firstly, t1, t2, . . . , tn are chosen from the primes in
a subset R1 in the middle of R and thus t′1, t

′
2, . . . , t

′
n are in R1 as well. Then

in Figure 3.1, si is randomly chosen from a large set S1 and c is randomly
chosen from a large set S2. If wi + c(2T + 2T−1) is in a range R2, t

′
i can be

guaranteed to be in R. Namely, if t′i is chosen in a small fraction of R near
its middle point 2T +2T−1 and si− c(t′i− (2T +2T−1)) is in R2, the absolute
value of ti − (2T + 2T−1) is guaranteed to be smaller than 2T − 2T−1. In this
way, range proof of secret integer ti in R is implemented through a simple
and public membership test of wi + c(2T + 2T−1) in R2. When R1 is small
enough and S1, S2 and R2 are appropriately set, the range proof can achieve
the soundness specified in Definition 3.

Definition 3 (Soundness of range proof). If t′i is not in R, the probability
that the verification in the range proof is passed is no more than a negligible
parameter denoted as δ.

More precisely, the parameters should be chosen according to the following
three rules

Max(S1) +Max(R1 × S2) ≤Max(R2)

Min(S1) +Min(R1 × S2) ≥Min(R2)

(MaxAbs(R̂) + 1)(Max(S2)−Min(S2))δ ≥ |R2| (3.12)

where the following denotations are employed.

• R̂ = {x | x+ (2T + 2T−1) ∈ R}.

• MaxAbs() denotes the integer with the largest absolute value in a set.
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• Max() denotes the largest integer in a set.

• Min() denotes the smallest integer in a set.

• |T | denotes the size of a set T .

• dT denotes a set {t | t = dt, t ∈ T } where T is a set of integers and d
is an integer.

The meaning of the first two rules is very clear: an honest routing node
must pass the verification. The third rule in (3.12) aims to guarantee sound-
ness of the range proof, which means that if the routing node passes the veri-
fication, t′i is guaranteed to be in R with an overwhelmingly large probability.
Its principle is illustrated in detail in Theorem 9.

Theorem 9 Soundness of the range proof means that (MaxAbs(R̂) +
1)(Max(S2)−Min(S2))δ ≥ |R2| should be satisfied.

To Prove Theorem 9, Lemma 9 is proved first.

Lemma 9 In the range proof, the number of elements falling in (MaxAbs(R̂)+
1)S2 should be no more than |S2|δ in any range with a width |R2|.

Proof: If the number of elements in (MaxAbs(R̂) + 1)S2 is more than |S2|δ
in a range with a width |R2|, then there are at least ⌊|S2|δ⌋ + 1 integers in
both (MaxAbs(R̂)+1)S2 and a range {t, t+1, . . . , t+ |R2|−1}. Denote these
integers as b1, b2, . . . , b⌊|S2|δ⌋+1. The routing node chooses si = Min(R2) − t
and then we have

bj + si = bj +Min(R2)− t for j = 1, 2, . . . , ⌊|S2|δ⌋+ 1

where 0 ≤ bj − t ≤ |R2| − 1. As bj is in {t, t+ 1, . . . , t+ |R2| − 1}

Min(R2) ≤ bj + si ≤Min(R2) + |R2| − 1 = Max(R2)

for j = 1, 2, . . . , ⌊|S2|δ⌋+ 1

Namely, bj+si is in R2 for j = 1, 2, . . . , ⌊|S2|δ⌋+1. As b1, b2, . . . , b⌊|S2|δ⌋+1

are in (MaxAbs(R̂) + 1)S2, So bj + si is in (MaxAbs(R̂) + 1)S2 + si for

j = 1, 2, . . . , ⌊|S2|δ⌋ + 1. So, (MaxAbs(R̂) + 1)S2 + si ∩ R2 at least contains
bj + si for j = 1, 2, . . . , ⌊|S2|δ⌋+ 1 and

|((MaxAbs(R̂) + 1)S2 + si) ∩R2| ≥ ⌊|S2|δ⌋+ 1

Namely, with t′i = MaxAbs(R̂) + 1, if the probability that the verification in
the range proof is passed is denoted as P, then

P ≥ |(t′iS2 + si) ∩R2|/|S2| ≥ (⌊|S2|δ⌋+ 1)/|S2| > δ
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which is contradictory to Definition 3. This contradiction shows that Lemma 9
must be correct. ✷

Proof of Theorem 9:
Note that if the probability that a random element in any part of a set
falls into a certain subset is no more than a certain value, then the prob-
ability that a random element in the set falls into the certain subset is no
more than the certain value. According to Lemma 9, the average probability
that an integer in {(MaxAbs(R̂) + 1)Min(S2), (MaxAbs(R̂) + 1)Min(S2) +
1, . . . , (MaxAbs(R̂) + 1)Max(S2)} falls into (MaxAbs(R̂) + 1)S2 is no more
than |S2|δ/|R2| and the number of integers in (MaxAbs(R̂) + 1)S2 is no
more than ((MaxAbs(R̂)+1)Max(S2)−(MaxAbs(R̂)+1)Min(S2))|S2|δ/|R2|.
Therefore,

((MaxAbs(R̂) + 1)Max(S2)− (MaxAbs(R̂) + 1)

Min(S2))|S2|δ/|R2| ≥ |(MaxAbs(R̂) + 1)S2| = |S2|

and thus
(MaxAbs(R̂) + 1)(Max(S2)−Min(S2))δ ≥ |R2|

✷

The analysis above shows that the n instances of range proof can be effi-
ciently implemented after the parameters are adjusted. For example, R1 can
be {2T−1+2T − l, 2T−1+2T − l+1, . . . , 2T−1+2T + l} where l is much smaller
than 2T . Of course, besides the three rules, l should be large enough so that it
is difficult to guess which primes are chosen from R1 as t1, t2, . . . , tn. Since T
can be as large as several hundred, those requirements can be easily satisfied
and there are many valid choices for R2, S1 and S2. Together with satisfaction
of Equation (3.4), the n instances of range proof guarantee that t′1, t

′
2, . . . , t

′
n

is a permutation of t1, t2, . . . , tn as analysed in the beginning of Section 3.1.2.
Then with Equation (3.1) satisfied as well, validity of shuffling is guaranteed
as illustrated in Section 3.1.3.

3.1.3 Security and Efficiency Analysis

As mentioned before, although many mix network schemes guarantee validity
of shuffling by proving satisfaction of (3.1) and t′1, t

′
2, . . . , t

′
n is a permuta-

tion of t1, t2, . . . , tn, none of them gives a formal analysis of the guarantee.
Theorem 10 formally illustrates why satisfaction of (3.1) guarantees validity
of shuffling in the new mix network when t′1, t

′
2, . . . , t

′
n is a permutation of

t1, t2, . . . , tn.

Theorem 10 In the new mix network, the probability that Equation
(3.1) is satisfied and t′1, t

′
2, . . . , t

′
n is a permutation of t1, t2, . . . , tn but

D(c′1), D(c′2), . . . , D(c′n) is not a permutation of D(c1), D(c2), . . . , D(cn) is
negligible.
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To prove Theorem 10, a lemma is proved first.

Lemma 10 If
∏n

i=1 y
zi
i is an N th residue with a probability larger than 1/K

where every zi is randomly chosen from a set S, which contains K integers
smaller than the factors of N , then y1, y2, . . . , yn are N th residues.

Proof:
∏n

i=1 y
zi
i is an N th residue with a probability larger than 1/K im-

plies that for any given integer v in {1, 2, . . . , n} there must exist integers
z1, z2, . . . , zn and z′v in S and two different integers x and x′ in ZN such that

∏n
i=1 y

zi
i = xN mod N2 (3.13)

(
∏v−1

i=1 yzii )y
z′
v

v
∏n

i=v+1 y
zi
i = x′N mod N2 (3.14)

Otherwise, for any (z1, z2, . . . , zv−1, zv+1, . . . , zn) in Sn−1, there is at most
one zv in S such that

∏n
i=1 y

zi
i mod N2 is an N th residue. This implies that

among the Kn possible choices for (z1, z2, . . . , zn) (combination of the Kn−1

possible choices for (z1, z2, . . . , zv−1, zv+1, . . . , zn) and the K possible choices
for zv) there are at most Kn−1 choices to construct an N th residue in the form
∏n

i=1 y
zi
i mod N2, which is a contradiction to the assumption that

∏n
i=1 y

zi
i

is an N th residue with a probability larger than 1/K.

Equations (3.13) and (3.14) imply y
zv−z′

v
v is an N th residue. According

to Euclidean algorithm there exist integers α and β to satisfy β(zv − z′v) =
αN+GCD(N, zv−z′v). Note that GCD(N, zv−z′v) = 1 as zv, z

′
v are in S and

thus smaller than the factors of N . So y
β(zv−z′

v)
v = yαNv yv mod N2. Namely,

yv = y
β(zv−z′

v)
v /yαNv = (y

(zv−z′
v)

v )β/yαNv

= (x/x′)Nβ/(yαv )
N = ((x/x′)β/yαv )

N mod N2

So yv is an N th residue. Therefore, y1, y2, . . . , yn are N th residues as v can be
any integer in {1, 2, . . . , n}. ✷

Proof of Theorem 10: Let A1 be the event that D(c′1), D(c′2), . . . , D(c′n) is a
permutation ofD(c1), D(c2), . . . , D(cn); A2 be the event that Equation (3.1) is
correct; A3 be the event that the routing node successfully proves satisfaction
of (3.1); and P (A) denote the probability of event A.

P (A3/Ā1) = P ((A3 ∧A2)/Ā1) + P ((A3 ∧ Ā2)/Ā1)

= P (A3 ∧ A2 ∧ Ā1)/P (Ā1) + P (A3 ∧ Ā2 ∧ Ā1)/P (Ā1)

= P (Ā1 ∧ A2)P (A3/Ā1 ∧ A2)/P (Ā1) +

P (A3 ∧ Ā2 ∧ Ā1)P (Ā2 ∧ Ā1)/(P (Ā1)P (Ā2 ∧ Ā1))

= P (A2/Ā1)P (A3/Ā1 ∧ A2) +

P (Ā2/Ā1)P (A3 ∧ Ā2 ∧ Ā1)/P (Ā2 ∧ Ā1)

= P (A2/Ā1)P (A3/Ā1 ∧ A2) +

P (Ā2/Ā1)P (A3 ∧ Ā2 ∧ Ā1)/(P (Ā2)P (Ā1/Ā2))
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P (Ā1/Ā2) = 1 as P (A2/A1) = 1. So

P (A3/Ā1) = P (A2/Ā1)P (A3/Ā1 ∧ A2) +

P (Ā2/Ā1)P (A3 ∧ Ā2 ∧ Ā1)/P (Ā2)

≤ P (A2/Ā1)P (A3/Ā1 ∧ A2) +

P (Ā2/Ā1)P (A3 ∧ Ā2)/P (Ā2)

≤ P (A2/Ā1)P (A3/Ā1 ∧ A2) + P (Ā2/Ā1)P (A3/Ā2)

≤ P (A2/Ā1)P (A3/Ā1 ∧ A2) + P (A3/Ā2)

Suppose there are k primes in R1. If P (A2/Ā1) > 1/k, then when Ā1

happens the probability that (3.1) is correct is larger than 1/k. Namely, when
Ā1 happens,

RE(
∏n

i=1 c
ti
i ) =

∏n
i=1 c

′tπ(i)

i

with a probability larger than 1/k where π() is a permutation of {1, 2, . . . , n}.
Namely, when Ā1 happens,

RE(
∏n

i=1 c
ti
i ) =

∏n
i=1 c

′ti
π−1(i)

with a probability larger than 1/k.
According to additive homomorphism of Paillier encryption algorithm,

when Ā1 happens,

∏n
i=1(ci/c

′
π−1(i))

ti = E(0)

with a probability larger than 1/k. Namely, when Ā1 happens,
∏n

i=1(ci/c
′
π−1(i))

ti

is an N th residue with a probability larger than 1/k.
So, according to Lemma 10, when Ā1 happens ci/c

′
π−1(i) is an N th residue

for i = 1, 2, . . . , n, and thus D(c′1), D(c′2), . . . , D(c′n) is a permutation of
D(c1), D(c2), . . . , D(cn), which is a contradiction. P (A2/Ā1) ≤ 1/k must be
true to avoid the contradiction.

As with Paillier encryption (3.1) is proved using a standard proof of knowl-
edge of root [53], P (A3/Ā1 ∧ A2) = 1 and P (A3/Ā2) < 2−L′

where L′ is the
bit length of the challenge in the proof of knowledge of root. Therefore,

P (A3/Ā1) ≤ P (A2/Ā1) + P (A3/Ā2) = 1/k + 2−L′

✷

The new mix network is compared with the recent mix network schemes
in Table 3.1. When computational cost of a routing node is estimated, the
exponentiations are counted. For simplicity, they are counted in terms of mul-
tiples of n, the dominating part of the cost. As the re-encryption operation is
efficient and costs almost the same in all the shuffling protocols, as in most
existing mix network schemes, in this section only the cost of the proof of
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Table 3.1: Comparison of mix network schemes

Mix Privacy Formal Computational cost Other comment
network analysis of proof of validity

of shuffling

[52] strong incomplete 12n
[93] weak1 complete 12n
[90] strong incomplete 13n
[102] strong incomplete 15n n instances of

range proofs
unimplemented

[51] strong incomplete 10n
[50]2 strong incomplete 22n
New strong complete 7n

Note: 1As explained before, it only supports a very small fraction of all the possible per-

mutations.
2The mix network scheme in [50] is very special in comparison to other mix network schemes.

While the other mix network schemes focus on computation in efficiency analysis as their

communicational cost is approximately linear in their computational cost, the mix network

scheme in [50] achieves high efficiency in communication by sacrificing computational effi-

ciency. Thus although communicational efficiency is not the subject of this section, for the

sake of fairness, we have to mention that the mix network scheme in [50] has an advantage

in communicational efficiency.

validity of shuffling is included in the comparison. As stated before, applying
an efficiency improvement mechanism like a small exponent to the recent mix
network schemes and excluding it from other mix network schemes is unfair
as the efficiency improvement mechanisms are simple and general techniques
appliable to all the mix network schemes. For example, in the new mix net-
work scheme, t1, t2, . . . , tn and s1, s2, . . . , sn can be set to be small exponents
to greatly improve efficiency as well. For the sake of fairness and to show ex-
actly how advanced every mix network scheme is, the efficiency improvement
mechanisms are not included in any mix network scheme in the cost estima-
tion in Table 3.1 and every exponentiation is counted equally. As explained
before, most recent mix network schemes do not provide a complete formal
security analysis as they do not formally explain why shuffling is valid when
(3.1) is satisfied and t′1, t

′
2, . . . , t

′
n is a permutation of t1, t2, . . . , tn. Except in

[50], communicational cost of mix networks is approximately in direct propor-
tion to their computational cost, so communicational cost is not separately
estimated in Table 3.1 as it is in the efficiency analysis of most mix network
schemes.
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3.1.4 Extension and Application

Other popular encryption algorithms in mix network like El Gamal encryp-
tion can be employed in the new mix network as well. A typical El Gamal
encryption algorithm employs two large primes p and q where q is a factor of
p − 1. Suppose g is a generator of the cyclic subgroup of order q in Z∗

p and
the private key is an integer x in Zq, and the public key is y = gx mod p.
Encryption of a message m is (gr mod p, myr mod p) where r is randomly
chosen from Zq. When El Gamal encryption is employed, shuffling and proof
of its validity in the new mix network is as follows where 2T+1 is smaller than
q.

1. The routing node calculates and publishes c′i = (a′i, b
′
i) where ci =

(ai, bi), a
′
i = aπ(i)g

ri mod p, b′i = bπ(i)y
ri mod p, π() is the permuta-

tion selected and ri is randomly chosen from Zq.

2. Random primes t1, t2, . . . , tn in R1 are chosen by some verifier(s) or
generated by a (pseudo)random function where R1 is in the middle of
R and much smaller than it.

3. The routing node calculates and publishes A = gr
∏n

i=1 a
′t

′
i

i mod p and

B = yr
∏n

i=1 b
′t

′
i

i mod p where t′i = tπ(i) and r is randomly chosen from
Zq.

4. The routing node proves knowledge of a secret integer R′ = r +
∑n

i=1 rit
′
i mod q such that gR

′ ∏n
i=1 a

ti
i = A mod p and yR

′ ∏n
i=1 b

ti
i =

B mod p using ZK proof of knowledge of discrete logarithm [98].

5. The routing node calculates and publishes ei = e
t′i
i−1h

r′i mod N where N
is a composite with large secret factors, f and h are generators of a large
cyclic subgroup with secret order in Z∗

N , logf h and logh f are secret and
r′i is randomly chosen from a large subset in ZN for i = 1, 2, . . . , n.

6. The routing node proves ZP ( t′1, t
′
2, . . . , t

′
n, r, r

′
1, r

′
2, . . . , r

′
n | A =

gr
∏n

i=1 a
′t

′
i

i mod p, B = yr
∏n

i=1 b
′t

′
i

i mod p, ei = e
t′i
i−1h

r′i mod
N for i = 1, 2, . . . , n ) as detailed in Figure 3.2.

7. The routing node proves knowledge of a secret integer R′′ =
∑n

i=1(r
′
i

∑n
j=i+1 t

′
j) such that en = g

∏n
i=1 tihR′′

mod N using ZK proof
of knowledge of discrete logarithm [98].

8. It is publicly verified that wi + c(2T + 2T−1) is in R2 to guarantee that
t′i is in R where choice of R1, R2, S1, S2 must satisfy the three rules in
(3.12), (3.12) and (3.12) and guarantee statistical privacy of the proof.

When the new mix network employs El Gamal encryption-based shuf-
fling, formal analysis of its security is similar to the analysis of its Paillier
encryption-based version. Due to space limit, the analysis is not repeated
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1. The routing node randomly chooses integers s1, s2, . . . , sn from a large
set S1, u1, u2, . . . , un from ZN and U from Zq and then calculates and
publishes

A′ = gU
∏n

i=1 a
′si
i mod p

B′ = yU
∏n

i=1 b
′si
i mod p

e′i = esii−1h
ui mod N for i = 1, 2, . . . , n.

2. Some verifier(s) or a (pseudo)random function generate a random
challenge

c ∈ S2

where S2 is a large set.

3. The routing node publishes

wi = si − ct′i in Z for i = 1, 2, . . . , n

W = U − cr mod q

vi = ui − cr′i in Z for i = 1, 2, . . . , n.

Public verification:

A′ = AcgW
∏n

i=1 a
′wi

i mod p

B′ = BcyW
∏n

i=1 b
′wi

i mod p

e′i = ewi

i−1h
vieci mod N for i = 1, 2, . . . , n.

Figure 3.2: ZK Proof Protocol Employed in El Gamal-based Shuffling

here. As mentioned before, the most important application of mix network is
e-voting. A mix network-based e-voting design is described in the following to
show importance of the new mix network in practical applications.

1. Some talliers share the private key of an encryption algorithm, which is
employed to encrypt the votes in the election. The sharing mechanism
guarantees that decryption is only feasible when enough talliers (e.g.,
over a threshold) cooperate. For example, the private key of Paillier
encryption can be shared using the technique in [37].

2. The voters encrypt their votes and submit the ciphertexts to the talliers.

3. The talliers set up a mix network and each of them acts as a routing
node.

4. The talliers take turns to shuffle the encrypted votes.
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5. The talliers cooperate to decrypt the repeatedly shuffled ciphertexts and
recover the votes. Each of them publicly proves validity of his part of
decryption work as detailed in [37].

6. Any election rule can be applied to count the decrypted votes and de-
termine the result of the election.

If at least one tallier conceals the permutation used in his shuffling, the
decrypted votes cannot be traced back to the voters and thus privacy of e-
voting is guaranteed. As the new mix network is publicly verifiable, the voters
and independent observers can verify validity of the talliers’ shuffling such
that any cheating in tallying can be detected.

3.2 Mix Network-Based E-Voting

Electronic voting is a popular application of cryptographic and network tech-
niques to e-government. An e-voting scheme should satisfy the following prop-
erties.

• Correctness: all the valid votes are counted without being tampered
with.

• Privacy: no information about any voter’s choice in the election is re-
vealed.

• Robustness: any dishonest behaviour or abnormal situation can be de-
tected and solved without revealing any vote.

• Verifiability: correctness of the election can be verified. It is classified
into two types as follows.

– Individual verifiability: each voter can verify that his vote is
counted and not tampered with.

– Public verifiability: anyone can verify that all the votes are counted
and not tampered with according to public information.

• High efficiency: the voting operation and tallying operation should be
efficient enough for practical elections including large scale elections.

A property sometimes desired in e-voting, receipt freeness (or called coer-
cion resistance elsewhere), is not the focus of this section, so is not discussed in
detail in this section. Either of the two existing solutions to receipt freeness,
deniable encryption [22] and re-encryption with untransferable zero knowl-
edge proof of correctness by a third party (in the form of a trusted authority
or a tamper-resistent hardware) linked through untappable communication
channel3 [67], can be employed if required.

3The untappable communication channel is in the form of an internal channel-like bus
or USB cable when tamper-resistant hardware is employed.
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Most of the existing e-voting schemes can be classified into two categories:
homomorphic voting and shuffling-based voting. In a homomorphic voting
scheme [9, 73, 97, 55, 12, 64, 30, 54, 65, 67, 68, 91], an encryption algorithm
with special homomorphic property (e.g. El Gamal encryption or Paillier en-
cryption [83]) is employed to encrypt the votes such that the sum of the votes
can be recovered without decrypting any single vote. An advantage of homo-
morphic voting is efficient tallying. Tallying in homomorphic voting only costs
one single decryption operation for each candidate. However, homomorphic
voting has the following drawbacks.

• Complex vote: a vote must contain a ciphertext for each candidate (or
possible choice) in the election. Thus encryption cost for each voter is
high. This drawback is especially serious when the number of candidates
is large or in a preferential election, where the preferential order of all
the candidates must be contained in a vote.

• High cost in vote validity check. In a valid vote, each ciphertext must
be in a special format. Correctness of homomorphic voting depends on
validity of the votes. An invalid vote can compromise correctness of a
homomorphic voting scheme, so must be detected and deleted before the
tallying phase. Unfortunately, vote validity check is very costly (both
for the voters to prove validity of their votes and for a tallier (and
other verifiers) to verify validity of the votes) and becomes an efficiency
bottleneck in homomorphic e-voting.

These two drawbacks imply that the computational and communicational
cost for every voter is high, especially when the election is complex. Note that
although the talliers can be several authorities with high computational power
and linked with a broadband communication channel, the voters are common
people and some of them possibly have limited computational power and
communication bandwidth, especially when mobile devices are used to cast the
votes. Therefore, although homomorphic voting is suitable for a very simple
(yes or no) election, it is impractical in more complicated circumstances.

Shuffling-based voting [84, 48, 6, 42, 74, 75, 52, 93, 41, 90] is more suit-
able for complex elections (e.g., with multiple candidates or votes containing
complex information like preference of the candidates) as it has the follow-
ing merits. No matter how complex a vote is, it is sealed in one ciphertext.
Moreover, no vote validity check is needed. So the cost for a voter is low and
low-capability devices and low-performance communication channels can be
used to cast the votes. A shuffling-based voting scheme employs multiple in-
stances of shuffling to repeatedly shuffle the encrypted votes before they are
decrypted (opened) so that the opened votes cannot be traced back to the
voters if at least the permutation in one shuffling instance is concealed. Se-
cure shuffling-based e-voting applications should follow three rules to achieve
critically high security requirements and otherwise may cause serious chaos
and turbulence.
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• The security requirements of e-voting like correctness, privacy, robust-
ness and public verifiability must be completely and strictly satisfied.

• Validity of shuffling must be publicly and completely verified.

• Multiple shuffling operations are performed in sequence such that no
opened vote can be traced back to its voter if at least one shuffling node
conceals his permutation.

E-voting schemes like [60, 93, 47] do not strictly follow these three rules, have
looser security standards and cannot completely satisfy the security require-
ments of e-voting, so are not satisfactory solutions.4

The main concerns in shuffling-based e-voting are inefficiency in public
verification and weak robustness. There are two methods to implement public
verification in shuffling-based e-voting. The first method is instant verifica-
tion: each shuffling operation is publicly verified before the votes are sent
to the next shuffling node such that any deviating operation in the shuf-
fling is detected immediately and no vote is decrypted unless all the shuf-
fling nodes strictly follow the shuffling protocol. A drawback of this method
[5, 42, 74, 52, 75, 90, 6, 40, 41, 79] is low efficiency. The second method is to
omit separate public verifications in all the shuffling operations and to make
a final public check after the votes are shuffled and decrypted [84, 48]. If any
shuffling operation deviates from the shuffling protocol, the final check fails
and a identifying function can be used to identify the dishonest shuffling node.
This method is more efficient in public verification, but has its own drawback:
weak robustness.

The most serious drawback of the second verification method is that it is
more vulnerable to attacks against privacy. The first verification method guar-
antees that any dishonest behaviour of any shuffling node is instantly detected,
rewound and redone. So with the first verification method, the only concern
is dishonest behaviour of the voters. With the second verification method,
the e-voting procedure continues until the final decryption of the votes even
if some malicious shuffling node has deviated from the protocol, and thus
gives more chances for attacks. For example, the votes are still decrypted
even if they are tampered with in the shuffling in [84], which is vulnerable
to many “relation attacks” (see [94] for definition, detailed explanation and
more references). The e-voting scheme in [48] takes two additional operations
on the voters’ side, double encryption and zero knowledge proof of knowledge
of certain secrets committed in the ciphertexts, to counteract those attacks.
However, it is pointed out in [8] that [48] is still vulnerable to attacks from
dishonest talliers, not to mention the two additional operations counteract the

4[60] cannot guarantee complete correctness, privacy, robustness or public verifiability
of election. [93] only supports a small fraction of all the possible permutations and thus is
weak in privacy. [47] has a loose requirement on privacy and causes concerns with public
verifiability.
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efficiency improvement gained through omitting instant verification and com-
promise the advantage of shuffling-based e-voting in efficiency on the voters’
side. Finally, even if instant verification is performed, shuffling-based e-voting
is still vulnerable to an active attack launched by a malicious voter proposed
in (Section 5 of) [94].

The new shuffling protocol proposed in Section 3.1 employs the first veri-
fication method and can be employed to build a e-voting scheme as follows.

1. The voters choose their vote according to the election rule. Their vote
can be in any format and can contain any content and so support any
election application.

2. The voters encrypt their votes and submit the encrypted votes to the
talliers. The public key used in the encryption is pubished by the talliers
and the corresponding private key is shared among the talliers using a
threshold secret sharing mechanism.

3. The talliers form a mix network act as the routers to shuffle the en-
crypted votes in term, while every tallier publicly proves validity of his
shuffling.

4. A number of tallliers over the private key sharing threshold cooperate
to decrypt the repeatedly shuffled ciphertexts and recover the votes.

5. The decrypted votes are counted to determine the election result.

3.3 Security Concerns and Suggested Solution

in Practice

Although the new shuffling protocol in Section 3.1 satisfies the security re-
quirement of shuffling, its application to e-voting does not necessarily produce
a secure e-voting scheme. The active attacks against privacy in [94, 8] must be
prevented. However, the existing countermeasures against those attacks are
not efficient (and especially increase the cost of the voters and thus counteract
the advantage of shuffling-based e-voting in efficiency on the voters’ side) as
they explicitly or implicitly require costly zero knowledge proof operations on
the voters’ side. In addition, even if either of these two measures is employed
to prevent the voters from deviating from the voting protocol, the shuffling
nodes can still actively cheat if instant and complete public proof and veri-
fication is not performed on each shuffling node. In this section, simpler and
more efficient countermeasures against the attacks are designed. The voters
must be prevented from deviating from the voting protocol and launching ac-
tive attacks [94, 8] in the new e-voting scheme. The essence of these attacks
from actively malicious voters is to insert specially designed information into
certain votes such that the chance to break privacy is obtained when these



✐

✐

“K13841” — 2014/3/4 — 15:45
✐

✐

✐

✐

✐

✐

82 Anonymous Communication Networks: Protecting Privacy on the Web

votes are decrypted. To prevent these attacks, the parameter setting and de-
cryption function are modified in the new e-voting scheme such that no other
information than election-related content is revealed when the encrypted votes
are decrypted no matter how strange some deliberately generated votes may
be. Unlike the existing countermeasures, the modification not only does not
require any additional computation but also improves efficiency. As a result,
the new e-voting scheme is correct, private, robust and highly efficient. It is
especially suitable for large-scale election applications.

Relation attacks are introduced by Pfitzmann [94] and further explored in
[8, 100, 7]. As research goes deeper, more and more kinds of relation attacks are
found. Detailed definition and classification of relation attacks will be given in
Section 3.3.1. In summary, a relation attack generates some special relations
between some output messages so that an adversary can recognise the relation
and trace one of the messages to its corresponding input ciphertext.

Since Chaum proposed the first mix network [25], many mix networks have
appeared. Some of them involve a complete mix network composed of multiple
mixers [84, 80, 5, 6, 81, 62, 60, 15, 48, 93, 101, 102, 104] and other designers
argue that all the mixers employ the same shuffling operation and thus focus
on one mixer’s work [42, 74, 52, 75, 41, 90, 79, 10]. As all of them employ
malleable encryption algorithms and a ciphertext encrypting a message related
to the message in a given ciphertext can be easily generated in them. So all of
them are vulnerable to relation attacks unless a countermeasure is employed to
prevent the exploitation of malleability of the employed encryption algorithms.
Some mix networks [56, 48] are specially designed to avoid relation attacks
without addressing the problem of malleability, but they fail as explained in
Section 3.3.1.

Some countermeasures [100, 21, 57, 33, 8, 7] have been proposed to prevent
relation attacks in a general circumstance. Unfortunately, all of them explicitly
or implicitly employ costly mechanisms to break malleability of the employed
encryption algorithms and are thus inefficient. Moreover, as explained in Sec-
tion 3.3.1, they implicitly need support of other costly operations and cannot
protect the mix networks from many relation attacks without the supporting
operations. Special countermeasures can be designed to prevent certain rela-
tion attacks in certain circumstances, but they are usually inefficient too as
explained in Section 3.3.1. Although there are a couple of relatively efficient
special countermeasures, they can only handle very special relation attacks
and are not very useful in general. There is a co-called semi-general coun-
termeasure [96], which is more general than the special ones. However, as
explained in Section 3.3.1, it is extremely inefficient.

In this section, a novel countermeasure against relation attacks is designed.
It prevents any relation attack in mix networks when they are used in e-voting
applications. Relation attacks in other applications are not taken into ac-
count. It is actually a general countermeasure against relation attacks in mix-
network-based e-voting. As the main application of mix network is e-voting,
such a semi-general countermeasure is very useful. As we focus on e-voting
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applications and the mixed messages in e-voting applications (used to stand
for the possible choices in an election) are short enough to be encrypted into
one single asymmetric ciphertext, we do not take hybrid mix networks into
account, which employ both a symmetric cipher and an asymmetric cipher to
shuffle long messages. Important advantages of this new countermeasure are
simplicity and high efficiency. It does not employ the complex and costly oper-
ations in the existing countermeasures. Actually, it employs a new encryption
algorithm with a limited output space and does not need any additional op-
eration. So it is much more efficient than any existing countermeasure against
relation attacks. The new countermeasure is specified and shown to work effec-
tively. The concrete specifications illustrate that it is applicable to the existing
mix-based e-voting schemes to protect them from any relation attack.

3.3.1 Various Relation Attacks and the Existing
Countermeasures

The intended functionality of a mix network is to achieve anonymity, so pri-
vacy is a very important property in mix networks. Unfortunately, there are
various attacks against privacy in mix networks. Those attacks threaten se-
curity of many mixing-based e-voting schemes. Well known examples of such
attacks include the passive attack against privacy proposed by Pfitzmann
[94], the third attack proposed by Wikstrom [100], and the attack proposed
by Horster and Michels [72]. Apart from attacks against privacy of asymmet-
ric cipher-based mix networks mentioned above, there are also attacks against
hybrid mix networks like the one against [62] proposed by Abe [8, 7] and at-
tacks against correctness of mix networks like the fifth attack by Wikstrom
[100] against [48, 59].

In comparison with the attacks listed in the last paragraph, relation attacks
affect more mix networks and are more difficult to prevent.While those attacks
can be efficiently handled,5 in general there is no efficient countermeasure
against relation attacks.

As there are many kinds of relation attacks it is not easy to give a simple
and formal definition to cover all of them. However, they share a common idea
and usually work as follows.

1. To trace a ciphertext ci, an adversary computes one or more cipher-
texts encrypting messages related to the message encrypted in ci. The
ciphertexts are mixed with the normal and valid input ciphertexts and
are shuffled together. They may appear as input ciphertexts to a mix
network and then be shuffled by all the mixers or be inserted into the
mix network by a dishonest mixer and replace some ciphertexts received
by the mixer and then be shuffled by the following mixers.

5The concrete countermeasures are not described here. Interested readers are referred to
the papers describing these attacks and fixing the attacked mix networks [100, 72, 8, 7].
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2. The key idea of the attack is that there are some special relations be-
tween the message in ci and the messages in the ciphertexts generated
by the adversary. The special relations are chosen by the adversary A
and can be recognised by A.

3. After the output messages of the mix network are published, the adver-
sary finds the special relations among them and identifies the message
in ci in polynomial time according to recognised relations.

In summary, a relation attack generates some special relations between some
output messages so that an adversary can recognise the relation and trace one
of the messages to its corresponding input ciphertext. We have to emphasize
that the special relation is not limited to normal algebraic relations and in-
cludes a very wide range of relations. Any relation distinguishing the attacked
message from other messages can be employed. Actually, a relation useful in
a relation attack can be defined as follows.

• A relation is in the form R(m,m1,m2, . . . ,mδ) where m is the attacked
and traced message, δ ≥ 1 and m1,m2, . . . ,mδ are some messages in the
output result of the mix network. The domain of R() is a definite set
and if necessary such a set with τ elements can be represented in the
form {0, 1, . . . , τ − 1}.

• A relation R(m,m1,m2, . . . ,mδ) is useful in a relation attack if for any
m′ not equal to m in the output messages R(m,m1,m2, . . . ,mδ) 6=
R(m′,m1,m2, . . . ,mδ).

The following two examples of useful relations will be employed in the two
examples of relation attacks later in this section.

• One message is t times of another message:

R(m,m1) =

{

1 if m1 = tm
0 otherwise

• One message is the only valid message, or (speaking like a relation) m
is more valid than the other messages:

R(m,m1,m2, . . . ) =







1 if m is a valid vote and
m1,m2, . . . are invalid

0 otherwise

If this abstract definition is not easy to follow, readers can use a simpler
method to identify relation attacks: all the already known and newly discov-
ered relation attacks are presented in Table 3.2.

As stated before, unless an appropriate countermeasure is employed to
break malleability, any existing mix network has to deal with relation attacks
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as they employ malleable encryption algorithms. Some mix networks [48, 56]
try to protect privacy from attack without breaking malleability. Golle et al.
[48] employ two special mechanisms, double encryption and additional tags,
to strengthen privacy. In [56] cut-and-choose, tags and dummy inputs are
employed as extra efforts to provide immunity to attacks against privacy.
However, as demonstrated in [100, 8, 7], they are still vulnerable to relation
attacks.

Some discovered relation attacks and their simple variants are listed in
Table 3.2. Among them, Attack 1 and Attack 2 are the most common relation
attacks. A simple example of these two attacks is that a corrupted polyno-
mial party (the first mixer or a sender) inserts ct into the input list where
the attacked input is a ciphertext c, t is an integer randomly chosen by the
adversary and El Gamal encryption is employed (and such that c = (a, b) is
related to ct = (at, bt)). The adversary finds in the output message list two
messages mi and mj such that mi = mt

j and deduces that mj is the mes-
sage encrypted in c. Note that the special case t = 1 has not been explicitly
described in the literature. Attack 1 and Attack 2 can be developed into at-
tacking protocols with different specifications in details. Attacks 3, 4, 5 and 6
are concrete enough in Table 3.2 and more details about them can be found
in the given references.

There is a special relation attack, which has not been mentioned in existing
literature to our knowledge. It is quite simple and can work when illegal
ciphertexts cannot be detected in a mix network. Suppose the first mixer,
M1, under the control of a polynomial adversary, wants to break privacy of
a certain encrypted vote. M1 modifies all the encrypted votes but the chosen
vote to illegal ciphertexts. Then the only legal vote discovered in the end is
the content of the attacked vote. For example, M1 keeps encrypted vote c and
replaces any other encrypted vote with E(m′) where m′ is an invalid vote and
E() is the vote encryption algorithm. In this way the vote encrypted in c must
be the only legally opened vote. This attack is easier to detect than the other
relation attacks if the employed mix network employs instant and complete
public verification. If the employed mix network only employs a final public
verification, this attack can only be detected in the final verification of the
mix network when the votes have been decrypted and published and thus the
attacked vote has been revealed. This is called Attack 7 and also included in
Table 3.2. At present, to our knowledge there is no countermeasure against
this attack in mix networks employing final verification.

A simple countermeasure to attacks exploiting malleability of encryption
is to introduce redundancy into the messages. However, it has been illustrated
in [94] that countermeasures to prevent relation attack through redundancy
in the messages are either ineffective or impractical. In [100, 8, 7] ZK proof of
every sender’s knowledge of his message (or ZK proof of every sender’s knowl-
edge of some secret integer used in his encryption, which implies knowledge
of the message) is recommended as a general countermeasure against relation
attacks. A concrete ZK proof of senders’ knowledge of their messages is spec-
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ified in [21]. Non-malleable encryption is employed in [57, 33] as a general
countermeasure against relation attacks. In [8, 7], CCA secure encryption al-
gorithms are employed as a general countermeasure against relation attacks
and vulnerability against relation attacks is formally abstracted into CCA
security of multiple encryptions. All these general countermeasures are iden-
tical or at least similar in essence. The non-malleable encryption algorithm in
[57, 33] is specified through ZK proof of senders’ knowledge of their messages.
Although no specification of CCA secure encryption algorithm is provided in
[8, 7], it faces the same problem of non-malleable encryption. In general, CCA
secure encryption is implemented through ZK proof of a sender’s knowledge
of his message or other similar ZK proof primitives. Even if some CCA se-
cure encryption algorithms do not need zero knowledge proof of knowledge
on the encryption performer’s (voter’s) side, they usually extend the length of
ciphertext and greatly increase the cost of shuffling the ciphertexts. Moreover,
they usually cannot be used in shuffling, which re-encrypts and randomises
some ciphertexts. All the existing general countermeasures against relation
attacks implicitly or explicitly employ costly ZK proof techniques or other
costly operations.

Moreover, the existing general countermeasures can only prevent relation
attacks launched by senders solely like Attack 2, Attack 3 and Attack 6. If
malicious mixers take part in a relation attack like Attack 1, Attack 4, Attack
5 and Attack 7, these general countermeasures based on the senders’ ZK proof
of their knowledge of their messages are not enough. The reason is simple: al-
though no sender can submit any ciphertext related to an input, malicious
mixers (e.g., the first mixer) can insert a ciphertext related to the input into
the ciphertext list. The mixer’s malicious behaviour may be detected in time
to stop a relation attack on some mix networks through immediate and com-
plete verification of shuffling. Mix networks which do not employ complete
verification [81] or immediate verification [84, 56, 48] of shuffling cannot pre-
vent the relation attack in time. The general countermeasures based on the
senders’ ZK proof of their knowledge of their messages implicitly need support
of other operations (e.g., complete and instant verification of shuffling) and
cannot protect the mix networks from many relation attacks without the sup-
porting operations. In addition, when the existing general countermeasures
are employed to prevent certain relation attacks like Attack 2, other special
operations (e.g., untransferable ZK proof to prevent Attack 2) are needed.

There are some special countermeasures against certain relation attacks.
For example, instant and complete proof and verification of shuffling prevent
Attack 1, Attack 4 and Attack 5. In another example if the encrypted inputs
to a mix network are committed in an additional round of communication and
then opened in the submission session as the inputs, Attack 2 and Attack 6
can be prevented. It is mentioned in [100, 8, 7] that double encryption with
different keys can prevent Attack 3. However, these existing special counter-
measures only handle some special relation attacks in certain mix networks
and cannot provide a general solution. Moreover, they are usually inefficient
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in either computation or communication. For example, although more efficient
proof and verification techniques [41, 90] have been proposed to instantly ver-
ify validity of shuffling, mix networks with instant and complete proof and
verification of shuffling are still inefficient in comparison with mix networks
with partial verification of shuffling like [48] or mix networks with only a final
verification of shuffling like [84]. In the second example, one more round of
communication and additional commitments reduces efficiency of communi-
cation. Although double encryption with different keys is not so inefficient, it
is so special that it can only prevent Attack 3.

There is a semi-general countermeasure in [96], which can prevent any re-
lation attack in an e-voting application employing any mix network. Although
it can only work in e-voting applications and cannot work in general-purpose
mix networks, it is more general than the special countermeasures. In [96]
a counting center selects different ciphertexts standing for the same possible
choices in the election for different voters, shuffles them into a random order
and proves their validity using ZK proof primitives. Then the mixers form
a reverse-direction mix network, through which the ciphertexts are shuffled
and sent to the voters. At the same time, the counting center and the mixers
send their permutations on the ciphertexts for each voter to the corresponding
voter through an “untapped secure channel”. Finally, the voters submit the
ciphertexts standing for their choices to the mixers, who then shuffle them as
in a normal mix-based e-voting scheme. An obvious drawback of [96] is very
low efficiency. Before n votes are mixed, kn ciphertexts must be mixed in a
reverse mix network where k is the number of possible choices in the election,
not to mention transmission of n(m + 1) k-dimension permutations through
the additional “untapped secure channel” between the counter center, mixers
and the voters must be specified with costly cryptographic operations where
m is the number of mixers. Even if the simplest election rule is used and k = 2
as in the example in [96], efficiency is very low. When a more general election
is involved and k is larger, the cost of this countermeasure is intolerable.

In summary, except for a special countermeasure handling only a single
special attack all the existing countermeasures to relation attacks are ineffi-
cient. In addition, it is difficult to design a general countermeasure to protect
various mix networks from any relation attack. In general there is no efficient
solution to relation attacks in mix networks.

3.3.2 Main Idea of the New Countermeasure

An idea of Sako and Kilian [96] is inspiring: although it is difficult to design a
general countermeasure against relation attacks in general-purpose mix net-
works, it may be easier to design a general countermeasure against relation
attacks in e-voting-oriented mix networks as the vote space in e-voting ap-
plications is usually small. Of course the extremely inefficient solution in [96]
is not inherited. Instead we employ a very efficient approach. We specially
design a new encryption algorithm in an e-voting-oriented mix network such
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that any ciphertext is decrypted into a small vote space, each element in which
stands for a legal choice in the election. More precisely,

• If a legal choice is encrypted into a ciphertext and shuffled in the mix
network after being shuffled it will be recovered correctly.

• If a ciphertext encrypting an illegal choice is shuffled in the mix network,
whether it is generated by a malicious voter or inserted into the mix
network by a malicious mixer, it will either be detected before being
decrypted or be recovered as a legal choice by a deterministic function.

No matter how the input ciphertexts are generated, modified or how special
they are, only legal votes are decrypted and published in the end, while the
legal votes are in a small set in normal e-voting applications. Therefore, al-
though a very large number (e.g., larger than 21024) of possible inputs may be
submitted or inserted into the mix network and various relations may exist
among them, most relations will vanish after they are processed in the mix
network. An adversary in a relation attack can only base his attack on rela-
tions able to survive the mix network: relation between legal votes. As usually
many voters have the same choice in an election, many votes satisfy those
surviving relations and the attacked vote and the vote related to it cannot be
distinguished from other votes equal to them. As a result, the relation attacks
in e-voting applications are prevented.

As the new countermeasure employs an efficient encryption algorithm and
needs no costly operation, it is highly efficient. Especially, it does not assume
existence of any costly additional operation, which may cause hiding cost.
Moreover, it is a general solution. It can be applied to any mix network on
the condition that it only handles messages in small sets like e-voting appli-
cations. No matter whether re-encryption or decryption or both are employed
in the shuffling, whether single encryption or double encryption is employed,
whether verifiability is achieved to guarantee correctness or not, how verifia-
bility is achieved and correctness is guaranteed, the new countermeasure can
work. Although different mix networks may have different levels of robustness
and some may be vulnerable to various other attacks, once our new coun-
termeasure is applied, all of them will be invulnerable to relation attacks in
e-voting applications. Moreover, the new countermeasure is consistent with
other countermeasures against other attacks in mix networks.

A new security model defining robustness against relation attacks in
shuffling-based e-voting is proposed in Definition 4 and Definition 5. The first
condition, Definition 2, guarantees that in any relation attack any ciphertext
is not helpful and the only information to exploit is the decrypted votes. The
second condition guarantees that each decryption output a legal vote and the
illegal state cannot be exploited in any relation attack. The third condition
further specifies the second one and guarantees that the decrypted votes only
reveal the voters’ election choices, so that no other information can be used
by any relation attack. The fourth condition guarantees that with a very large
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probability there are multiple instances of each election choice in the recov-
ered votes, such that the votes involved in a relation attack are untraceable.
Theorem 11 illustrates that the four conditions are sufficient to prevent rela-
tion attack and they guarantee that the probability that a vote is traceable is
vanishingly small.

Definition 4 A vote is traceable if a link between its content and its origin
can be found. Suppose a vote appears as an encryption or commitment η1
when it is cast and its content is published as η2 in the tallying phase. The
vote is traceable if η2 can be linked to η1 and thus linked to the corresponding
voter.

Definition 5 A mix network-based e-voting scheme is robust against relation
attacks if the following four conditions are satisfied.

• The encryption algorithm employed to encrypt the votes is semantically
secure.

• An encrypted vote is decrypted only if it contains a legal election choice.

• No other information than the submitted election choices is extracted
from the votes. More formally and precisely, the following two vote tran-
scripts are indistinguishable. The first vote transcript contains the de-
cryption results of an instance of the optimised e-voting scheme, where
every participant is honest and strictly follows the e-voting protocol and
no relation attack is launched. The second vote transcript contains the
decryption results of an instance of the optimised e-voting scheme, where
the participants are dishonest and may launch any relation attack.

• The vote space is much smaller than the number of voters such that
many voters have the same vote.

Theorem 11 Satisfaction of the the four conditions in Definition 5 is suffi-
cient to prevent any relation attack.

Before Theorem 11 is proved, a lemma is proved first.

Lemma 11 The probability that a vote is traceable is negligible when the num-
ber of voters n is much larger than ρ, the number of valid voting choices.

Proof: A vote can be traced only if no other vote contains the same voting
choice with it. We assume that every vote is chosen randomly with some fixed
positive probability. So a vote can be traced with a probability

(1 − υ)n−1

where υ is the probability that the choice in the vote is chosen by a common
voter. When n is large and much larger than ρ, it is a very small probability.
For example, if υ = 1/ρ, the probability is

(1− 1/ρ)n−1 = ((1− 1/ρ)ρ)n−1/ρ
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As (1− 1/ρ)ρ is a small value asymptotically approaching 1/e and n is much
larger than ρ, (1− 1/ρ)n−1 is overwhelmingly small in terms of n/ρ and neg-
ligible. ✷

Even if the choice in the vote is unpopular and υ is much smaller than
1/ρ (e.g., υ = 0.01 in a five-candidate election), in a large scale election (e.g.,
millions of voters) the probability is still small and negligible. In practice, only
one different vote with the same choice may not be enough to satisfactorily
hide an attacked vote and thus a vote is regarded as untraceable if and only
if there are other votes containing the same choice. Suppose γ is a security
parameter and it is required that at least γ other votes contain the same
choice. Usually, γ only needs to be large enough to hide the attacked vote
among γ + 1 votes with the same choice, so γ can be much smaller than n.
The probability that there are less than γ other votes containing the same
voting choice is

((ρ− 1)n−1 +
(

n−1
1

)

(ρ− 1)n−2 +
(

n−1
2

)

(ρ− 1)n−3 + . . .

+
(

n−1
γ−1

)

(ρ− 1)n−γ)/ρn−1

where
(

a
b

)

denotes the number of possible choices of b elements from a candi-
date elements.

As ρn−1 = (ρ− 1+1)n−1 =
∑n−1

i=0

(

n−1
i

)

(ρ− 1)n−1−i and n is much larger
than ρ and γ, the probability that there are less than γ other votes containing
the same voting choice is negligible.
Proof of Theorem 11: As the first condition is satisfied, any ciphertext pub-
lished in the e-voting scheme is not helpful in any relation attack against it
as it reveals no information and is indistinguishable from a random cipher-
text. Any relation attack can only exploit the published plaintexts, namely
the finally published votes in the e-voting scheme. Satisfaction of Condition
2 and Condition 3 guarantees that all the published votes are legal election
choices and their distribution has no difference from that of the votes in an
unattacked e-voting scheme. Any relation attack can only exploit the relations
between legal and normal votes. Lemma 11 illustrates that satisfaction of the
fourth condition guarantees that the relations between legal and normal votes
cannot identify any vote as it is indistinguishable from the other votes with
the same election choice. ✷

3.3.3 A Prototype and Its Drawbacks

In this section, an example is given to specify the new idea in a prototype.
This prototype is not secure enough and used only to demonstrate the new
idea. In the prototype, the modified El Gamal encryption in [67] is employed.
However, there is a drawback to overcome in the modified El Gamal encryp-
tion: its decryption is inefficient as a costly search for discrete logarithm is
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employed in its decryption function. The modified El Gamal encryption in
[67] is further modified in our design such that efficient decryption and lim-
ited output space of decryption function are achieved simultaneously. The new
modified El Gamal encryption is as follows.

• p is a large prime. q is a small prime divisor of p − 1 such that q ≥ 2ξ
where ξ is the number of choices in the election. g is a generator of the
cyclic subgroup with order (p−1)/q and g′ is the generator of the cyclic
subgroup with order q.

• The private key is an integer x and the public key is y where y = gx mod
p. The private key is generated in a distributed manner [36, 85, 43] such
that it is shared among some decryption authorities: A1, A2, . . . without
being revealed to any one.

• Encryption: a message m in Zq is encrypted into c = (a, b) = (gr mod
p, g′

m
yr mod p) where r is randomly chosen from Zp−1.

• Decryption of a ciphertext c = (a, b) is denoted as D(c).

Note that order of g′ is a small integer q. So the decryption function in this new
modified El Gamal encryption is much more efficient than in [67]. Moreover,
the message space is limited in Zq and any ciphertext is decrypted into Zq.

Any mix-based e-voting scheme employing El Gamal encryption can be
optimised by employing the modified El Gamal encryption above and mod-
ifying vote format as follows to prevent relation attacks exploiting relations
between the decrypted votes.

1. Suppose there are ξ possible choices in the election application. The
integers in Zq are evenly divided into ξ subsets, each standing for an
election choice. When Zq is divided, both odd integers and even integers
in it are respectively divided into the ξ subsets as evenly as possible. To
elect a choice, a voter randomly chooses an integer from the subset
corresponding to his choice and seals it in his vote using the modified
El Gamal encryption algorithm presented in this section.

2. Any mix network supporting El Gamal encryption (e.g., [52, 93, 90, 42,
41, 102]) can be employed to shuffle the encrypted votes.

3. The mixed votes are decrypted and recovered.

4. Among the decrypted results, the legal votes are counted, while the
illegal results recovered from illegal encrypted votes are ignored.

In the modified e-voting scheme,

• If a vote is generated as described in the voting protocol, it will be
recovered without any change.
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• If a vote is invalid (e.g., submitted by a voter or inserted by a malicious
mixer launching a relation attack), it will be recovered as illegal.

Although the prototype prevents all the other relation attacks in Table 3.2,
it is vulnerable to Attack 7 when instant verification of validity of shuffling is
not employed in the mix network. If the employed mix network is instantly
verified, any illegal result must be from a dishonest or careless voter and
cannot be the result of a relation attack by a dishonest mixer. The voter
only invalidates his own vote and cannot launch a harmful relation attack.
However, if the employed mix network is not instantly verified, Attack 7 can be
successfully carried out by the first mixer. Moreover, besides relation attack,
there is another attack to extract the votes in the prototype as follows where
it is supposed that p− 1 = qµ and there is an encrypted vote c in the form of
(a, b).

1. An adversary calculates a′ = aµ mod p.

2. The adversary searches for discrete logarithm r′ = logg′ a′, which is
feasible for a polynomial adversary as q is small.

3. The adversary calculates b′ = bµ/yµr
′

mod p.

4. The adversary searches for discrete logarithm m = logg′µ b′, which is the
vote encrypted in c. As q is small, the search is feasible for a polynomial
adversary.

3.3.4 Optimization and Security Analysis

The prototype is optimised such that the drawbacks in it can be overcome.
Firstly, a novel encryption algorithm is designed as follows.

• Parameter setting
N is a large public composite with unknown factorization and the largest
cyclic group in Z∗

N has an order 2qαβ where q is not a divisor of N . α
and β are secret large primes with similar size. q is a public prime no
smaller than ρ where ρ is the number of possible choices in the election.
Note that such parameter setting is easy and practical as

– In most practical e-voting applications, ρ is not large and q can be
much smaller than α and β

– Generation of N is straightforward by satisfying that N = PQ,
2qα divides P − 1 and 2β divides Q − 1.

g is a generator of G1, the cyclic subgroup with order qα. h is a gen-
erator of G2, the cyclic subgroup with order α. g′ = gα and thus g′ is
a generator of G, the cyclic subgroup with order q. The three integers,
g, h, g′, are publicly known.
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• Setting of keys
The private key is α and the public key is g′.

• Key sharing
The verifiable t-out-of-m secret sharing function [85] is employed to
share α among the talliers A1, A2, . . . , Am where αj is the share held by
Aj . θj = gαj for j = 1, 2, . . . ,m are published.

• Encryption: a message m in Zq is encrypted into c = E(m) = gmhr mod
N where r is a random integer in Zl and l is a large security parameter.

• Re-encryption: a ciphertext c in Zq is re-encrypted into c′ = chr′ mod N
where r′ is a random integer in Zl.

• Decryption function

1. The talliers receive a ciphertext c and cooperate to calculate
d =

∏

j∈S c
wj

j mod N where Aj publishes cj = cαj mod N , wj =
∏

k∈S,k 6=j
k

k−j and set S contains the indices of t + 1 cooperating
talliers. Each Aj proves correctness of his partial decryption by
proving logc cj = logg θj using zero knowledge proof of equality of
logarithms.

2. Search for logg′ d in Zq. If logg′ d is found in Zq, it is output as
the decryption result. If logg′ d does not exist, c is declared as an
illegal ciphertext and an illegal result is output. When c is declared
illegal, anyone can test whether dq 6= 1 mod N to verify.

This new encryption algorithm has similarity with [16] in the main idea,
but has its own special design and a certain advantage in preventing relation
attacks. Its security is specified in Definition 6 and Definition 7 and proved
in Theorem 13. Note that for convenience of formal analysis the definition of
semantic security slightly differs from the universally accepted definition of
semantic security recalled in Definition 8. However, all the definitions are the
same in essence as illustrated in Theorem 12 although they differ in presen-
tation.

Definition 6 (New definition of semantic security) A challenger chooses a
message m and a ciphertext c in any way he likes and asks a polynomial
party to tell whether E(m) = c where E() is an encryption algorithm. Sup-
pose the message encrypted in c is m′ and c is uniformly distributed in
{C | D(C) = m′} and the probability that the polynomial party correctly an-
swers that question is ω. The encryption algorithm is semantically secure if
ω− 0.5 is negligible no matter how m is chosen in the message space and c is
chosen in the ciphertext space.

Definition 7 Hardness of decision subgroup problem: given N , g, g′, h and
an integer in G1, it is hard to tell whether it is in G2.
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Definition 8 (Universally accepted definition of semantic security) A party
chooses two messages m1 and m2 in any way he likes in the message space and
sends them to an encryption oracle. The encryption oracle randomly chooses
i from {1, 2} and returns c = E(mi) to the party where the probabilistic op-
eration in the encryption is randomly performed. Suppose the probability that
the party finds out i in polynomial time is ω. The encryption algorithm is
semantically secure if ω − 0.5 is negligible.

Theorem 12 The definition of semantic security in Definition 6 is the same
in essence as the universally accepted definition in Definition 8.

Proof: Suppose semantic security in Definition 6 is broken by a polynomial
algorithm B. Then a polynomial algorithm can be designed as follows to break
semantic security in the universally accepted definition by querying B.

1. With two messages m1 and m2 chosen by itself and a ciphertext c =
E(mi), a polynomial party is asked to find i.

2. The polynomial party sends query (m1, c) to B.

3. The polynomial party return 1 if B returns YES. Otherwise he returns
2.

Suppose semantic security in the universally accepted definition is broken
by a polynomial algorithm A. Then a polynomial algorithm can be designed
as follows to break semantic security in Definition 6 by querying A.

1. Given a message m and a ciphertext c, a polynomial party is asked to
tell whether E(m) = c.

2. The polynomial party randomly chooses another message m′ and sends
query (m1,m2, c) to A where m1 = m and m2 = m′.

3. The polynomial party answers YES if A returns 1. Otherwise (no matter
A returns 2 or “Invalid Input”) he answers NO.

Semantic security satisfied in either definition deduces semantic security
satisfied in the other definition. Therefore, the two definitions are the same in
essence. ✷

Theorem 13 The new encryption algorithm is semantically secure as defined
in Definition 6 if the decision subgroup problem in Definition 7 is hard.

Proof: If the new encryption algorithm is not semantically secure, there must
exist a polynomial algorithm A and a message m′ such that A can correctly
tell whether m′ is encrypted in a given ciphertext with a probability non-
negligibly larger than a random guess can do. A can be employed in the
following algorithm to break the decision subgroup problem.
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1. Given an integer z in G1, a polynomial party wants to tell whether it is
in G2 or not.

2. It inputs message m′ and ciphertext c′ = gm
′

z to A.

3. If A concludes that E(m′) = c′, the party concludes that z is in G2; if
A concludes that E(m′) 6= c′, the party concludes that z is not in G2.

Note that gm
′

z is independent of m′ when z is not in G2. As E(m′) = c′ if
and only if z is in G2, the probability that the party correctly tells whether
z is in G2 equals the probability that A correctly tells whether E(m′) = c′.
The probability that the party’s guess correctly tells whether z is in G2 is
non-negligibly larger than a random guess can indicate. Therefore, the de-
cision subgroup problem is broken. This contradiction implies that the new
encryption algorithm is semantically secure. ✷

Decision subgroup problems are generalizations of a widely accepted hard
quadratic residuosity problem. In a quadratic residuosity problem, it is re-
quired to decide whether an integer is a quadratic residue. It is widely recog-
nised and accepted that when the factorization of the multiplicative modu-
lus is secret, a quadratic residuosity problem is hard. Many cryptographic
techniques (e.g., Goldwasser-Micali encryption [46]) depend on hardness of
quadratic residuosity problems. Decision subgroup problems in this section
are actually q-ic residuosity problems as an integer is in G2 if and only if it
is a q-ic residue. When q = 2, a decision subgroup problem actually becomes
a quadratic residuosity problem. Note that the hardness of decision subgroup
problem is widely recognised [76, 105].

This new encryption algorithm is semantically secure as illustrated in The-
orem 13. Note that in the new encryption algorithm the final search for discrete
logarithm is in a small set Zq and thus is quite efficient. The new encryption
algorithm is homomorphic and thus suitable for nearly all the existing mix net-
works, most of which require that the employed encryption algorithm must be
either additive homomorphic or multiplicative homomorphic. More precisely,

• With encryption algorithm c = gmhr and the corresponding decryption
function D() to recover m from c, the new encryption algorithm is ad-
ditive homomorphic as D(c1c2) = D(c1) +D(c2) for any ciphertexts c1
and c2.

• If gm is regarded as the message and D′() stands for the decryption
function to recover it from c, the new encryption algorithm is multi-
plicative homomorphic as D′(c1c2) = D′(c1)D

′(c2) for any ciphertexts
c1 and c2.

Moreover, the new encryption algorithm is simpler and more efficient than the
existing encryption algorithms used in mix networks like Paillier encryption
[83] and El Gamal encryption. The optimised e-voting scheme employs the new
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encryption algorithm and is as follows where batch verification is employed to
verify validity of the votes before they are decrypted.

1. The new encryption described above is set up with encryption function
E(). The private key is shared by the talliers.

2. The election rule is declared and Zq is the vote space, which is evenly
divided6 by the talliers into ρ sets S1, S2, . . . , Sρ, each representing a
choice in the election.

3. For i = 1, 2, . . . , n each voter Vi randomly chooses an integer vi from
the set representing his choice and submits ci = E(vi) to the talliers.

4. A mix network is employed to shuffle the encrypted votes into
c′1, c

′
2, . . . , c

′
n by re-encrypting and re-ordering them, while the talliers

can act as the mixers.

5. The mixed encrypted votes c′1, c
′
2, . . . , c

′
n are sent to the talliers for the

final decryption. The talliers cooperate to decrypt them and publicly
prove validity of the decryption. Before any decryption is performed the
talliers must cooperate to verify that none of the output ciphertexts
from the mix network is illegal by checking

∏n
i=1 c

′ti
i is decrypted into

a legal message in Zq (3.15)

where integers t1, t2, . . . , tn are L-bit random integers (e.g., generated by
a pseudorandom hash function) and 2L is no larger than β. Soundness of
the verification is guaranteed by Theorem 14. The output ciphertexts are
decrypted and published as the recovered votes only if the two conditions
are satisfied. Note the following two explanations.

• Although β is secret, L is easy to choose. β must be large enough
such that that factorization of 2qαβ is hard. So we only need to
set L as an integer smaller than the lower bound of β.

• Although when either of the two conditions is not satisfied rewind-
ing is necessary, probability of this incident can be minimized.
When this incident happens each participant is required to prove
validity of his operation. Any participant whose validation fails will
be removed from the voting scheme which will have to be rerun.

6. The decrypted votes are counted.

Analysis of resistance against relation attacks in the optimised e-voting
scheme is based on the formal standard in Definition 5. The first condition

6Zq is divided into the ρ sets such that the number of elements in each set is equal or
at least as equal as possible.



✐

✐

“K13841” — 2014/3/4 — 15:45
✐

✐

✐

✐

✐

✐

98 Anonymous Communication Networks: Protecting Privacy on the Web

has been demonstrated to be satisfied in Theorem 13. The second condition is
satisfied as illustrated in Theorem 14. The third condition is demonstrated to
be satisfied in Theorem 15. The fourth condition is satisfied in most e-voting
applications. The first condition guarantees that no information about any
vote is revealed from any ciphertext to any polynomial party. On one hand, it
guarantees that the vote privacy is protected before the tallying phase. On the
other hand, it implies that any polynomial adversary can only base his relation
attack on the decrypted votes while the encrypted votes are useless to him.
The second condition guarantees that the illegal state cannot be exploited in
any relation attack. The third condition and the fourth condition guarantee
that when the encrypted and shuffled votes are decrypted the decryption
result reveals no information but the submitted election choices, which are in
a small set and thus useless in relation attacks. Therefore, satisfaction of the
four conditions simultaneously prevents any relation attack.

Theorem 14 If decryption of
∏n

i=1 c
′ti
i mod N is in Zq with a probability

larger than 2−L, then any c′i is in G1 for i = 1, 2, . . . , n.

Proof: Suppose f is a generator of the largest cyclic group. c′i can be denoted
as fdi mod N for i = 1, 2, . . . , n where di is an even integer. As decryption of
∏n

i=1 c
′ti
i mod N is in Zq with a probability larger than 2−L and

n
∏

i=1

c′
ti
i = f

∑n
i=1 diti mod p

α
∑n

i=1 diti is a multiple of 2αβ with a probability larger than 2−L.
Namely,

∑n
i=1 diti is a multiple of 2β with a probability larger than 2−L.

So for any integer k in {1, 2, . . . , n} there must exist a combination of
t1, t2, . . . , tk−1, tk+1, . . . , tn such that there are two choices for tk in Z2L , tk,1
and tk,2, to satisfy that

∑n
i=1 diti is a multiple of 2β. More precisely, there

must exist t1, t2, . . . , tk−1, tk+1, . . . , tn, tk,1 and tk,2, each in Z2L to satisfy the
following two statements.

∑k−1
i=1 diti + dktk,1 +

∑n
i=k+1 diti

is a multiple of 2β (3.16)
∑k−1

i=1 diti + dktk,2 +
∑n

i=k+1 diti

is a multiple of 2β (3.17)

Otherwise, for any combination of t1, t2, . . . , tk−1, tk+1, . . . , tn, there is at
most one choice for tk in Z2L to satisfy that

∑n
i=1 diti is a multiple of 2β,

which leads to a contradiction: the probability that
∑n

i=1 diti is a multiple of
2β is no more than 2−L. (3.16) and (3.17) imply that

dk(tk,1 − tk,2) is a multiple of 2β
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As tk,1 < 2L, tk,2 < 2L, 2L ≤ β and β is prime, dk is a multiple of β. There-
fore, as dk is even, c′k is in G1. As k can be any integer in {1, 2, . . . , n}, c′i is
in G1 for i = 1, 2, . . . , n. ✷

Theorem 15 The two vote transcripts defined in the third condition in Def-
inition 5 are indistinguishable.

Proof: The first vote transcript defined in the third condition in Definition 5
is in the form (a1, b1, a2, b2, . . . , an, bn) where ai stands for a recovered elec-
tion choice and is uniformly distributed in Zq and bi = g′ai mod N for
i = 1, 2, . . . , n. Theorem 14 guarantees that only legal votes are decrypted.
So although dishonest voters and mixers can submit or insert special votes
into the e-voting system, the final decryption result only contains legal votes.
In the second vote transcript defined in the third condition in Definition 5,
each decryption in the tallying phase reveals (a, b) in its two-step procedure
where a is uniformly distributed in Zq and b = g′

a
mod N . The second vote

transcripts are in the form (a1, b1, a2, b2, . . . , an, bn) where ai stands for a re-
covered election choice and is uniformly distributed in Zq and bi = g′ai mod N
for i = 1, 2, . . . , n. As the two vote transcripts have the same distribution, they
are indistinguishable. ✷

The optimised e-voting scheme not only prevents relation attacks but also
achieves high efficiency. Theorem 14 illustrates that ti is not necessary to be a
full length (e.g., 1024 bits long) integer in practical applications. For example,
when L = 30, 2−L is smaller than one out of one billion and thus the prob-
ability that any c′ is an invalid ciphertext can be ignored even in e-voting
applications with very high security requirements. Test of (3.15) is much
more efficient than the existing countermeasures against relation attacks. As
the new encryption algorithm does not compromise efficiency, the optimised
e-voting scheme is more efficient than the existing countermeasures against
relation attacks. Its advantages over the existing countermeasures against re-
lation attacks is demonstrated in Table 3.3, which summarizes the analysis in
Section 3.3.1 and this section.

3.4 Off-Line Pre-Computation
in Mix Networks

There are two costly operations in a shuffle: re-encryption of the n cipher-
texts and public proof and verification of validity of shuffle. The existing
shuffling schemes (including [5, 6, 74, 42, 52, 93, 77, 78, 90, 102, 51, 50, 89]
and some other less famous schemes where the scheme in [41] is an extended
journal version of [42] and the scheme in [75] is a formal publication of
[74]) usually try their best to make the public proof and verification as ef-
ficient as possible. An important method used by the recent shuffling schemes
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[93, 90, 102, 77, 78, 51, 89] to improve computational efficiency is employ-
ment of small exponents. They notice that the exponentiation computations
in cryptographic operations usually employ very large exponents (hundreds of
bits long) and sometimes the exponents are not necessary to be so large. Ac-
tually in many practical applications the exponents can be much smaller (e.g.,
scores of bits long) but still large enough to guarantee very strong security
(e.g., to control the probability of failure under one out of billions). The recent
shuffling schemes employ many small exponents in proof and verification of
validity of shuffle and estimate their computational cost in the proof and ver-
ification in terms of the number of separate exponentiations with full-length
exponents. More precisely, they set the computational cost of an exponenti-
ation with a full-length exponent as the basic unit in efficiency analysis and
estimate how many basic units cost the same as their operations.7 In this way,
their efficiency advantage over the previous shuffling schemes is obviously and
vividly demonstrated.

The existing shuffling schemes do not worry for the cost of re-encryption
as most of the computations in the n instances of re-encryption can be carried
out offline in advance (as demonstrated in Section 3.4.3 and Section 3.4.4) and
so will not affect real-time efficiency. For example, in recent shuffles like [51],
the cost of proof and verification of validity of shuffle has been reduced to a
quite low level while no attempt is made to reduce the cost of re-encryption.
Although the existing shuffling schemes give different priorities to inevitable
online operations and operations possible to be carried out offline in advance
and only pursue high efficiency in the online operations, they ignore two more
subtle strategies. Firstly, they do not consider a better trade-off between online
cost and offline cost by reducing the former and increasing the latter. Secondly,
they do not give difference priorities to the cost for a prover (shuffling node)
and the cost of a verifier. Note that the shuffling nodes in an anonymous com-
munication network usually have much more powerful computation capability
than the verifiers. For example, in the most important application of shuffles,
e-voting, the talliers (who shuffle the encrypted votes) are professional elec-
tion officials and have powerful computational capability. In comparison, the
verifiers (voters and observers) include many common citizens and many of
them may have limited computational capability. Moreover, in applications
like e-voting, many verifiers are expected to take part to guarantee credibility.
Efficiency of verifiers should have a higher priority in shuffles.

A new shuffling protocol is designed in this section. On one hand, it inher-
its the two useful strategies in the existing shuffling schemes: higher priority in
efficiency improvement for online operations and employment of small expo-
nents to improve efficiency. On the other hand, the two more subtle strategies
ignored in the existing shuffling schemes are adopted as well. In our new shuf-
fling protocol, all the costly operations of the shuffling node are carried out

7Namely, multiple exponentiations with small exponents are counted as one exponenti-
ation with a full-length exponent that has the same cost.
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offline in advance, while a verifier’s computation can be batched and is very
efficient when small exponents are employed. Its online computational cost
is much lower than those of the existing shuffling schemes and so it has an
advantage in practical efficiency. As the proof and verification techniques in
the new shuffling scheme are very simple, its formal security can be illustrated
in a simple way without any other computational assumption than the basic
assumption, which is inevitable in any shuffle.

3.4.1 Security Model of Shuffles

The proof of validity of a shuffle is modeled as a ZK proof in [50] as follows.
A proof protocol like a proof of validity of a shuffle is denoted in the form of
a triple (K,P, V ) where the following parameters are used.

• G is a set-up algorithm and gk is the set-up information it generates.

• (P, V ) are a pair of probabilistic polynomial time interactive algorithms
presenting the prover and the verifier, while they may have access to a
common random string σ generated by a probabilistic polynomial time
key generation algorithm K.

• R is a polynomial time decidable ternary relation and for an element x
we call w a witness if (gk, x, w) ∈ R.

• Lgk is the language consisting of elements x that have a witness w such
that (gk, x, w) ∈ R.

• tr ← 〈P (x), V (y)〉 stands for the public transcript produced by P and
V when interacting on inputs x and y together with the randomness
used by V .

• Ptr ← 〈P (x)〉 stands for the public transcript produced by P in the
proof.

• V tr ← 〈V (y)〉 stands for the public transcript produced by V in the
proof.

• Pr[E] stands for the probability that an event E happens.

(K,P, V ) is called a proof for relation R with setup G if for all non-
uniform polynomial time interactive adversaries A it is complete and sound
as defined in Definition 9 and Definition 10. Its ZK is defined in Definition 11
and Definition 12.

Definition 9 (Completeness) (K,P, V ) is complete regarding A if

Pr[gk ← G(1k);σ ← K(gk); (x,w)← A(gk, σ) :

(gk, s, w) /∈ R or 〈P (gk, σ, x, w), V (gk, σ, x)〉 = 1] ≈ 1
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Definition 10 (Soundness) (K,P, V ) is sound regarding A if

Pr[gk ← G(1k);σ ← K(gk);x← A(gk, σ) : x /∈ Lgk and

〈A, V (gk, σ, x)〉 = 1] ≈ 0

Definition 11 (Public coin) A proof is public coin if the verifier’s messages
are chosen uniformly at random independently of the messages sent by the
prover and the setup parameters.

Definition 12 (HVZK) The public coin proof (K,P, V ) is called a special
honest verifier zero-knowledge proof for R with setup G if there exists a prob-
abilistic polynomial time simulator S such that for all non-uniform polynomial
time adversaries A we have

Pr[gk ← G(1k);σ ← K(gk); (x,w, ρ)← A(gk, σ);

tr ←< P (gk, σ, x, w), V (gk, σ, x, ρ) >: (gk, x, w) ∈ R and A(tr) = 1]

= Pr[gk ← G(1k);σ ← K(gk); (x,w, ρ)← A(gk, σ);

tr ← S(gk, σ, x, w) : (gk, x, w) ∈ R and A(tr) = 1]. (3.18)

In proof of validity of a shuffle, the relation R is actually c′i = RE(cπ(i))
for i = 1, 2, . . . , n and the secret witnesses of this relation include π() and the
secret random integers used in the n instances of re-encryption .

3.4.2 The Basic Design

In our new shuffling protocol, the shuffled messages are encrypted with Pail-
lier encryption where the private key is shared among decryption authorities
(e.g., all the shuffling nodes) in an anonymous communication network. Usu-
ally a threshold secret sharing mechanism is employed to share the private
key (see [37] for more details) such that decryption is feasible if and only if
the number of cooperating decryption authorities is over the threshold. The
message space of Paillier encryption is ZN where N is a composite with two
large secret factors p′ and q′. The multiplicative modulus is N2 and the pub-
lic key is g, a large number with secret order modulo N2. Encryption of a
message m is gmrN mod N2 where r is randomly chosen from Z∗

N . More de-
tails about the parameter setting can be found in [37]. The basic idea in the
new shuffling protocol is cut-and-choose. Some more instances of re-ordered
re-encryptions of c1, c2, . . . , cn are published by the shuffling node that must
show that a randomly chosen subset of them are shuffles of c1, c2, . . . , cn and
the remaining subset of them are shuffles of c′1, c

′
2, . . . , c

′
n. The new shuffling

protocol is described as follows.

1. Receiving Paillier ciphertexts c1, c2, . . . , cn, the shuffling node calculates
and publishes c′i = cπ(i)r

N
i mod N2 for i = 1, 2, . . . , n where π() is a

random permutation of {1, 2, . . . , n} and every ri is randomly chosen
from Z∗

N .
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2. To prove validity of c′1, c
′
2, . . . , c

′
n, the shuffling node publishes another

T instances of re-ordered re-encryption of c1, c2, . . . , cn:

Cj,i = cπj(i)r
N
j,i mod N2 for j = 1, 2, . . . , T and i = 1, 2, . . . , n

where T is a security parameter to guarantee that 1/2T is a neg-
ligible probability, πj() is a random permutation of {1, 2, . . . , n} for
j = 1, 2, . . . , T and every rj,i is randomly chosen from Z∗

N .

3. A random subset P1 is chosen from {1, 2, . . . , T } by some ver-
ifier(s) or as a (pseudo)random function (e.g., hash function of
c1, c2, . . . , cn, c

′
1, c

′
2, . . . , c

′
n, C1,1, C1,2, . . . , CT,n). The left integers in

{1, 2, . . . , T } are included a set P2 = {1, 2, . . . , T } − P1.

4. For j ∈ P1, the shuffling node publishes πj() and rj,1, rj,2, . . . , rj,n and
anyone can publicly verify

Cj,i = cπj(i)r
N
j,i mod N2 for j ∈ P1 and i = 1, 2, . . . , n. (3.19)

5. For j ∈ P2, the shuffling node publishes π′
j() = ππ−1

j () and r′j,i =

ri/rj,π′
j(i)

mod N for i = 1, 2, . . . , n where ππ−1
j (k) = π(π−1

j (k)) for any

k in {1, 2, . . . , n}. Anyone can publicly verify

c′i = Cj,π′
j(i)

r′
N
j,i mod N2 for j ∈ P2 and i = 1, 2, . . . , n. (3.20)

Completeness of the new shuffling protocol is straightforward and any
interested reader can follow it step by step to verify that it ends successfully
when the shuffling node is honest and strictly follows it. Its soundness and
privacy are formally guaranteed by Theorem 16 and Theorem 17 respectively.

Theorem 16 The new shuffling protocol achieves soundness. More precisely,
if it satisfies Equations (3.19) and (3.20) with a probability larger than 2−T ,
then D(c′1), D(c′2), . . . , D(c′n) is a permutation of D(c1), D(c2), . . . , D(cn).

Proof: Since Equations (3.19) and (3.20) are satisfied with a probability larger
than 2−T , there must exist integer J in {1, 2, . . . , T }, such that

CJ,i = cπJ (i)r
N
J,i mod N2 for i = 1, 2, . . . , n (3.21)

c′i = CJ,π′
J (i)

r′
N
J,i mod N2 for i = 1, 2, . . . , n (3.22)

Otherwise, for any integer J in {1, 2, . . . , T } at most one of the two equa-
tions (3.21) and (3.22) is satisfied and thus Equations (3.19) and (3.20) are
satisfied only when every j in P1 happens to be a J satisfying (3.21) and every
j in P2 happens to be a J satisfying (3.22), which leads to a contradiction by
implying that the probability that Equations (3.19) and (3.20) are satisfied is
no larger than 2−T as P1 is a random subset of {1, 2, . . . , T }.
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Equations (3.21) and (3.22) imply

c′i = cπJπ′
J (i)

(rJ,π′
J (i)

r′J,i)
N mod N2 for i = 1, 2, . . . , n

and thus
D(c′i) = D(cπJπ′

J
(i)) for i = 1, 2, . . . , n

✷

Theorem 17 The new shuffling protocol achieves HVZK.

Proof: The shuffling node’s proof of validity of its shuffle has a proof transcript
Cj,i for j = 1, 2, . . . , T and i = 1, 2, . . . , n; P1; πj(), rj,1, rj,2, . . . , rj,n for
j ∈ P1; π

′
j(), r

′
j,1, r

′
j,2, . . . , r

′
j,n for j ∈ P2. A party without any knowledge of

the shuffling node’s secret can simulate this proof transcript as follows.

1. He randomly chooses P1 as a subset of {1, 2, . . . , T }.

2. He randomly chooses rj,1, rj,2, . . . , rj,n from Z∗
N for j ∈ P1.

3. He randomly chooses r′j,1, r
′
j,2, . . . , r

′
j,n from Z∗

N for j ∈ P2 where P2 =
{1, 2, . . . , T } − P1.

4. He calculates

Cj,i = cπj(i)r
N
j,i mod N2 for j ∈ P1 and i = 1, 2, . . . , n

Cj,π′
j(i)

= c′ir
′−N
j,i mod N2 for j ∈ P2 and i = 1, 2, . . . , n

This simulating transcript has the following distribution.

• P1 is uniformly distributed in all the subsets of {1, 2, . . . , T }.

• rj,1, rj,2, . . . , rj,n is uniformly distributed in Z∗
N for j ∈ P1.

• r′j,1, r
′
j,2, . . . , r

′
j,n is uniformly distributed in Z∗

N for j ∈ P2 where P2 =
{1, 2, . . . , T } − P1.

• Cj,1, Cj,2, . . . , Cj,n is uniformly distributed in {Cj,1, Cj,2, . . . , Cj,n | Cj,i =
cπj(i)r̂

N
j,i mod N2 for i = 1, 2, . . . , n, πj() is uniformly distributed in all

the possible permutations of {1, 2, . . . , n} and r̂j,i is uniformly dis-
tributed in Z∗

N} for j = 1, 2, . . . , T .

• Equations (3.19) and (3.20) are satisfied.

In the shuffling node’s proof of validity of its shuffle, when the public coin
model defined in Definition 11 is employed, the real proof transcript has the
same distribution as the simulating transcript above. As the two transcripts
have just the same distribution, the condition in (3.18) is satisfied and HVZK
is achieved according to Definition 12. ✷
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3.4.3 Off-Line Pre-Computation and Batch Verification

The basic design in Section 3.4.2 is simple and secure, but not efficient. To
improve its efficiency, offline pre-computation can be arranged for the shuf-
fling node and batch verification can be adopted for the verifiers. With these
two efficiency improvement mechanisms, the basic design can be optimised as
follows.

1. Before doing any shuffle, the shuffling node carries out some off-
line pre-computation when free. It chooses random integers R1, R2,
R3, . . . . . . from Z∗

N and calculates A1 = RN
1 mod N2, A2 = RN

2 mod
N2, A3 = RN

3 mod N2, . . . . . . . In this way, it builds up two pre-
encryption databases Φ = {R1, R2, R3 . . . . . . }, S = {A1, A2, A3 . . . . . . }
and an empty database Ψ = {}.

2. Receiving Paillier ciphertexts c1, c2, . . . , cn, the shuffling node calculates
and publishes c′i = cπ(i)bi mod N2 for i = 1, 2, . . . , n where π() is a
random permutation of {1, 2, . . . , n} and every bi is randomly chosen
from S. Every used bi is immediately deleted from S after it is picked

out and new data (b
1/N
i , bi) is then inserted into Ψ where b

1/N
i is taken

as the data in Φ corresponding to bi in A.

3. To prove validity of c′1, c
′
2, . . . , c

′
n, the shuffling node publishes more T

instances of re-ordered re-encryption of c1, c2, . . . , cn:

Cj,i = cπj(i)bj,i mod N2 for j = 1, 2, . . . , T and i = 1, 2, . . . , n

where πj() is a random permutation of {1, 2, . . . , n} for j = 1, 2, . . . , T
and every bj,i is randomly chosen from S. Every used bj,i is immediately
deleted from S after it is picked out and new data (dj,i, bj,i) is then
inserted into Ψ where dj,i is the data in Φ corresponding to bj,i in A

and thus equal to b
1/N
j,i .

4. A random subset P1 is chosen from {1, 2, . . . , T } in the same way as in
the basic design.

5. For j ∈ P1, the shuffling nodes finds (dj,i, bj,i) for i = 1, 2, . . . , n in Ψ
and publishes πj() and rj,i = dj,i for i = 1, 2, . . . , n.

6. For j ∈ P2, the shuffling nodes finds (dj,i, bj,i) for i = 1, 2, . . . , n in
Ψ and then publishes π′

j() = ππ−1
j () and r′j,i = ri/dj,π′

j(i)
mod N for

i = 1, 2, . . . , n where ri = b
1/N
i , which is found in Ψ corresponding to bi.

7. Verification of (3.19) and (3.20) is batched into verification of

∏

j∈P1,1≤i≤n(Cj,i/cπj(i))
tj,i

∏

j∈P2,1≤i≤n(c
′
i/Cj,π′

j(i)
)tj,i

= (
∏

j∈P1,1≤i≤n r
tj,i
j,i

∏

j∈P2,1≤i≤n r
′tj,i
j,i )

N mod N2 (3.23)
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where every tj,i is a random L-bit integer chosen by the verifier or gen-
erated as as a (pseudo)random function and L is a security parameter
smaller than p′ and q′ to be instantiated later.

Completeness of this optimised shuffling protocol is straightforward and
anyone can check it. According to Theorem 18, with an overwhelmingly large
probability, satisfaction of (3.23) guarantees that Cj,i/cπj(i) for j ∈ P1 and

c′i/Cj,π′
j(i)

for j ∈ P2 are N th residues and thus

D(Cj,i) = D(cπj(i)) for j ∈ P1 and i = 1, 2, . . . , n

D(c′i) = D(Cj,π′
j(i)

) for j ∈ P2 and i = 1, 2, . . . , n

Theorem 16 still works after the optimisation and soundness of the opti-
mised shuffling protocol are guaranteed. Pre-computation and batch verifi-
cation do not change the proof transcript, which still consists of Cj,i for
j = 1, 2, . . . , T and i = 1, 2, . . . , n; P1; πj(), rj,1, rj,2, . . . , rj,n for j ∈ P1;
π′
j(), r

′
j,1, r

′
j,2, . . . , r

′
j,n for j ∈ P2. Their distribution is unchanged as well.

Theorem 17 still works after the optimisation and privacy of the optimised
shuffling protocol are guaranteed.

Theorem 18 Suppose y1, y2, . . . , yn are in ZN2 , x1, x2, . . . , xn are in Z∗
N ,

t1, t2, . . . , tn are randomly chosen from {0, 1, . . . , 2L−1} and 2L < min(p′, q′).
If

∏n
i=1 y

ti
i = (

∏n
i=1 x

ti
i )

N mod N2 with a probability larger than 2−L, then
y1, y2, . . . , yn are N th residues.

Proof:
∏n

i=1 y
ti
i = (

∏n
i=1 x

ti
i )

N mod N2 with a probability larger than 2−L

implies that for any given integer v in {1, 2, . . . , n} there must exist integers
t1, t2, . . . , tn ∈ {0, 1, . . . , 2

L − 1} and t′v ∈ {0, 1, . . . , 2
L − 1} such that

∏n
i=1 y

ti
i =

∏n
i=1 x

Nti
i mod N2 (3.24)

(
∏v−1

i=1 ytii )y
t′v
v
∏n

i=v+1 y
ti
i = (

∏v−1
i=1 xNti

i )x
Nt′v
v

∏n
i=v+1 x

Nti
i mod N2 (3.25)

Otherwise, for any (t1, t2, . . . , tv−1, tv+1, . . . , tn) in {0, 1, . . . , 2
L−1}n−1, there

is at most one tv in {0, 1, . . . , 2L−1} to satisfy
∏n

i=1 y
ti
i =

∏n
i=1 x

Nti
i mod N2,

which implies that among the 2nL possible choices for {t1, t2, . . . , tn} there are
at most 2(n−1)L choices to satisfy

∏n
i=1 y

ti
i =

∏n
i=1 x

Nti
i mod N2 and leads to

a contradiction to the assumption that
∏n

i=1 y
ti
i = (

∏n
i=1 x

ti
i )

N mod N2 with
a probability larger than 2−L.

Equations (3.24)/(3.25) yield

y
tv−t′v
v = x

N(tv−t′v)
v mod N2

According to the Euclidean algorithm there exist integers α and β to
satisfy β(tv − t̂v) = αN +GCD(N, tv − t̂v). Note that GCD(N, tv − t̂v) = 1

as tv, t̂v < 2L < min(p′, q′), and so y
β(tv−t̂v)
v = yαNv yv. Thus,

yv = y
β(tv−t̂v)
v /yαNv = (y

(tv−t̂v)
v )β/yαNv

= x
N(tv−t̂v)β
v /(yαv )

N = (x
(tv−t̂v)β
v /yαv )

N mod N2
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So yv is an N th residue. Therefore, y1, y2, . . . , yn are N th residues as v can be
any integer in {1, 2, . . . , n}. ✷

With this optimisation, online efficiency of the shuffling node is greatly
improved. It does not need to compute any exponentiation online. For a ver-
ifier, the total computational cost includes a full-length exponentiation (with
exponent N) and two instances of computation of product of nT exponenti-
ations with L-bit exponents. Note that as in the efficiency analysis in most
existing shuffling schemes, we only count the number of exponentiations in
terms of multiples of n and their remainder modulo n is ignored. According
to [11], computing each of the two instances of product of exponentiations
costs about 2W−1(nT + 1) + L + nTL/(W + 1) multiplications where |N |
is the bit length of N and W is a parameter in the W -bit sliding window
exponentiation method and is normally set as 3. When the standard W -bit
sliding window exponentiation method is employed, a full-length exponentia-
tion costs 2W−1 + |N | + |N |/(W + 1) multiplications. So the computational
cost of a verifier is approximately equal to

2(2W−1(nT + 1) + L+ nTL/(W + 1))/(2W−1 + |N |+ |N |/(W + 1)) + 1

full-length exponentiations. When T = L = 40, 2−T and 2−L are smaller than
one out of one trillion and thus negligible in any practical application. In this
case, when |N |=1024, the computational cost of a verifier is approximately
equal to 0.31n full-length exponentiations.

3.4.4 The Final Shuffling Protocol: Modifying
Encryption and Further Improving Efficiency

To further improve efficiency of a verifier, the employed Paillier encryption can
be slightly modified such that the batch verification can be optimised. The
modified Paillier encryption has a slightly different public key (g, h,N) where
h is an integer in Z∗

N with a large multiplicative order modulo N2 and its order
has no small factor. The encryption function is slightly modified: a message m
is encrypted into gmhrN mod N2 where r is randomly chosen from ZN . The
decryption function is unchanged. With this modified encryption algorithm,
the shuffling protocol is finally optimised as follows.

1. Before doing any shuffle, the shuffling node carries out some off-
line pre-computation when free. It chooses random integersR1, R2, R3, . . . . . .
from ZN and calculates A1 = hR1N mod N2, A2 = hR2N mod N2,
A3 = hR3N mod N2, . . . . . . . In this way, it builds up two pre-encryption
databases Φ = {R1, R2, R3 . . . . . . }, S = {A1, A2, A3 . . . . . . } and an
empty database Ψ = {}.

2. Receiving ciphertexts c1, c2, . . . , cn, the shuffling node calculates and
publishes c′i = cπ(i)bi mod N2 for i = 1, 2, . . . , n where π() is a random
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permutation of {1, 2, . . . , n} and every bi is randomly chosen from S.
Every used bi is immediately deleted from S after it is picked out and
new data (loghN bi, bi) is then inserted into Ψ where loghN bi is taken as
the data in Φ corresponding to bi in A.

3. To prove validity of c′1, c
′
2, . . . , c

′
n, the shuffling node publishes another

T instances of re-ordered re-encryption of c1, c2, . . . , cn:

Cj,i = cπj(i)bj,i mod N2 for j = 1, 2, . . . , T and i = 1, 2, . . . , n

where πj() is a random permutation of {1, 2, . . . , n} for j = 1, 2, . . . , T
and every bj,i is randomly chosen from S. Every used bj,i is immediately
deleted from S after it is picked out and new data (dj,i, bj,i) is then
inserted into Ψ where dj,i is the data in Φ corresponding to bj,i in A
and thus equal to loghN bj,i.

4. A random subset P1 is chosen from {1, 2, . . . , T } in the same way as in
the basic design.

5. For j ∈ P1, the shuffling nodes finds (dj,i, bj,i) for i = 1, 2, . . . , n in Ψ
and publishes πj() and rj,i = dj,i for i = 1, 2, . . . , n.

6. For j ∈ P2, the shuffling nodes finds (dj,i, bj,i) for i = 1, 2, . . . , n in Ψ
and then publishes π′

j() = ππ−1
j () and r′j,i = ri − dj,π′

j(i)
mod N for

i = 1, 2, . . . , n where ri = loghN bi, which is found in Ψ corresponding
to bi.

7. Anyone can publicly verify

Cj,i = cπj(i)h
rj,iN mod N2 for j ∈ P1 and i = 1, 2, . . . , n (3.26)

c′i = Cj,π′
j(i)

hr′j,iN mod N2 for j ∈ P2 and i = 1, 2, . . . , n (3.27)

which is batched into verification of

∏

j∈P1,1≤i≤n(Cj,i/cπj(i))
tj,i

∏

j∈P2,1≤i≤n(c
′
i/Cj,π′

j(i)
)tj,i

= hN(
∑

j∈P1 ,1≤i≤n rj,itj,i+
∑

j∈P2 ,1≤i≤n r′j,itj,i) mod N2 (3.28)

where every tj,i is a random L-bit integer generated in the same way as
in the first optimisation and 2L is smaller than any factor of the order
of h.

Completeness of this final shuffling protocol is straightforward and anyone
can check it. According to Theorem 19, satisfaction of (3.28), with an over-
whelmingly large probability, guarantees satisfaction of (3.26) and (3.27) and
thus satisfaction of

D(Cj,i) = D(cπj(i)) for j ∈ P1 and i = 1, 2, . . . , n

D(c′i) = D(Cj,π′
j(i)

) for j ∈ P2 and i = 1, 2, . . . , n
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Theorem 16 still works after the final optimisation and soundness of the final
shuffling protocol is guaranteed. As the proof transcript is changed in this
final optimisation, its privacy is illustrated in a new theorem, Theorem 20.

Theorem 19 Suppose H, y1, y2, . . . , yn are in ZN2 , t1, t2, . . . , tn are randomly
chosen from {0, 1, . . . , 2L − 1} and 2L is smaller than any factor of the order
of H. If

∏n
i=1 y

ti
i = H

∑n
i=1 xiti mod N2 with a probability larger than 2−L,

then yi = Hxi for i = 1, 2, . . . , n.

Proof:
∏n

i=1 y
ti
i = H

∑n
i=1 xiti mod N2 with a probability larger than 2−L im-

plies that for any given integer v in {1, 2, . . . , n} there must exist integers
t1, t2, . . . , tn ∈ {0, 1, . . . , 2

L − 1} and t′v ∈ {0, 1, . . . , 2
L − 1} such that

∏n
i=1 y

ti
i = H

∑n
i=1 xiti mod N2 (3.29)

(
∏v−1

i=1 ytii )y
t′v
v
∏n

i=v+1 y
ti
i = H(

∑v−1
i=1 xiti)+xvt

′
v+

∑n
i=v+1 xiti mod N2 (3.30)

Otherwise, for any (t1, t2, . . . , tv−1, tv+1, . . . , tn) in {0, 1, . . . , 2
L−1}n−1, there

is at most one tv in {0, 1, . . . , 2L−1} to satisfy
∏n

i=1 y
ti
i = H

∑n
i=1 xiti mod N2,

which implies that among the 2nL possible choices for {t1, t2, . . . , tn} there are
at most 2(n−1)L choices to satisfy

∏n
i=1 y

ti
i = H

∑n
i=1 xiti mod N2 and leads to

a contradiction to the assumption that
∏n

i=1 y
ti
i = H

∑n
i=1 xiti mod N2 with a

probability larger than 2−L.
Equations (3.29)/(3.30) yield

ytv−t̂v
v = H(tv−t̂v)xv mod N2

Note that tv and t̂v are L-bit integers and 2L is smaller than any factor of the
order of H . So (tv − t̂v)

−1 modulo the order of H exists and thus

yv = Hxv mod N2

Therefore, yi = Hxi for i = 1, 2, . . . , n as v can be any integer in {1, 2, . . . , n}.
✷

Theorem 20 The final shuffling protocol achieves HVZK.

Proof: The shuffling node’s proof of validity of his shuffle has a proof transcript
Cj,i for j = 1, 2, . . . , T and i = 1, 2, . . . , n; P1; πj(), rj,1, rj,2, . . . , rj,n for
j ∈ P1; π

′
j(), r

′
j,1, r

′
j,2, . . . , r

′
j,n for j ∈ P2. A party without any knowledge of

the shuffling node’s secret can simulate this proof transcript as follows.

1. He randomly chooses P1 as a subset of {1, 2, . . . , T }.

2. He randomly chooses rj,1, rj,2, . . . , rj,n from ZN for j ∈ P1.

3. He randomly chooses r′j,1, r
′
j,2, . . . , r

′
j,n from ZN for j ∈ P2 where P2 =

{1, 2, . . . , T } − P1.
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4. He calculates

Cj,i = cπj(i)h
rj,iN mod N2 for j ∈ P1 and i = 1, 2, . . . , n

Cj,π′
j(i)

= c′ih
−r′j,iN mod N2 for j ∈ P2 and i = 1, 2, . . . , n

This simulating transcript has the following distribution.

• P1 is uniformly distributed in all the subsets of {1, 2, . . . , T }.

• rj,1, rj,2, . . . , rj,n is uniformly distributed in ZN for j ∈ P1.

• r′j,1, r
′
j,2, . . . , r

′
j,n is uniformly distributed in ZN for j ∈ P2 where P2 =

{1, 2, . . . , T } − P1.

• Cj,1, Cj,2, . . . , Cj,n is uniformly distributed in {Cj,1, Cj,2, . . . , Cj,n | Cj,i =
cπj(i)h

r̂j,iN mod N2 for i = 1, 2, . . . , n, πj() is uniformly distributed in
all the possible permutations of {1, 2, . . . , n}, r̂j,i is uniformly distributed
in ZN} for j = 1, 2, . . . , T .

• Equations (3.26) and (3.27) are satisfied.

In the shuffling node’s proof of validity of his shuffle, when the public coin
model set in Definition 11 is employed, the real proof transcript has the same
distribution as the simulating transcript above. As the two transcripts have
just the same distribution, the condition in (3.18) is satisfied and HVZK is
achieved according to Definition 12. ✷

With this final optimisation, online computation of the shuffling node still
needs no exponentiation and the total computational cost of a verifier is fur-
ther improved. In terms of multiples of n, the computational cost of a verifier
includes a full-length exponentiation and computation of a product of nT ex-
ponentiations with L-bit exponents. So the computational cost of a verifier is
approximately equal to

2W−1(nT + 1) + L+ nTL/(W + 1))/(2W−1 + |N |+ |N |/(W + 1) + 1

full-length exponentiations. When T = L = 40, and |N |=1024, the result is
approximately equal to 0.16n full-length exponentiations.

3.4.5 Comparison and Conclusion

A comparison between the new shuffling scheme and the recent shuffling
schemes is given in Table 3.4, where “no additional assumption” means that
only the basic assumption inevitable in any shuffle is needed. Among the two
similar mix network designs in [77, 78], the optimised final version in [78] is in-
cluded in the comparison. The not so recent shuffling schemes like [5, 6, 74, 42]
are not included as they are not so advanced in security and efficiency. As the
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Table 3.4: Comparison of shuffling schemes

Shuffle Additional computa- Shuffler’s online Verifier’s
tional assumption computation computation

[52]1 Additional assumption 6n+ 3n/κ 6n+ 3n/κ
for com() and mcom()

[90] No 5.5n 4.3n
[102]2 Strong RSA assumption 2.3n 1.5n

besides DDH assumptions
needed in El Gamal encryption

[78] Additional assumption 3.4n 5.4n
for its DL-based

commitment function
[51]3 Additional assumptions for 0.6n 0.3n

security of com() besides
basic assumption, including

DL and factorization
assumptions

[50]4 No 3m̂n+ 5n 4n+ 3n̂
[89]5 Factorization assumption 3n 3n

besides DDH assumptions
needed in El Gamal encryption

New No No online 0.16n
exponentiation

1κ is a parameter integer. Detailed definition of the two functions com() and mcom() can

be found in [52].
2The figures in [102] are amended in [51] and we adopt the amended figures.
3Detailed definition of the function com() can be found in [51].
4m̂ and n̂ are two factors of n such that n = m̂n̂.
5The final proposal in Section 5 of [89].

shuffling scheme in [75] is a slight modification of the work in [74] and [52] and
the shuffling scheme in [41] is a slight modification of the work in [42], [75] and
[41] are not included either. The shuffling scheme in [93] does not support a
complete permutation and only achieves weak privacy and so is not included.
As in the efficiency analysis in most shuffling schemes, only exponentiations
are counted in the efficiency analysis in Table 3.4, while much less costly mul-
tiplications and additions are omitted. For the sake of simplicity, the figures
are given in terms of multiples of n and their remainders modulo n are ignored.
Our efficiency analysis only covers the online computations, so for fairness,
computations which can be carried out offline in advance in the existing shuf-
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fling schemes are not included in our analysis. More precisely, although most
existing shuffling schemes do not explicitly mention offline pre-computation of
the exponentiations in their re-encryption operations, we assume that those
exponentiations are carried out offline as in our new shuffling scheme and do
not include them in online computation of any shuffling scheme.

Table 3.4 shows that our new shuffling scheme has an obvious advantage
in online computational efficiency over the existing shuffling schemes and is
suitable for applications requiring high efficiency. Moreover, it only needs the
basic assumption and thus achieves the strongest security possible in shuffling.
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Chapter 4

Onion Routing

Onion routing [20, 44, 45] employs the idea of multiple-node routing and
multiple-layer encryption. It employs multiple nodes to route a message, where
each message is contained in a packet called an onion. In the packet, a message
is encrypted layer by layer using the encryption keys of all the routers on its
route and the receiver. Each layer of encryption is just like a layer of onion
bulb. In onion routing, given a message packet, each router unwraps a layer of
encryption by decrypting the message packet using its decryption key, finds
out the identity of the next router and forwards the unwrapped message packet
to the next router. Unless gaining collusion of all the routers on the routing
path of his received message, the receiver cannot trace the message back to
the sender, who then obtains anonymity. When a packet is routed together
with a large number of other packets in busy traffic, onion routing prevents
it from being traced, even if the traffic in the onion network is monitored.
However, when the traffic is not busy enough, an onion packet may be traced
by a party who can monitor the traffic in the whole onion network. Onion
routing is widely employed in anonymous cyber surf activities and a typical
example in practice is its simplified and optimised version in Tor [34].

4.1 The Basic Idea

The basic principle of onion routing is systematically introduced in [95] as
follows. The onion routing network is accessed via a series of routers. An
initiating application makes a connection to an application router. This router
messages connection message format (and later data) to a generic form that
can be passed through the onion routing network. It then connects to an
onion router, which defines a route through the network by constructing a
layered data structure called an onion. The onion is passed to the entry funnel,
which occupies one of the long-standing connections to an onion router and
multiplexes connections to the network at that onion router. That onion router

115
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will be the one for whom the outer most layer of the onion is intended. Each
layer of the onion defines the next hop in a route. An onion router that
receives an onion peels off its layer, identifies the next hop, and sends the
embedded onion to that router. The last onion router forwards data to an
exit funnel, whose job is to pass data between the onion routing network and
the responder.

In addition to carrying next hop information, each onion layer contains key
seed material from which keys are generated for crypting data sent forward or
backward along the anonymous connection. Once the anonymous connection
is established, it can carry data. Before sending data over an anonymous
connection, the onion router adds a layer of encryption for each router in the
route. As data moves through the anonymous connection, each onion router
removes one layer of encryption, so it arrives at the responder as plaintext.
This layering occurs in the reverse order for data moving back to the initiator.
Data that has passed backward through the anonymous connection must be
repeatedly post-crypted to obtain the plaintext.

By layering cryptographic operations in this way, we gain an advantage
over link encryption. As data moves through the network it appears different
to each onion router. Therefore, an anonymous connection is as strong as its
strongest link, and even one honest node is enough to maintain the privacy
of the route. In link-encrypted systems, compromised nodes can cooperate to
uncover route information. Onion routers keep track of received onions until
they expire. Replayed or expired onions are not forwarded, so they cannot
be used to uncover route information, either by outsiders or compromised
onion routers. Note that clock skew between onion routers can only cause an
onion router to reject a fresh onion or to keep track of processed onions longer
than necessary. Also, since data is encrypted using stream ciphers, replayed
data will look different each time it passes through a properly operating onion
router.

As shown in Figure 4.1, onion routing works as follows where a message
m is sent by a sender S through n routers P1, P2, . . . , Pn to a receiver Pn+1.

1. Each Pi has an encryption algorithm Ei() and a decryption algorithm
Di().

2. The sender encrypts the message m, the route list P1, P2, . . . , Pn+1, S
into

e = E1(E2(E3(. . . En+1(m))) . . . )

and
ci = E1(E2(E3(. . . Ei−1(Pi+1))) . . . )

for i = 1, 2, . . . , n.

3. The sender sends out

O1 = (e1, c1,1, c1,2, . . . , c1,n) = (e, c1, c2, . . . , cn)

to P1.
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Figure 4.1: Onion Routing

4. For i = 1, 2, . . . , n each router Pi routes the onion packet as follows
where the onion he receives is in the form Oi = (ei, ci,1, ci,2, . . . , ci,n).

(a) He calculates Di(ci,1) and finds the identity of Pi+1.

(b) He calculates ei+1 = Di(ei) and ci+1,j = Di(ci,j+1) for j =
1, 2, . . . , n− 1.

(c) He sends out

Oi+1 = (ei+1, ci+1,1, ci+1,2, . . . , ci+1,n−1, ci+1,n)

to Pi+1 where ci+1,n is a random ciphertext.

5. Finally, Pn sends

On+1 = (en+1, cn+1,1, cn+1,2, . . . , cn+1,n−1, cn+1,n)

to Pn+1.

6. Pn+1 decrypts cn+1,1 and finds nobody’s identity, and knows that he is
the receiver. He calculates Dn+1(en+1) to obtain m.

4.2 Formal Definition of Security

In [20], onion routing is formally defined and modelled into a strict security
concept. Especially, a definition of security of an onion routing scheme in the



✐

✐

“K13841” — 2014/3/4 — 15:45
✐

✐

✐

✐

✐

✐

118 Anonymous Communication Networks: Protecting Privacy on the Web

universally composable framework is given in [20]. It is shown that in order
to satisfy the universal composability-based definition, it is sufficient to give
an onion routing scheme a special cryptographic definition similar to CCA2-
security for encryption. As a result, onion routing can be formally illustrated
to reveal to an adversarial router any information about onions apart from
the prior and the next routers. In particular, the router does not learn how far
a given message is from its destination. This property makes traffic analysis
a lot harder to carry out, because now any message sent between two onion
routers looks the same, even if one of the routers is controlled by the adversary,
no matter how close it is to destination.

It is assumed in [20] that there is a network with J players P1, . . . , PJ . For
simplicity, we do not distinguish players as senders, routers, and receivers; each
player can assume any of these roles. In fact, making such a distinction would
not affect our protocol at all and needs to be considered in its application only.
Onion routing is defined in the public key model (i.e., in the hybrid model
where a public key infrastructure is already in place) where each player has an
appropriately chosen identity Pi, a registered public key PKi corresponding
to this identity, and these values are known to each player.

In each instance of a message that should be sent, for some (s, r), there
is a sender Ps (s stands for “sender”) sending a message m of length lm (the
length lm is a fixed parameter, all messages sent must be the same length)
to recipient Pr (r stands for “recipient”) through n < N additional routers
(Po1 , . . . , Pon stands for “onion router”), where the system parameter N −
1 is an upper bound on the number of route that the sender can choose.
How each sender selects his onion routers Po1 , . . . , Pon is a non-cryptographic
problem independent of the current exposition. The input to the onion sending
procedure consists of the message m that Ps wishes to send to Pr, a list of
onion routers Po1 , . . . , Pon , and the necessary public keys and parameters.
The input to the onion routing procedure consists of an onion O, the routing
party’s secret key SK, and the necessary public keys and parameters. In case
the routing party is in fact the recipient, the routing procedure will output
the message m.

The honest players are modelled by imagining that they obtain inputs
(i.e., the data m they want to send, the identity of the recipient Pr, and the
identities of the onion routers Po1 , . . . , Pon) from the environment Z, and then
follow the protocol (either the ideal or the cryptographic one). Similarly, the
honest players’ outputs are passed to the environment.

Following the standard universal composability approach (but dropping
most of the formalism and subtleties to keep presentation compact), it is
defined that an onion routing protocol is secure if there exists a simulator
(ideal-world adversary) S such that no polynomial-time in λ (the security
parameter) environment Z controlling the inputs and outputs of the honest
players, and the behavior of malicious players, can distinguish between inter-
acting with the honest parties in the ideal model through S or interacting
with the honest parties using the protocol.
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It is easy to note that the solution presented in [20] is secure in the public
key model, i.e., in the model where players publish the keys associated with
their identities in some reliable manner. In the proof of security, the simulator
S is allowed to generate the keys of all the honest players.

The ideal onion routing process can be defined by assuming that the adver-
sary is static, i.e., each player is either honest or corrupt from the beginning,
and the trusted party implementing the ideal process knows which parties are
honest and which ones are corrupt. Ideal onion routing needs the following
data structurs and denotations to support its functionality.

• The Bad set of parties controlled by the adversary.

• An onion O is stored in the form of (sid, Ps, Pr,m, n, P, i) where sid is
the identifier, Ps is the sender, Pr is the recipient, m is the message sent
through the onion routers, n < N is the length of the onion path, P =
(Po1 , . . . , Pon) is the path over which the message is sent (by convention,
Po0 = Ps, and Pon+1 = Pr), and i indicates how much of the path the
message has already traversed (initially, i = 0). An onion has reached
its destination when i = n+ 1.

• A list L of onions that are being processed by the adversarial routers.
Each entry of the list consists of (temp,O, j), where temp is the tempo-
rary identifier that the adversary needs to know to process the onion,
while O = (sid, Ps, Pr,m, n, P, i) is the onion itself, and j is the entry
in P where the onion should be sent next (the adversary does not get
to see O and j). This models the replay attack: the ideal adversary is
allowed to resend an onion.

• For each honest party Pi, a buffer Bi of onions that are currently being
held by Pi. Each entry consists of (temp′, O), where temp′ is the tempo-
rary identifier that an honest party needs to know to process the onion
and O = (sid, Ps, Pr,m, n, P, i) is the onion itself (the honest party does
not get to see O). Entries from this buffer are removed if an honest party
tells the functionality that he or she wants to send an onion to the next
party.

The ideal process is activated by a message from router P , from the ad-
versary S, or from itself. There are four types of messages, as follows:

• (Process New Onion, Pr,m, n, P ). Upon receiving such a message from
Ps, where m ∈ 0, 1lm

⋃

{⊥},

1. If |P | ≥ N , reject.

2. Otherwise, create a new session sid identifier and let O =
(sid,P, Pr,m, n, P, 0). Send itself message (Process Next Step,O).

• (Process Next Step,O). This is the core of the ideal protocol. Suppose
O = (sid, Ps, Pr,m, n, P, i). The ideal functionality looks at the next
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part of the path. The router Poi just processed the onion and now it is
being passed to Poi+1 . Corresponding to which routers are honest, and
which ones are adversarial, there are two possibilities for the next part
of the path:

– Suppose that the next node, Poi+1 , is honest. Here, the ideal func-
tionality makes up a random temporary identifier temp for this
onion and sends to S (recall that S controls the network so it
decides which messages get delivered): “Onion temp from Poi to
Poi+1 .” It adds the entry (temp,O, i+ 1) to list.

– Suppose that Poi+1 is adversarial. Then there are two cases:

∗ There is an honest router remaining on the path to the recipi-
ent. Let Poj be the next honest router. (I.e., j > i is the small-
est integer such that Poj is honest.) In this case, the ideal func-
tionality creates a random temporary identifier temp for this
onion, and sends the message “Onion temp from Poi , routed
through (Poi+1 , . . . , Poj−1) to Poj” to the ideal adversary S,
and stores (temp,O, j) on the list L.

∗ Poi is the last honest router on the path; in particular, this
means that Pr is adversarial as well. In that case, the ideal
functionality sends the message “Onion from Poi with message
m for Pr routed through (Poi+1 , . . . , Pon)” to the adversary
S. (Note that if Poi+1 = Pr, the list (Poi+1 , . . . , Pon) will be
empty.

• (Deliver Message, temp) is a message that S sends to the ideal pro-
cess to notify it that it agrees that the onion with temporary id temp
should be delivered to its current destination. To process this message,
the functionality checks if the temporary identifier temp corresponds
to any onion O on the list L. If it does, it retrieves the corresponding
record (temp,O, j) and update the onion: if O = (sid, Ps, Pr,m, n, P, i),
it replaces i with j to indicate that we have reached the j′th router on
the path of this onion. If j < n + 1, it generates a temporary identi-
fier temp′, sends “Onion temp′ received” to party Poj , and stores the
resulting pair (temp′, O = (sid, Ps, Pr,m, n, P, j)) in the buffer Boj of
party Poj . Otherwise, j = n+1, so the onion has reached its destination:
if m 6= ⊥ it sends “Message m received” to router Pr; otherwise it does
not deliver anything.

• (Forward Onion, temp′). This is a message from an honest ideal router
Pi notifying the ideal process that it is ready to send the onion with id
temp′ to the next hop. In response, the ideal functionality

1. Checks if the temporary identifier temp′ corresponds to any entry
in Bi. If it does, it retrieves the corresponding record (temp′, O).
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2. Sends itself the message (Process Next Step,O).

3. Removes (temp′, O) from Bi.

When an honest router receives a message of the form “Onion temp′ re-
ceived” from the ideal functionality, it notifies environment Z about it and
awaits instructions for when to forward the onion temp′ to its next destination.
When instructed by Z, it sends the message “Forward Onion temp′” to the
ideal functionality. It is not hard to see that Z learns nothing other than pieces
of paths of onions formed by the honest sender (i.e., does not learn a sub-path’s
position or relations among different sub-paths). Moreover, if the sender and
the receiver are both honest, the adversary does not learn the message.

It may seem that, as defined in the ideal functionality, the adversary is too
powerful because, for example, it is allowed to route just one onion at a time,
and so can trace its entire route. In an onion routing implementation, however,
the instructions for which onion to send on will not come directly from the
adversary, but rather from an honest player’s mixing strategy. That is, each
(honest) router is notified that an onion has arrived and is given a handle temp
to that onion. Whenever the router decides (under mixing strategy) that the
onion temp should be sent on, she can notify the ideal functionality of using
the handle temp. A good mixing strategy will limit the power of the adversary
to trace onions in the ideal world, which will translate into limited capability
in the real world as well. What mixing strategy is a good one depends on the
network. Additionally, there is a trade-off between providing more anonymity
and minimizing latency of the network.

The definition as is allows replay attacks by the adversary. The adversary
controls the network and can replay any message it wishes. In particular, it
can take an onion that party Pi wants to send to Pj and deliver it to Pj as
many times as it wishes. However, it is straightforward to modify the security
definition and the scheme so as to prevent replay attacks. For instance, it can
be required that the sender inserts time stamps into all onions. A router Pi,
in addition to the identity of the next router Pi+1, will also be given a time
time and a random identifier oidi (different for each onion and router). An
onion router will drop the incoming onion when either the time + t∆ (where
t∆ is a parameter) has passed or it finds oidi in its database. If an onion is
not dropped, the router will store oidi until time time + t∆ has passed. It is
not difficult to adapt our scheme and model to reflect this. We omit details
to keep this exposition focused.

Forward secrecy is a desirable property in general, and in this context in
particular. The scheme can be constructed from any CCA2-secure cryptosys-
tem, and in particular, from a forward secure one. Another desirable property
of an onion routing scheme is being able to respond to a message received
anonymously. We address this after presenting our construction.

A cryptographic definition of an onion routing scheme is given in [20] as
follows to show why a scheme satisfying this definition is sufficient to realize
the onion routing functionality described above.
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Definition 13 (Onion routing scheme I/O). A set of algorithms (G,FormOnion,
ProcOnion) satisfies the I/O spec for an onion routing scheme for message
space M(1λ) and set of router names Q if:

• G is a key generation algorithm, possibly taking as input some public
parameters p, and a router name P : (PK,SK)← G(1λ, p, P ).

• FormOnion is a probabilistic algorithm that on input a message m ∈
M(1λ), an upper bound on the number of layers N , a set of router
names (P1, . . . , Pn+1) (each Pi ∈ Q,n ≤ N), and a set of public keys
corresponding to these routers (PK1, . . . , PKn+1), outputs a set of onion
layers (O1, . . . , On+1). (As N is typically a system-wide parameter, it is
usually omitted to give it as input to this algorithm.)

• ProcOnion is a deterministic algorithm that on input an onion O,
identity P , and a secret key SK peel off a layer of the onion to ob-
tain a new onion O′ and a destination P ′ for sending it: (O′, P ′) ←
ProcOnion(SK,O, P ).

Definition 14 (Onion evolution, path, and layering). Let (G, FormOnion,
ProcOnion) satisfy the onion routing I/O spec. Let p be the public parame-
ters. Suppose that we have a set Q,⊥ /∈ Q, consisting of a polynomial num-
ber of (honest) router names. Suppose that we have a public-key infrastruc-
ture on Q, i.e., corresponding to each name P ∈ Q there exists a key pair
(PK(P ), SK(P )), generated by running G(1λ, p, P ). Let O be an onion re-
ceived by router P ∈ Q. Let E(O,P ) = {(Oi, Pi) : i ≥ 1} be the maximal
ordered list of pairs such that P1 = P , O1 = O, and for all i > 1, Pi ∈ Q, and
(Oi, Pi) = ProcOnion(SK(Pi−1), Oi−1, Pi−1). Then E(O,P ) is the evolution
of onion O starting at P . Moreover, if E(O,P ) = (Oi, Pi) is the evolution of
an onion, then P(O,P ) = {Pi} is the path of the onion, while L(O,P ) = {Oi}
is the layering of the onion.

Onion correctness is the simple condition that if an onion is formed cor-
rectly and the correct routers process it in the correct order, the correct mes-
sage is received by the last router Pn+1.

Definition 15 (Onion correctness). Let (G, FormOnion, ProcOnion) satisfy
the I/O spec for an onion routing scheme. Then for all settings of the public
parameters p, for all n < N , and for all Q with a public key infrastructure as
in Definition 14, for any path P = (P1, . . . , Pn+1), P ∈ Q, for all messages
m ∈M(1λ), and for all onions O1 formed as

(O1, . . . , On+1)← FormOnion(m,N, (P1, . . . , Pn+1), (PK(P1), . . . , PK(Pn+1)))

the following is true: (1) correct path: P (O1, P1) = (P1, . . . , Pn+1); (2) cor-
rect layering: L(O1, P1) = (O1, . . . , On+1); (3) correct decryption: (m, ⋄) =
ProcOnion(SK(Pn+1), On+1, Pn+1).
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Onion integrity requires that even for an onion created by an adversary,
the path is going to be of length N at most.

Definition 16 (Onion integrity). An onion routing scheme satisfies onion
integrity if for all probabilistic polynomial time adversaries, the probability
(taken over the choice of the public parameters p, the set of honest router
names Q and the corresponding PKI as in Definition 14) that an adversary
with adaptive access to ProcOnion(SK(P ), ., P ) procedures for all P ∈ Q, can
produce and send to a router P1 ∈ Q an onion O1 such that |P (O1, P1)| > N ,
is negligible.

This definition of onion security is somewhat less intuitive. Here, an adver-
sary is launching an adaptive attack against an onion router P . It gets to send
onions to this router, and see how the router reacts, i.e., obtain the output of
ProcOnion(SK(P ), ., P ). The adversarys goal is to distinguish whether a given
challenge onion corresponds to a particular message and route, or a random
message and null route. The unintuitive part is that the adversary can also
succeed by re-wrapping an onion, i.e., by adding a layer to its challenge onion.

Definition 17 (Onion security). Consider an adversary interacting with an
onion routing challenger as follows:

1. The adversary receives as input a challenge public key PK, chosen by
the challenger by letting (PK,SK)← G(1λ, p), and the router name P .

2. The adversary may submit any number of onions Oi of his choice to the
challenger, and obtain the output of ProcOnion(SK,Oi, P ).

3. The adversary submits n, a message m, a set of names (P1, . . . , Pn+1),
and index j, and n key pairs 1 ≤ i ≤ n + 1, i 6= j, (PKi, SKi). The
challenger checks that the router names are valid, that the public keys
correspond to the secret keys, and if so, sets PKj = PK, sets bit b at
random, and does the following:

• If b = 0, let

(O1, . . . , Oj , . . . , On+1)← FormOnion(m, (P1, . . . , Pn+1),

(PK1, ..., PKn+1))

• Otherwise, choose r ←M(1λ), and let

(O1, . . . , Oj)← FormOnion(r, (P1, . . . , Pj), (PK1, ..., PKj))

4. Now the adversary is allowed to receive responses for two types of
queries:

• Submit any onion Oi 6= Oj of his choice and obtain
ProcOnion(SK,Oi, P ).
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• Submit a secret key SK ′, an identity P ′ 6= Pj−1, and an onion
O′ such that Oj = ProcOnion(SK ′, O′, P ′); if P ′ is valid, and
(SK ′, O′, P ′) satisfy this condition, then the challenger responds
by revealing the bit b.

5. The adversary then produces a guess b′.

A scheme with onion routing I/O satisfies onion security if for all probabilistic
polynomial time adversaries A of the form described above, there is a negligible
function ν such that the adversary’s probability of outputting b′ = b is at most
1/2 + ν(λ).

This definition of security is simple enough. Yet, it turns out to be suffi-
cient. A simulator that translates between a real-life adversary and an ideal
functionality is responsible for two tasks: (1) creating some fake traffic in the
real world that accounts for everything that happens in the ideal world; and
(2) translating the adversary’s actions in the real world into instructions for
the ideal functionality.

In particular, in its capacity (1), the simulator will sometimes receive a
message from the ideal functionality telling it that an onion temp for honest
router Pj is routed through adversarial routers (P1, . . . , Pj−1). The simulator
is going to need to make up an onion O1 to send to the adversarial party P1.
But the simulator is not going to know the message contained in the onion,
or the rest of the route. So the simulator will instead make up a random
message r and compute the onion so that it decrypts to r when it reaches
the honest (real) router Pj . It will form O1 by obtaining (O1, . . . , Oj) ←
FormOnion(r, (P1, . . . , Pj), (PK1, . . . , PKj)). When the onion Oj arrives at
Pj from the adversary, the simulator knows that it is time to tell the ideal
functionality to deliver message temp to honest ideal Pj .

Now, there is a danger that this may cause errors in the simulation as far as
capacity (2) is concerned: the adversary may manage to form another onion Õ,
and send it to an honest router P̃ such that (Oj , P ) ∈ E(Õ, P̃ ). The simulator
will be unable to handle this situation correctly, as the simulator relies on its
ability to correctly decrypt and route all real-world onions, while in this case,
the simulator does not know how to decrypt and route this “fake” onion past
honest router Pj . A scheme satisfying the definition above would prevent this
from happening: the adversary will not be able to form an onion O′6 6= Oj−1

sent to an honest player P ′ such that (Pj , Oj) = ProcOnion(SK(P0), O′, P ′).

4.3 Second Generation: Tor

The most famous practical application of onion routing is Tor [34], which is
also called the second generation onion routing. Tor is actually a protocol
for asynchronous, loosely federated onion routers that provides the following
improvements over the old onion routing design.
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• Perfect forward secrecy
In the original onion routing design, a single hostile node could record
traffic and later compromise successive nodes in the circuit and force
them to decrypt it. Rather than using a single multiply encrypted data
structure (an onion) to lay each circuit, Tor now uses an incremental or
telescoping path-building design, where the initiator negotiates session
keys with each successive hop in the circuit. Once these keys are deleted,
subsequently compromised nodes cannot decrypt old traffic. As a side
benefit, onion replay detection is no longer necessary, and the process of
building circuits is more reliable, since the initiator knows when a hop
fails and can then try extending to a new node.

• Separation of “protocol cleaning” from anonymity
Onion routing originally required a separate “application proxy” for
each supported application protocol, most of which were never written,
so many applications were never supported. Tor uses the standard and
near-ubiquitous SOCKS proxy interface, allowing us to support most
TCP-based programs without modification. Tor now relies on the fil-
tering features of privacy-enhancing application-level proxies such as
Privoxy, without trying to duplicate those features itself.

• No mixing, padding, or traffic shaping (yet)
Onion routing originally called for batching and reordering cells as they
arrived, assumed padding between ORs, and in later designs added
padding between onion proxies (users) and ORs. Tradeoffs between
padding protection and cost were discussed, and traffic shaping al-
gorithms were theorized to provide good security without expensive
padding, but no concrete padding scheme was suggested. Recent re-
search and deployment experience suggest that this level of resource
use is not practical or economical; and even full link padding is still
vulnerable. Thus, until a proven and convenient design for traffic shap-
ing or low-latency mixing that improves anonymity against a realistic
adversary is obtained, these strategies can only be left out.

• Many TCP streams can share one circuit
Onion routing originally built a separate circuit for each application
level request, but this required multiple public key operations for every
request, and also presented a threat to anonymity from building so many
circuits. Tor multiplexes multiple TCP streams along each circuit to
improve efficiency and anonymity.

• Leaky-pipe circuit topology
Through in-band signaling within the circuit, Tor initiators can direct
traffic to nodes partway down the circuit. This novel approach allows
traffic to exit the circuit from the middle—possibly frustrating traffic
shape and volume attacks based on observing the end of the circuit. (It
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also allows for long-range padding if future research shows this to be
worthwhile.)

• Congestion control
Earlier anonymity designs do not address traffic bottlenecks. Unfortu-
nately, typical approaches to load balancing and flow control in overlay
networks involve inter-node control communication and global views of
traffic. Tor’s decentralized congestion control uses end-to-end routing to
maintain anonymity while allowing nodes at the edges of the network
to detect congestion or flooding and send less data until the congestion
subsides.

• Directory servers
The earlier onion routing design planned to flood state information
through the network approach that can be unreliable and complex. Tor
takes a simplified view toward distributing this information. Certain
more trusted nodes act as directory servers: they provide signed directo-
ries describing known routers and their current state. Users periodically
download them via HTTP.

• Variable exit policies
Tor provides a consistent mechanism for each node to advertise a policy
describing the hosts and ports to which it will connect. These exit poli-
cies are critical in a volunteer-based distributed infrastructure, because
each operator is comfortable with allowing different types of traffic to
exit from his node.

• End-to-end integrity checking
The original onion routing design did no integrity checking on data. Any
node on the circuit could change the contents of data cells as they passed
by—for example, to alter a connection request so it would connect to a
different webserver, or to tag encrypted traff and look for corresponding
corrupted traffic at the network edges. Tor hampers these attacks by
verifying data integrity before it leaves the network.

• Rendezvous points and hidden services
Tor provides an integrated mechanism for responder anonymity via
location-protected servers. Previous onion routing designs included long-
lived “reply onions” that could be used to build circuit to a hidden
server, but these reply onions did not provide forward security, and be-
came useless if any node in the path went down or rotated its keys. In
Tor, clients negotiate rendezvous points to connect with hidden servers;
reply onions are no longer required.

As emphasized in [34], the following considerations have directed the evo-
lution from the initial onion routing to Tor.
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• Deployability
The design is deployed and used in the real world. Thus it must not be
expensive to run (for example, by requiring more bandwidth than volun-
teers are willing to provide); must not place a heavy liability burden on
operators (for example, by allowing attackers to implicate onion routers
in illegal activities); and must not be difficult or expensive to implement
(for example, by requiring kernel patches or separate proxies for every
protocol). It is not supposed to be run by non-anonymous parties (such
as websites).

• Usability
A hard-to-use system has fewer users—and because anonymity sys-
tems hide users among users, a system with fewer users provides less
anonymity. Usability is thus not only a convenience: it is a security
requirement. Tor should therefore not require modifying familiar appli-
cations; should not introduce prohibitive delays; and should require as
few configuration decisions as possible. Finally, Tor should be easily im-
plementable on all common platforms; users are not require to change
their operating systems to be anonymous. (Tor currently runs on Win32,
Linux, Solaris, BSD-style Unix, MacOS X, and probably others.)

• Flexibility
The protocol must be flexible and well specified, so Tor can serve as a
test bed for future research. Many of the open problems in low-latency
anonymity networks, such as generating dummy traffic or preventing
Sybil attacks, may be solvable independently from the issues solved by
Tor. Hopefully future systems will not need to reinvent Tor’s design.

• Simple design
The protocol’s design and security parameter must be well under-
stood. Additional features impose implementation and complexity costs;
adding unproven techniques to the design threatens deployability, read-
ability, and ease of security analysis. Tor aims to deploy a simple and
stable system that integrates the best accepted approaches to protecting
anonymity.

4.3.1 Design of Tor

The Tor is an overlay network; each onion router (OR) runs as a normal user-
level process without any special privileges. Each onion router maintains a
TLS connection to every other onion router. Each user runs local software
called an onion proxy (OP) to fetch directories, establish circuits across the
network, and handle connections from user applications. These onion proxies
accept TCP streams and multiplex them across the circuits. The onion router
on the other side of the circuit connects to the requested destinations and
relays data.
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Each onion router maintains a long-term identity key and a short-term
onion key. The identity key is used to sign TLS certificates, to sign the OR’s
router descriptor (a summary of its keys, address, bandwidth, exit policy, and
so on), and (by directory servers) to sign directories. The onion key is used to
decrypt requests from users to set up a circuit and negotiate ephemeral keys.
The TLS protocol also establishes a short term link key when communicating
between ORs. Short-term keys are rotated periodically and independently, to
limit the impact of key compromise.

Onion routers communicate with one another, and with users’ OPs, via
TLS connections with ephemeral keys. Using TLS conceals the data on the
connection with perfect forward secrecy, and prevents an attacker from mod-
ifying data on the wire or impersonating an OR.

Traffic passes along these connections in fixed-size cells. Each cell is 512
bytes, and consists of a header and a payload. The header includes a circuit
identifier (circID) that specifies which circuit the cell refers to (many cir-
cuits can be multiplexed over the single TLS connection), and a command to
describe what to do with the cell’s payload. (Circuit identifiers are connection-
specific: each circuit has a different circID on each OP/OR or OR/OR connec-
tion it traverses.) Based on their command, cells are either control cells, which
are always interpreted by the node that receives them, or relay cells, which
carry end-to-end stream data. The control cell commands are: padding (cur-
rently used for keepalive, but also usable for link padding); create or created
(used to set up a new circuit); and destroy (to tear down a circuit).

Relay cells have an additional header (the relay header) at the front of
the payload, containing a streamID (stream identifier: many streams can be
multiplexed over a circuit); an end-to-end checksum for integrity checking; the
length of the relay payload; and a relay command. The entire contents of the
relay header and the relay cell payload are encrypted or decrypted together as
the relay cell moves along the circuit, using the 128-bit AES cipher in counter
mode to generate a cipher stream. The relay commands are: relay data (for
data flowing down the stream), relay begin (to open a stream), relay end
(to close a stream cleanly), relay teardown (to close a broken stream), relay
connected (to notify the OP that a relay begin has succeeded), relay extend
and relay extended (to extend the circuit by a hop, and to acknowledge),
relay truncate and relay truncated (to tear down only part of the circuit, and
to acknowledge), relay sendme (used for congestion control), and relay drop
(used to implement long-range dummies).

Onion routing originally built one circuit for each TCP stream. Because
building a circuit can take several tenths of a second (due to public key cryp-
tography and network latency), this design imposes high costs on applications
like web browsing that open many TCP streams.

In Tor, each circuit can be shared by many TCP streams. To avoid delays,
users construct circuits preemptively. To limit linkability among their streams,
users’ OPs build a new circuit periodically if the previous ones have been
used, and expire old used circuits that no longer have any open streams.
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OPs consider rotating to a new circuit once a minute: thus even heavy users
spend negligible time building circuits, but a limited number of requests can
be linked to each other through a given exit node. Also, because circuits are
built in the background, OPs can recover from failed circuit creation without
harming user experience.

A user’s OP constructs circuits incrementally, negotiating a symmetric
key with each OR on the circuit, one hop at a time. To begin creating a new
circuit, the OP (call her Alice) sends a create cell to the first node in her
chosen path (call him Bob). (She chooses a new circID CAB not currently
used on the connection from her to Bob.) The create cell’s payload contains
the first half of the Diffie-Hellman handshake (gx), encrypted to the onion key
of the OR. Bob responds with a created cell containing gy along with a hash
of the negotiated key K = gxy.

To extend the circuit further, Alice sends a relay extend cell to Bob, spec-
ifying the address of the next OR (call her Carol), and an encrypted gx2 for
her. Bob copies the half-handshake into a create cell, and passes it to Carol
to extend the circuit. (Bob chooses a new circID CBC not currently used on
the connection between him and Carol. Alice never needs to know this circID;
only Bob associates CAB on his connection with Alice to CBC on his con-
nection with Carol.) When Carol responds with a created cell, Bob wraps the
payload into a relay extended cell and passes it back to Alice. Now the circuit
is extended to Carol, and Alice and Carol share a common key K2 = gx2y2 .

To extend the circuit to a third node or beyond, Alice proceeds as above,
always telling the last node in the circuit to extend one hop further.

This circuit-level handshake protocol achieves unilateral entity authenti-
cation (Alice knows she’s handshaking with the OR, but the OR doesn’t care
who is opening the circuit—Alice uses no public key and remains anonymous)
and unilateral key authentication (Alice and the OR agree on a key, and Alice
knows only the OR learns it). It also achieves forward secrecy and key fresh-
ness. More formally, the protocol is as follows (where EPKBob

(.) is encryption
with Bob’s public key, H is a secure hash function, and | is concatenation):

Alice→ Bob : EPKBob(g
x)

Bob→ Alice : gy, H(K|“handshake”)

In the second step, Bob proves that it was he who received gx, and who
chose y. We use PK encryption in the first step (rather than, say, using the
first two steps of STS, which has a signature in the second step) because a
single cell is too small to hold both a public key and a signature. Preliminary
analysis with the NRL protocol analyzer shows this protocol to be secure
(including perfect forward secrecy) under the traditional Dolev-Yao model.

Once Alice has established the circuit (so she shares keys with each OR on
the circuit), she can send relay cells. Upon receiving a relay cell, an OR looks
up the corresponding circuit, and decrypts the relay header and payload with
the session key for that circuit. If the cell is headed away from Alice, the OR
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then checks whether the decrypted cell has a valid digest (as an optimization,
the first two bytes of the integrity check are zero, so in most cases we can
avoid computing the hash). If valid, it accepts the relay cell and processes
it as described below. Otherwise, the OR looks up the circID and OR for
the next step in the circuit, replaces the circID as appropriate, and sends
the decrypted relay cell to the next OR. (If the OR at the end of the circuit
receives an unrecognized relay cell, an error has occurred, and the circuit is
torn down.)

OPs treat incoming relay cells similarly: they iteratively unwrap the relay
header and payload with the session keys shared with each OR on the circuit,
from the closest to farthest. If at any stage the digest is valid, the cell must
have originated at the OR whose encryption has just been removed.

To construct a relay cell addressed to a given OR, Alice assigns the digest,
and then iteratively encrypts the cell payload (that is, the relay header and
payload) with the symmetric key of each hop up to that OR. Because the
digest is encrypted to a different value at each step, only at the targeted OR
will it have a meaningful value. This leaky pipe circuit topology allows Alice’s
streams to exit at different ORs on a single circuit. Alice may choose different
exit points because of their exit policies or to keep the ORs from knowing
that two streams originate from the same person.

When an OR later replies to Alice with a relay cell, it encrypts the cell’s
relay header and payload with the single key it shares with Alice, and sends
the cell back toward Alice along the circuit. Subsequent ORs add further
layers of encryption as they relay the cell back to Alice.

To tear down a circuit, Alice sends a destroy control cell. Each OR in the
circuit receives the destroy cell, closes all streams on that circuit, and passes
a new destroy cell forward. But just as circuits are built incrementally, they
can also be torn down incrementally. Alice can send a relay truncate cell to
a single OR on a circuit. That OR then sends a destroy cell forward, and
acknowledges with a relay truncated cell. Alice can then extend the circuit
to different nodes, without signaling to the intermediate nodes (or a limited
observer) that she has changed her circuit. Similarly, if a node on the circuit
goes down, the adjacent node can send a relay truncated cell back to Alice.
Thus the “break a node and see which circuit go down” attack is weakened.

When Alice’s application wants a TCP connection to a given address and
port, it asks the OP (via SOCKS) to make the connection. The OP chooses
the newest open circuit (or creates one if needed), and chooses a suitable OR
on that circuit to be the exit node (usually the last node, but may be others
due to exit policy conflicts) The OP then opens the stream by sending a relay
begin cell to the exit node, using a new random streamID. Once the exit node
connects to the remote host, it responds with a relay connected cell. Upon
receipt, the OP sends a SOCKS reply to notify the application of its success.
The OP now accepts data from the application’s TCP stream, packaging it
into relay data cells and sending those cells along the circuit to the chosen
OR.
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There is a catch to using SOCKS, however—some applications pass the
alphanumeric host name to the Tor client, while others resolve it into an IP
address first and then pass the IP address to the Tor client. If the application
does DNS resolution first, Alice thereby reveals her destination to the remote
DNS server, rather than sending the host name through the Tor network to
be resolved at the far end. Common applications like Mozilla and SSH have
this flaw.

With Mozilla, the flaw is easy to address: the filtering HTTP proxy called
Privoxy gives a host name to the Tor client, so Alice’s computer never does
DNS resolution. But a portable general solution, such as is needed for SSH,
is an open problem. Modifying or replacing the local name server can be
invasive, brittle, and unportable. Forcing the resolver library to prefer TCP
rather than UDP is hard, and also has portability problems. Dynamically
intercepting system calls to the resolver library seems a promising direction.
Altough a tool similar to dig can be provided to perform a private lookup
through the Tor network, it is recommended in [34] to use privacy-aware
proxies like Privoxy wherever possible.

Closing a Tor stream is analogous to closing a TCP stream: it uses a two-
step handshake for normal operation, or a one-step handshake for errors. If the
stream closes abnormally, the adjacent node simply sends a relay teardown
cell. If the stream closes normally, the node sends a relay end cell down the
circuit, and the other side responds with its own relay end cell. Because all
relay cells use layered encryption, only the destination OR knows that a given
relay cell is a request to close a stream. This two-step handshake allows Tor
to support TCP-based applications that use half-closed connections.

Because the old onion routing design used a stream cipher without in-
tegrity checking, traffic was vulnerable to a malleability attack: though the
attacker could not decrypt cells, any changes to encrypted data would create
corresponding changes to the data leaving the network. This weakness allowed
an adversary who could guess the encrypted content to change a padding cell
to a destroy cell; change the destination address in a relay begin cell to the
adversary’s webserver; or change an FTP command from dir to rm *. (Even
an external adversary could do this, because the link encryption similarly used
a stream cipher.)

Because Tor uses TLS on its links, external adversaries cannot modify
data. Addressing the insider malleability attack, however, is more complex.
Integrity is only checked at the edges of each stream. (Remember that in our
leaky-pipe circuit topology, a stream’s edge could be any hop in the circuit.)
When Alice negotiates a key with a new hop, they each initialize a SHA-1
digest with a derivative of that key, thus beginning with randomness that
only the two of them know. Then they each incrementally add to the SHA-1
digest the contents of all relay cells they create, and include with each relay
cell the first four bytes of the current digest. Each also keeps a SHA-1 digest
of data received, to verify that the received hashes are correct.
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Volunteers are more willing to run services that can limit their bandwidth
usage. To accommodate them, Tor servers use a token bucket approach to
enforce a long-term average rate of incoming bytes, while still permitting
short-term bursts above the allowed bandwidth.

Because the Tor protocol outputs about the same number of bytes as it
takes in, it is sufficient in practice to limit only incoming bytes. With TCP
streams, however, the correspondence is not one-to-one: relaying a single in-
coming byte can require an entire 512-byte cell. (We cannot just wait for more
bytes, because the local application may be awaiting a reply.) Therefore, we
treat this case as if the entire cell size had been read, regardless of the cell’s
fullness

Further, a circuit’s edges can heuristically distinguish interactive streams
from bulk streams by comparing the frequency with which they supply cells.
Tor can provide good latency for interactive streams by giving them prefer-
ential service, while still giving good overall throughput to the bulk streams.
Such preferential treatment presents a possible end-to-end attack, but an ad-
versary observing both ends of the stream can already learn this information
through timing attacks.

Even with bandwidth rate limiting, there is still a worry about congestion,
either accidental or intentional. If enough users choose the same OR-to-OR
connection for their circuits, that connection can become saturated. For exam-
ple, an attacker could send a large file through the Tor network to a webserver
he runs, and then refuse to read any of the bytes at the webserver end of the
circuit. Without some congestion control mechanism, these bottlenecks can
propagate back through the entire network. We do not need to reimplement-
full TCP windows (with sequence numbers, the ability to drop cells when we
are full and retransmit later, and so on), because TCP already guarantees
in-order delivery of each cell.

To control a circuit’s bandwidth usage, each OR keeps track of two win-
dows. The packaging window tracks how many relay data cells the OR is
allowed to package (from incoming TCP streams) for transmission back to
the OP, and the delivery window tracks how many relay data cells it is willing
to deliver to TCP streams outside the network. Each window is initialized (say,
to 1000 data cells). When a data cell is packaged or delivered, the appropriate
window is decremented. When an OR has received enough data cells (cur-
rently 100), it sends a relay sendme cell toward the OP, with streamID zero.
When an OR receives a relay sendme cell with streamID zero, it increments its
packaging window. Either of these cells increments the corresponding window
by 100. If the packaging window reaches 0, the OR stops reading from TCP
connections for all streams on the corresponding circuit, and sends no more
relay data cells until receiving a relay sendme cell.

The OP behaves identically, except that it must track a packaging window
and a delivery window for every OR in the circuit. If a packaging window
reaches 0, it stops reading from streams destined for that OR. The stream-
level congestion control mechanism is similar to the circuit-level mechanism.
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ORs and OPs use relay sendme cells to implement end-to-end flow control
for individual streams across circuits. Each stream begins with a packaging
window (currently 500 cells), and increments the window by a fixed value
(50) upon receiving a relay sendme cell. Rather than always returning a relay
sendme cell as soon as enough cells have arrived, the stream-level congestion
control also has to check whether data has been successfully flushed onto the
TCP stream; it sends the relay sendme cell only when the number of bytes
pending to be flushed is under some threshold (currently 10 cells’ worth).

4.3.2 Application of Symmetric Cipher and
Diffie-Hellman Key Exchange in Tor:
Efficiency Improvement

The suggestion to employ symmetric cipher and Diffie-Hellman key exchange
in Tor [34] is quite simple. To precisely assess its cost, we need to specify it in
detail. For simplicity of description, our specification focuses on efficiency im-
provement through symmetric cipher and Diffie-Hellman key exchange, while
the other optimisations of onion routing in Tor are ignored and the following
symbols are used .

• p and q are large primes and q is a factor of p−1.G is the cyclic subgroup
with order q in Z∗

p and g is a generator of G.

• Encryption of m using key k is denoted as Ek(m) where block cipher
(e.g., AES) is employed.

• Encryption chain of m using block cipher and key k1, k2, . . . , ki is de-
noted as Ek1,k2,...,ki

(m). The encryptions are performed layer by layer.
k1 is the the key used in the most outer layer; k2 is the the key used
in the second most outer layer; . . . ; ki is the the key used in the most
inner layer.

• In onion routing, the routers are P1, P2, . . . , Pn and the receiver is de-
noted as the last router Pn+1.

• The private key of Pi is xi, which is randomly chosen from Zq. The
corresponding public keys are y1, y2, . . . , yn where yi = gxi mod p for
i = 1, 2, . . . , n.

Symmetric ciphers like block ciphers are very efficient. However, unlike
asymmetric ciphers, they depend on key exchange protocols to distribute keys.
The most common is Diffie-Hellman key exchange protocol. Two parties A and
B can cooperate to generate a session key as follows.

1. A randomly chooses α from Zq and sends his key base µ = gα mod p to
B.
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2. B randomly chooses β from Zq and sends his key base ν = gβ mod p to
A.

3. A can calculate the key k = να mod p, while B can calculate the key
k = µβ mod p.

The famous Diffie-Hellman problem is as follows.

Definition 18 (Diffie-Hellman problem) Given µ and ν, it is difficult to cal-
culate k if the discrete logarithm problem is hard.

The suggested efficiency improvement in Tor is specified in details as fol-
lows where a message m is sent by a sender through n routers P1, P2, . . . , Pn

to a receiver Pn+1.

1. For the receiver and each router Pi where 1 ≤ i ≤ n + 1, the sender
randomly chooses an integer si from Zq and calculates k̂i = gsi mod p.

2. The sender sends k̂1 to P1, which returns k̂′1 = gs
′
1 mod p where s′1 is

randomly chosen from Zq. Both the sender and P1 obtains their session

key k1 = gs1s
′
1 mod p.

3. The sender sends Ek1(P2) and Ek1 (k̂2) to P1, who decrypts the two

ciphertexts using his session key and then sends k̂2 and k̂′1 to P2.

4. P2 randomly chooses s′2 from Zq and obtains his session key with the

sender k2 = k̂
s′2
2 = gs2s

′
2 and his session key with P1, K1,2 = K1,2k̂′

s′2
1 .

He sends gs
′
2 to P1 and the sender such that session keys are established

between P2 and the previous nodes. The following routers perform the
same operations and finally every Pi obtains his session key ki = gs1s

′
i

where s′i is randomly chosen by Pi.

5. The sender encrypts the message m, the key base list gs1 , gs2 , . . . , gsn+1

and the route list p1, p2, . . . , pn+1 as follows.

(a) He calculates e = Ek1,k2,...,kn+1(m).

(b) He calculates Ki = Ek1,k2,...,ki−1(g
si) for i = 1, 2, . . . , n+ 1.

(c) He calculates pi = Ek1,k2,...,ki
(Pi+1) for i = 1, 2, . . . , n + 1 where

Pn+2 = Pn+1.

(d) He sends out the initial onion

O1 = (a1, b1,1, b1,2, . . . , b1,n+1,

c1,1, c1,2, . . . , c1,n+1)

= (e,K1,K2, . . . ,Kn+1, p1, p2, . . . , pn+1)

to P1.
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6. Each router Pi routes the onion as follows where the onion is in the form
Oi = (ai, bi,1, bi,2, . . . , bi,n+1, ci,1, ci,2, . . . , ci,n+1) when it is sent to Pi.

(a) Pi generates his session key ki = bxi

i,1 mod p.

(b) Pi uses ki to decrypt ci,j for j = 1, 2, . . . , n+1 and obtains Pi+1 =
Dki

(ci,1).

(c) Pi uses ki to decrypt ai and obtains ai+1 = Dki
(ai).

(d) Finally, Pi sends

Oi+1 = (ai+1, bi+1,1, bi+1,2, . . . ,

bi+1,n+1, ci+1,1, ci+1,2, . . . , ci+1,n+1)

to Pi+1 where bi+1,j = Dki
(bi,j+1) and ci+1,j = Dki

(ci,j+1) for j =
1, 2, . . . , n and bi+1,n+1 and ci+1,n+1 are two random integers in the
ciphertext space of the employed symmetric encryption algorithm.

7. At last, Pn+1 receives

On+1 = (an+1, bn+1,1, bn+1,2, . . . ,

bn+1,n+1, cn+1,1, cn+1,2, . . . , cn+1,n+1)

and operates as follows.

(a) Pn+1 generates his session key kn+1 = b
xn+1

n+1,1 mod p.

(b) Pn+1 uses kn+1 to decrypt cn+1,j and obtains Pn+1 =
Dkn+1(cn+1,1).

(c) Pn+1 knows that he is the receiver as Pn+1 is his own identity.

(d) Pn+1 uses kn+1 to decrypt an+1 and obtains m = Dkn+1(an+1).
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Chapter 5

Optimisation and Practical
Application of Onion
Routing

Various applications of onion routing have their special practical requirements.
When stronger anonymity is required and more routers are employed, effi-
ciency becomes critical and the intensive operations (especially those asym-
metric cipher operations) need to be reduced. When applied to verifiable ap-
plications, onion routing should provide verification of its routing operations
to guarantee that the routed message is not lost or tampered with. Sometimes,
two parties need to interactively communicate with each other and two-way
anonymous communciation must be supported, so the normal one-way onion
routing needs to be extended to run in a two-way manner.

5.1 Verifiable TOR: a Verifiable Application
of Onion Routing

An obvious advantage of onion routing over other specifications of anonymous
communication network (e.g., mix networks [42, 74, 52, 75, 41, 93, 90, 51],
which send multiple messages from a unique sender to a unique receiver
through a unique path) is that each of the multiple senders can send his mes-
sage to any of multiple receivers and freely choose a dynamic routing path
and so higher flexibility and applicability are achieved. Another advantage
of onion routing is that Tor, its second generation, gets rid of costly asym-
metric encryptions and decryptions, which are inevitable in other anonymous
communication systems like mix networks.

In this section, verifiable onion routing is designed. More precisely, its ad-
vanced and practical variant, Tor, is optimised to achieve verifiability. Firstly,
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a verification mechanism is designed. After a receiver receives a message, the
onion packet of the message goes through some additional routing and finally
goes back to the sender. It carries a receipt from the receiver to the sender.
The sender can check the receipt to verify reception of his message by the
receiver without tampering. Although this extended routing doubles the cost
and exposes more transactions to the attacks based on traffic monitoring, it
fills a gap and extends applicability of onion routing. Moreover, as suggested
in Section 5.1.2, choice of the length and routers of the inbound routing can
be made as random as possible (e.g., with the possibility to employ a couple
of routers on the outbound route).

5.1.1 Preliminaries

Symbol denotions and background knowledge to be used are introduced in
this section.

• p and q are large primes and q is a factor of p−1.G is the cyclic subgroup
with order q in Z∗

p . g is a generator of G.

• Encryption of m using key k is denoted as Ek(m) where a block cipher
(e.g., AES) is employed.

• Encryption chain of m using block cipher and key k1, k2, . . . , ki is de-
noted as Ek1,k2,...,ki

(m). The encryptions are performed layer by layer.
k1 is the the key used in the outer most layer; k2 is the the key used
in the second outer most layer; . . . ; ki is the the key used in the inner
most layer.

• In onion routing, the routers and receiver are denoted as P1, P2, . . . ,.

• The private key of Pi is xi, which is randomly chosen from Zq. The
corresponding public key is yi = gxi mod p.

Symmetric ciphers like block ciphers are very efficient in encryption and
decryption. However, unlike asymmetric ciphers, they depend on key exchange
protocols to distribute keys. The most common is Diffie-Hellman key exchange
protocol. Two parties A and B can cooperate to generate a session key as
follows.

1. A randomly chooses α from Zq and sends his key base µ = gα mod p to
B.

2. B randomly chooses β from Zq and sends his key base ν = gβ mod p to
A.

3. A can calculate the session key k = να mod p, while B can calculate the
session key k = µβ mod p.
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Security of this key exchange protocol depends on hardness of the famous
Diffie-Hellman problem as recalled in the following.

Definition 19 (Diffie-Hellman problem defined in Page 28 of Chapter 3 of
[71]) Given µ and ν, it is difficult to calculate k if the discrete logarithm
problem is hard.

5.1.2 Advanced Tor with a Verification Mechanism

The advanced Tor protocol adopts two simple ideas. Firstly, an onion packet
obtains a receipt from its receiver and is then routed back to its sender.
Secondly, symmetric cipher is employed in encryption and decryption of the
onion layers, while every router’s secret session key is distributed by the sender
using a separate Diffie-Hellman handshake. This protocol is useful in three
aspects. Firstly, it is the first verifiable onion routing protocol. Secondly, it
is the first detailed implementation of symmetric cipher and supporting key
distribution mechanism in onion routing as a key distribution for symmetric
cipher is not implemented in detail in the description of Tor in [34].

In the verifiable Tor protocol, a message m is sent by a sender S through
n routers P1, P2, . . . , Pn to a receiver Pn+1. Encryption of the message may
actually contain multiple symmetric ciphertext blocks as the message may be
long and is divided into multiple blocks when encrypted. For convenience of
description, encryption of the message is still denoted as a single variable and
the readers should be aware that it is the encryption of the whole message
and may contain multiple blocks. Although a different number of routers can
be chosen to route the receipt back to the sender, for simplicity of description
and efficiency comparison (in Section 5.3.4), we suppose that it is sent by
the receiver back to the sender through n routers Pn+2, Pn+3, . . . , P2n+1. In
practice it is very probable that the number of routers to transfer the receipt
is different from the number of routers to transfer the message. The two sets
of routers do not have to be completely different and some routers may be
employed in both transfers. Moreover, the same tagging mechanism in the
protocol is employed in the optimisation to add random ciphertexts to the end
of the onion packet to keep its length unchanged. The protocol is described
as follows.

1. For the receiver and the routers Pi for 1 ≤ i ≤ 2n + 1, the sender
randomly chooses an integer si from Zq and generates a session key
ki = ysii .

2. The sender encrypts the message m, the key base list gs1 , gs2 , . . . , gs2n+1

and the route list p1, p2, . . . , p2n+1, S as follows.

(a) He calculates e = Ek1,k2,...,kn+1(Pn+1,m).

(b) He calculates Ki = Ek1,k2,...,ki−1(g
si) for i = 2, 3, . . . , 2n+ 1.
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(c) He calculates pi = Ek1,k2,...,ki
(Pi+1) for i = 1, 2, . . . , 2n+ 1 where

P2n+2 = S.

(d) He sends out the initial onion packet

O1 = (a1, b1,1, b1,2, . . . , b1,2n+1, c1,1, c1,2, . . . , c1,2n+1)

= (e,K1,K2, . . . ,K2n+1, p1, p2, . . . , p2n+1)

to P1 where K1 = gs1 mod p.

3. For i = 1, 2, . . . , n each router Pi routes the onion packet
as follows where the onion he receives is in the form Oi =
(ai, bi,1, bi,2, . . . , bi,2n+1, ci,1, ci,2, . . . , ci,2n+1).

(a) Pi generates his session key ki = bxi

i,1 mod p.

(b) Pi uses ki to decrypt ci,1 and obtains Pi+1 = Dki
(ci,1).

(c) Pi sends

Oi+1 = (ai+1, bi+1,1, bi+1,2, . . . , bi+1,2n+1, ci+1,1, ci+1,2, . . . , ci+1,2n+1)

to Pi+1 where ai+1 = Dki
(ai), bi+1,j = Dki

(bi,j+1) and ci+1,j =
Dki

(ci,j+1) for j = 1, 2, . . . , 2n and bi+1,2n+1 and ci+1,2n+1 are
two random ciphertexts in the ciphertext space of the employed
symmetric encryption algorithm.

4. After the routing by P1, P2, . . . , Pn, the receiver Pn+1 receives

On+1 =(an+1, bn+1,1, bn+1,2, . . . , bn+1,2n+1, cn+1,1, cn+1,2, . . . ,

cn+1,2n+1)

and operates as follows.

(a) Pn+1 generates his session key kn+1 = b
xn+1

n+1,1 mod p.

(b) Pn+1 uses kn+1 to decrypt cn+1,1 and obtains Pn+2.

(c) Pn+1 uses kn+1 to decrypt an+1 and obtains the message m and
his own identity Pn+1. He knows that he is the receiver as Pn+1

is his own identity. So he generates an+2 = H(m) where H() is a
one-way and collision-free hash function.

(d) Pn+1 sends

On+2 =(an+2, bn+2,1, bn+2,2, . . . , bn+2,2n+1, cn+2,1, cn+2,2, . . . ,

cn+2,2n+1)

to Pn+2 where bn+2,j = Dkn+1(bn+1,j+1) and cn+2,j =
Dkn+1(cn+1,j+1) for j = 1, 2, . . . , 2n and bn+2,2n+1 and cn+2,2n+1

are two random ciphertexts in the ciphertext space of the employed
symmetric encryption algorithm.
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5. For i = n + 2, n + 3, . . . , 2n + 1 each router Pi routes the onion
packet as follows where the onion he receives is in the form Oi =
(ai, bi,1, bi,2, . . . , bi,2n+1, ci,1, ci,2, . . . , ci,2n+1).

(a) Pi generates his session key ki = bxi

i,1 mod p.

(b) Pi uses ki to decrypt ci,1 and obtains Pi+1 = Dki
(ci,1).

(c) Pi sends

Oi+1 =(ai+1, bi+1,1, bi+1,2, . . . , bi+1,2n+1, ci+1,1, ci+1,2, . . . ,

ci+1,2n+1)

to Pi+1 where ai+1 = Dki
(ai), bi+1,j = Dki

(bi,j+1) and ci+1,j =
Dki

(ci,j+1) for j = 1, 2, . . . , 2n and bi+1,2n+1 and ci+1,2n+1 are
two random ciphertexts in the ciphertext space of the employed
symmetric encryption algorithm.

6. After the routing by Pn+2, Pn+3, . . . , P2n+1, the sender S receives

O2n+2 = (a2n+2, b2n+2,1, b2n+2,2, . . . , b2n+2,2n+1,

c2n+2,1, c2n+2,2, . . . , c2n+2,2n+1)

and operates as follows.

(a) S calculates k = bx2n+2,1 mod p where x is his own private key.

(b) S tries to use k to decrypt c2n+2,1 but does not obtain a legal
identity in its correct format.1 He knows that he is not a router or
receiver of the onion packet. The only possibility is that his own
onion packet is returned by the receiver.

(c) S calculates h = Ekn+2,kn+3,...,k2n+1(a2n+2). If h = H(m), he is
ensured that Pn+1 receives m. Otherwise, he can tell that routing
of his message m fails and he will resend it.

Note that although the encryption chain for the next router’s identity
is completely decrypted and discarded by each router, the length of the en-
crypted route list is kept unchanged in the advanced Tor protocol for the sake
of untraceability. If an onion packet becomes shorter after each router’s rout-
ing, its change in length can be observed and exploited to trace it. So we keep
the length of the encrypted route list constant to maintain the size of an onion
packet. This is implemented in the protocol by inserting a random tag into
the onion packet after an encryption chain is discarded. This verifiable Tor
protocol only employs symmetric cipher in encryption and decryption opera-
tions. The only public key cryptographic operations in it are 2n+1 instances
of Diffie-Hellman key exchange. Although needing more encryption and de-
cryption operations than traditional onion routing, it is still more efficient in
computation than the latter.

1The concrete format of a legal participant’s identity depends on the concrete application
and can be regulated by the organizer.
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5.2 Efficiency Improvment Using
Diffie-Hellman Chain

The key technique in onion routing is encryption chain, in which a message is
successively encrypted with multiple keys. More precisely, multiple keys form
a chain and are employed one by one to encrypt a message. Along with the
message, each of the identities of all the routers on its routing path is encrypted
in an encryption chain using the encryption keys of all the routers before it.
When an onion packet is routed by a router, the router partially unwraps
it by removing one layer of encryption from each of its encryption chains.
At the same time the router recovers the identity of the next router and then
forwards the partially decrypted packet to it. In onion routing, the encryption
chains are originally implemented through asymmetric cipher. Namely, the
messages and identities of the routers are encrypted using the routers’ public
keys and the routers unwrap the onion packet using their private keys. An
advantage of using asymmetric cipher is that with the support of PKI or
ID-based public key system no special key exchange operation is needed. As
in an n-router onion routing, there are n + 1 encryption chains (one for the
message and the others for the routers and the receiver) and O(n2) encryption
and decryption operations, so that an implementation through an asymmetric
cipher is inefficient.

Tor [34] as the second generation of onion routing proposes a few optimi-
sations. A suggested optimisation in Tor is to replace an asymmetric cipher
with a much more efficient symmetric cipher to improve efficiency of onion
routing. It is common sense that a symmetric cipher is much more efficient
than an asymmetric cipher. The key point in using symmetric cipher is how
to distribute the session keys using public key operations, while a simple so-
lution to the key-exchange problem in application of symmetric cipher is the
Diffie-Hellman key exchange protocol. It is suggested in Tor [34] to employ
Diffie-Hellman handshake to implement key changes and generate session keys
for the routers. However the detailed study of the key exchange mechanism
in Section 4.3.2 illustrates that although improving computational efficiency
of the routers, the suggested efficiency improvement in Tor [34] is not very
satisfactory. Firstly, it greatly increases communicational cost. Secondly, the
sender’s computational cost is still high.

The symmetric cipher-based key chain in Tor [34] is optimised in this sec-
tion. Firstly, the Diffie-Hellman handshake is optimised and the number of
communication rounds is reduced in Tor to obtain a simple optimisation.
As it is still a direct application of Diffie-Hellman key exchange, its effi-
ciency improvement is still not satisfactory. The Diffie-Hellman key exchange
is then extended and adapted for onion routing in a more advanced way such
that a sender can efficiently distribute the sysmmetric sessions keys to the
routers through the onion packet. The new key exchange technique is called
Diffie-Hellman chain, which chains up the Diffie-Hellman handshakes for the
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routers and receiver such that they are much more efficient then separate
Diffie-Hellman handshakes. An efficient onion routing protocol is designed in
Section 5.2.2. It employs Diffie-Hellman chain and block cipher encryption
chain to improve computational and communicational efficiency of Tor. The
new onion routing protocol is more appliable than most onion routing imple-
mentations including Tor. Networks with smaller bandwidth and lower-power
routers can employ them to achieve anonymity.

5.2.1 A Simple Optimisation of Tor and its Drawback:
Simpler but Still Direct Application
of Diffie-Hellman Key Exchange

A simple optimisation of Tor is proposed in this section. As in the original
onion routing (and many other cryptographic protocols), it assumes that every
router and the receiver have discrete-logarithm-based public key encryption
algorithms (e.g., El Gamal encryption) and already set up their public keys so
that half of the preparation work in Diffie-Hellman key exchange can be saved.
Moreover, multiple rounds of communication between each pair of participants
are combined to improve communication efficiency. It still employs Diffie-
Hellman handshakes in the staightforward way and is described as follows.

1. For the receiver and each router Pi where 1 ≤ i ≤ n + 1, the sender
randomly chooses an integer si from Zq and generates a session key
ki = ysii .

2. The sender encrypts the message m, the key base list gs1 , gs2 , . . . , gsn+1

and the route list p1, p2, . . . , pn+1 as follows.

(a) He calculates e = Ek1,k2,...,kn+1(m).

(b) He calculates Ki = Ek1,k2,...,ki−1(g
si) for i = 1, 2, . . . , n+ 1.

(c) He calculates pi = Ek1,k2,...,ki
(Pi+1) for i = 1, 2, . . . , n + 1 where

Pn+2 = Pn+1.

(d) He sends out the initial onion

O1 = (a1, b1,1, b1,2, . . . , b1,n+1,

c1,1, c1,2, . . . , c1,n+1)

= (e,K1,K2, . . . ,Kn+1, p1, p2, . . . , pn+1)

to P1.

3. Each router Pi routes the onion as follows where the onion is in the form
Oi = (ai, bi,1, bi,2, . . . , bi,n+1, ci,1, ci,2, . . . , ci,n+1) when it is sent to Pi.

(a) Pi generates his session key ki = bxi

i,1 mod p.

(b) Pi uses ki to decrypt ci,j for j = 1, 2, . . . , n+1 and obtains Pi+1 =
Dki

(ci,1).
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(c) Pi uses ki to decrypt ai and obtains ai+1 = Dki
(ai).

(d) Finally, Pi sends

Oi+1 = (ai+1, bi+1,1, bi+1,2, . . . ,

bi+1,n+1, ci+1,1, ci+1,2, . . . , ci+1,n+1)

to Pi+1 where bi+1,j = Dki
(bi,j+1) and ci+1,j = Dki

(ci,j+1) for j =
1, 2, . . . , n and bi+1,n+1 and ci+1,n+1 are two random integers in the
ciphertext space of the employed symmetric encryption algorithm.

4. At last, Pn+1 receives

On+1 = (an+1, bn+1,1, bn+1,2, . . . ,

bn+1,n+1, cn+1,1, cn+1,2, . . . , cn+1,n+1)

and operates as follows.

(a) Pn+1 generates his session key kn+1 = b
xn+1

n+1,1 mod p.

(b) Pn+1 uses kn+1 to decrypt cn+1,j and obtains Pn+1 =
Dkn+1(cn+1,1).

(c) Pn+1 knows that itself is the receiver as Pn+1 is its own identity.

(d) Pn+1 uses kn+1 to decrypt an+1 and obtains m = Dkn+1(an+1).

This modified Tor protocol only employs symmetric cipher in encryption
and decryption operations. The only public key operations in it are n + 1
instances of Diffie-Hellman key exchange. Although more encryption and de-
cryption operations are needed than in traditional onion routing, it is still more
efficient in computation. However, it is less efficient in communication than
traditional onion routing as its onion packet contains additional encrypted key
bases bi,1, bi,2, . . . , bi,n+1. So its advantage in efficiency is not obvious. There-
fore, it is only a prototype, while our final proposal is based on it but has
higher requirements on efficiency: only using symmetric ciphers in encryption
and decryption in comparison with traditional onion routing

• very little additional communication (e.g., one more integer) is needed;

• no more additional encryption or decryption operation is needed.

5.2.2 A New and More Advanced Technique:
Diffie-Hellman Chain

The simple optimisation protocol in Section 5.2.1 has demonstrated that direct
application of Diffie-Hellman key exchange to onion routing (including original
onion routing and Tor) cannot achieve satisfactory advantages in efficiency. To
reduce additional communication and encryption and decryption operations,
a novel technique, Diffie-Hellman chain, is designed. The Diffie-Hellman key
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bases for all the routers and the receiver are sealed in the Diffie-Hellman chain,
which appears in each onion packet in the form of a single integer. For each
router to generate his session key, he needs his private key and a key base
initially sealed in the Diffie-Hellman chain by the sender and then recovered
by cooperation of all the previous routers in the course of routing. As only one
single integer is needed in each onion packet to represent the Diffie-Hellman
chain and commit to all the Diffie-Hellman key bases, a very small amount of
additional communication is employed and no more encryption (decryption)
operation is needed in comparison with traditional onion routing.

A new protocol, called compressed onion routing, is proposed. A packet
(onion) consists of three parts: message, route list and key base. Route list
contains the identities of all the nodes on the route. Key base is the base
to generate the session keys (symmetric keys) distributed to the nodes. The
message part in compressed onion routing is similar to that in most onion
routing schemes. The message is encrypted in an encryption chain using the
sessions keys of all the nodes. The readers only need to note that efficient block
cipher is employed in the encryption chain. In compressed onion routing, the
route list is the same as in other onion routing schemes. It consists of all the
routers’ identities. One encryption chain is used to seal each router’s identity
using the session keys of all the routers before it. The readers only need to
note that efficient block cipher is employed in the encryption chains for the
route list.

The most important novel technique is generation and update of the key
base, which enables key exchange. Each router builds his session key on the
base of the key base using his private key and update the key base for the
next router. The key generation function is similar to Diffie-Hellman key gen-
eration, but we do not employ separate Diffie-Hellman key exchange protocols
to distribute the session keys to the routers. Instead the key base updating
mechanism actually generates a key base chain and so all the session keys and
their generation functions are linked in a chain structure. The key exchange
technique is called Diffie-Hellman chain. After obtaining his session key, each
router can extract the identity of the next router from the route list using his
session key, remove one layer of encryption from the message using his session
key and then forward the onion to the next router. The Diffie-Hellman chain
only needs the bandwidth of one integer, and thus is much more efficient than
separate key distribution in communication. Novelty of the new compressed
onion routing protocol is that distribution of the sessions keys and encryp-
tion of the routers’ identities are compressed such that fewer computationally
costly public key operations and communicationally costly encryption chains
are needed.

Suppose a message m is sent by a sender through n routers P1, P2, . . . , Pn

to the receiver Pn+1. Firstly, the sender generates the session keys
k1, k2, . . . , kn+1 respectively for P1, P2, . . . , Pn+1 as follows.

1. The sender randomly chooses an integer s1 from Zq.
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2. The sender calculates P1’s session key k1 = ys11 mod p.

3. The sender calculates s2 = s1 + k1 mod q.

4. The sender calculates P2’s session key k2 = ys22 mod p.

5. . . . . . .

6. . . . . . .

7. The sender calculates sn+1 = sn + kn mod q.

8. The sender calculates Pn+1’s session key kn+1 = y
sn+1

n+1 mod p.

Generally speaking, for i = 1, 2, . . . , n+ 1,

1. If i > 1 the sender calculates si = si−1 + ki−1 mod q as his secret seed
in the Diffie-Hellman chain for generation of ki.

2. The sender calculates ki = ysii where s1 is randomly chosen from Zq.

In summary, the sender uses the sum of the previous node’s session key and
his secret seed in the Diffie-Hellman generation of the previous node’s session
key as his secret seed to generate a node’s Diffie-Hellman session key. The
other secret seed to generate the node’s session key is the node’s private key.

The route list consists of p1, p2, . . . , pn+1 where pi = Ek1,k2,...,ki
(Pi+1)

and Pn+2 = Pn+1. The message is encrypted into e = Ek1,k2,...,kn+1(m). The
onion is in the form of Oi = (ai, bi, ci,1, ci,2, . . . , ci,n+1) when it reaches Pi

where ai is the encrypted message, bi is the key base, and ci,1, ci,2, . . . , ci,n+1

is the encrypted route list. Note that although the encryption chain for the
next router’s identity is completely decrypted and discarded by each router,
the length of the encrypted route list is kept unchanged for the sake of
untraceability. If an onion packet becomes shorter after each router’s rout-
ing, its change in length can be observed and exploited to trace it. So we
keep the length of each encrypted route list constant to maintain the size
of onion packets. This can be implemented by inserting a random tag into
the onion packets after they discard an encryption chain. The initial onion
O1 = (a1, b1, c1,1, c1,2, . . . , c1,n+1) = (e, gs1 , p1, p2, . . . , pn+1). Note that e may
actually contain multiple symmetric ciphertext blocks as the message may
be long and is divided into multiple blocks when being encrypted. For con-
venience of description, encryption of the message is still denoted as a single
variable and the readers should be aware that it is the encryption of the whole
message and may contain multiple blocks.

P1 receives O1 = (a1, b1, c1,1, c1,2, . . . , c1,n+1) from the sender and then
operates as follows.

1. P1 generates his session key k1 = bx1
1 mod p.

2. P1 uses k1 to decrypt c1,j for j = 1, 2, . . . , n + 1 and obtains P2 =
Dk1(c1,1).
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3. P1 uses k1 to decrypt a1 and obtains a2 = Dk1(a1).

4. P1 calculates the new key base b2 = b1g
k1 mod p.

Finally, P1 sends O2 = (a2, b2, c2,1, c2,2, . . . , c2,n+1) to P2 where c2,i =
Dk1(c1,i+1) for i = 1, 2, . . . , n and c2,n+1 is a random integer in the ciphertext
space of the employed block encryption algorithm.

More generally, for i = 1, 2, . . . , n each Pi receives Oi = (ai, bi, ci,1, ci,2, . . . ,
ci,n+1) and operates as follows.

1. Pi generates his session key ki = bxi

i mod p.

2. Pi uses ki to decrypt ci,j for j = 1, 2, . . . , n + 1 and obtains Pi+1 =
Dki

(ci,1).

3. Pi uses ki to decrypt ai and obtains ai+1 = Dki
(ai).

4. Pi calculates the new key base bi+1 = big
ki mod p.

Finally, Pi sends Oi+1 = (ai+1, bi+1, ci+1,1, ci+1,2, . . . , ci+1,n+1) to Pi+1 where
ci+1,j = Dki

(ci,j+1) for j = 1, 2, . . . , n and ci+1,n+1 is a random integer in the
ciphertext space of the employed symmetric encryption algorithm.

At last, Pn+1 receives On+1 = (an+1, bn+1, cn+1,1, cn+1,2, . . . , cn+1,n+1)
and operates as follows.

1. Pn+1 generates his session key kn+1 = b
xn+1

n+1 mod p.

2. Pn+1 uses kn+1 to decrypt cn+1,j and obtains Pn+1 = Dkn+1(cn+1,1).

3. Pn+1 knows that itself is the receiver as Pn+1 is its own identity.

4. Pn+1 uses kn+1 to decrypt an+1 and obtains m = Dkn+1(an+1).

5.2.3 Analysis and Comparison

Security of the compressed onion routing scheme depends on hardness of
Diffie-Hellman problem as its key exchange mechanism is an extension of
Diffie-Hellman key exchange. Its main trick is combining key exchange with
encryption chain such that every router can obtain his session key with the
help of the previous router. As security of Diffie-Hellman key exchange has
been formally proved and hardness of the Diffie-Hellman problem is widely
accepted, no further proof of security is needed except for Theorem 21, which
shows that the session keys can be correctly exchanged.

Theorem 21 For j = 1, 2, . . . , n + 1, the same session key ki is generated,
respectively by the sender as ki = ysii mod p and by Pi as ki = bxi

i mod p.

To prove Theorem 21, a lemma has to be proved first.

Lemma 12 For j = 1, 2, . . . , n+ 1, bi = gsi mod p.
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Proof: Mathematical induction is used.

1. When i = 1, b1 = gs1 mod p.

2. When i = j, suppose bj = gsj mod p. Then a deduction can be made in
next step.

3. When i = j + 1, bj+1 = bjg
kj = gsjgkj mod p as supposed in the last

step that bi = gsi when i = j. So

bj+1 = gsjgkj = gsj+kj = gsj+1 mod p

Therefore, bi = gsi mod p for j = 1, 2, . . . , n + 1 as a result of mathematical
induction. ✷

Proof of Theorem 21:
According to Lemma 12,

ysii = gxisi = bxi

i mod p

for j = 1, 2, . . . , n+ 1. ✷

Efficiency comparison between our new onion routing protocol and the
existing anonymous communication channels is given in Table 5.1, Table 5.2,
Table 5.3 and Table 5.4 where AOR stands for asymmetric cipher-based onion
routing and COR stands for compressed onion routing. The first table shows
the advantage of our new technique over the existing anonymous communica-
tion channels including onion routing and mix networks. The last three tables
show our optimisation of onion routing. It is assumed that the employed block
cipher is 256-bit AES. For simplicity, it is assumed that the message is one
block long, while the size of one block of the employed block cipher should
be large enough for a router’s identity. All the ciphertexts are one block long
in our analysis, which does not lose generality and can be extended to long
message cases in a straightforward way. As for asymmetric ciphers in AOR,
it is supposed that El Gamal encryption, which is the most popular with
onion routing, is employed. More precisely, it is assumed that the El Gamal
encryption algorithm uses 1024-bit integers. Comparison in the four tables il-
lustrates that great efficiency improvement is achieved in the two compressed
onion routing protocols.

Compressed onion routing greatly improves efficiency by using symmet-
ric ciphers and Diffie-Hellman chains. It needs smaller packet size and less
computation than the existing onion routing schemes including TOR.

5.2.4 Further Optimisation: Small Compressed
Onion Routing

Although compressed onion routing greatly improves computational efficiency,
it is still not efficient enough in communication. It employs n+ 2 encryption
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Table 5.1: Comparison of anonymous communication channels

Scheme Public key exponentiation Flexibility and
applicability

Mix network ≥ 6n+ 4 No
AOS 2(n+ 1)(n+ 4) Yes
Tor 2(2n− 1) Yes
COR 3(n+ 1) Yes

Table 5.2: Computational efficiency comparison for sender

Scheme Public key exponentiation Block cipher encryption

AOS (n+ 1)(n+ 4) 0
Tor n+ 1 (n+ 1)(1 + (3n+ 2)/2)
COR n+ 1 (n+ 1)(1 + (n+ 2)/2)

Table 5.3: Computational efficiency comparison for router (receiver)

Scheme Average public key Average block cipher
exponentiation decryption

AOS n+ 4 0
Tor 3 2(n+ 1)
COR 2 (n+ 4)/2

Table 5.4: Communicational efficiency comparison

Scheme Number of bits in onion packet Rounds

AOS 2048(n+ 2) n+ 1
Tor 256(n+ 2) (n+ 1)(n+ 3)
COR 256(n+ 2) + 1024 n+ 1
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chains, so its packet contains n + 2 ciphertexts. To improve communication
efficiency, we can compress the whole route list into one encryption chain
to design a further improved onion routing protocol called small compressed
onion routing. To support this improvement on the size of onion packets, an
on-line index table is needed. It can be set up on a server and any one can look
it up. The message encryption and session key exchange in small compressed
onion routing are unchanged, but only one encryption chain in the form of
one ciphertext is needed for the route list. Using this mechanism, not only the
size of an onion packet is much smaller but also the number of decryptions is
greatly reduced. Its detailed specification is described as follows.

1. The sender calculates ci = Eki,ki+1,...,kn+1(Pn+1) for i = 1, 2, . . . , n+ 1.

2. The sender calculates di = ci⊕Pi−1 for i = 2, 3, . . . , n and inserts (di, Pi)
for i = 2, 3, . . . , n into the index table. The data in the index table are
listed in increasing order of di.

The initial onion is O1 = (a1, b1, c1). P1 receives O1 = (a1, b1, c1) from the
sender and then operates as follows.

1. P1 generates his session key k1 = bx1
1 mod p.

2. P1 uses k1 to decrypt c1 and obtains c2 = Dk1(c1).

3. P1 calculates d = c2 ⊕ P1.

4. P1 looks up d in the index table and finds the identity stored together
with it, namely the identity of the next router P2.

5. P1 uses k1 to decrypt a1 and obtains a2 = Dk1(a1).

6. P1 calculates the new key base b2 = b1g
k1 mod p.

7. P1 sends O2 = (a2, b2, c2) to P2.

More generally, for i = 1, 2, . . . , n each Pi receives Oi = (ai, bi, ci) and
operates as follows.

1. Pi generates his session key ki = bxi

i mod p.

2. Pi uses ki to decrypt ci and obtains ci+1 = Dki
(ci).

3. Pi calculates d = ci+1 ⊕ Pi.

4. P1 looks up d in the index table and finds the identity stored together
with it, namely the identity of the next router Pi+1.

5. Pi uses ki to decrypt ai and obtains ai+1 = Dki
(ai).

6. Pi calculates the new key base bi+1 = big
ki mod p.
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7. Pi sends Oi+1 = (ai+1, bi+1, ci+1) to Pi+1.

At last, Pn+1 receives On+1 = (an+1, bn+1, cn+1) and operates as follows.

1. Pn+1 generates his session key kn+1 = b
xn+1

n+1 mod p.

2. Pn+1 uses kn+1 to decrypt cn+1 and obtains Pn+1 = Dkn+1(cn+1).

3. Pn+1 knows that he is the receiver as Pn+1 is his own identity.

4. Pn+1 uses kn+1 to decrypt an+1 and obtains m = Dkn+1(an+1).

5.3 A Practical Application: Paid and
Anonymous Use of Cloud Softwares

In the era of cloud computing, it is very popular for software users to rent
the softwares they need and use them on-line instead of buying them and
installing them locally. After paying the renting cost to a software provider,
a user can use the rent cloud software on-line in two steps. Firstly, he sends
the software provider his input to the software. Then, the software provider
runs the software with the input and returns the output to the user. Software
renting in the cloud has some obvious advantages as the user does not need
to care about the software except knowing that it runs in the cloud. Rent-
ing a software is cheaper than buying it. Secondly, the users do not need to
provide local hardware to run the software. Thirdly, the users do not need
to worry about system maintenance and software updates. Fourthly, the soft-
ware provider does not need to worry about copyright violation. However,
this new trend raises some security concerns. One of them is privacy of the
users as both their inputs to the softwares and the softwares’ outputs to them
are transmitted on-line between the users and the software providers. Many
users do not want to reveal their inputs to some softwares and the returned
outputs to other parties as they may contain sensitive information. For ex-
ample, users of financial management softwares will not reveal their financial
data and users of market analysis softwares will not reveal the analysis result.
Privacy of users of cloud rent softwares has the following two requirements.

• Their inputs to the softwares and the softwares’ outputs to them are
confidential when transmitted on the Internet.

• Their inputs to the softwares and the softwares’ outputs to them are
confidential to the software providers. At least the software providers
cannot link the identities of the users to their inputs and outputs. Even
if a software provider receives an input and runs it to obtain an output,
he has no idea to which user they belong.

The first requirement is not hard to satisfy: encrypting the inputs and
outputs when they are transmitted on the Internet is enough. Of course, key
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exchange between the software users and software providers is needed. The
second requirement is harder to satisfy. A software user has to inject an in-
put into the software and extract an output from it. The only way to hide
the input and the output from the software provider is to design a software
able to process encrypted input and returns an encrypted output. Although
in theory secure computation techniques [29, 58, 61] can process secret in-
puts and calculate their functions, in practice there are some difficulties in
applying them to private usage of cloud softwares. Firstly, practical softwares
usually employ complex computations and implement them through secure
computation is complex and costly, especially when the software provider is
a single party and cannot employ multi-party secure computation techniques
[13, 32, 14, 31]. Secondly, different software users employ different encryp-
tion keys and no existing secure computation techniques can process inputs
encrypted with different keys. So, to the best of our knowledge, there is no
practical software accepting an encrypted input and returning an encrypted
output.

A practical solution to private usage of cloud software is anonymizing the
users. Namely, although a software provider receives an input from a user,
runs it on the software and returns an output to the user, he cannot link the
input and the output to the user as the user is anonymous. More precisely,
although the software provider knows the input and the output in plaintext,
he cannot link them to users who access the software service anonymously.
Anonymity of the software users raises another question: how to authenticate
the anonymous users and guarantee that only qualified users can access the
software. An obvious solution for anonymous authentication is pseudonym. In
private usage of cloud software, pseudonym technique must cooperate with a
billing system as very often paid usage to a cloud software is not permanent.
A legal user usually buys a certain time of usage of a software such that his
access to the software is permitted until his time of usage runs out. Therefore,
anonymous authentication for a limited number of times must be supported.

After anonymous authentication for a limited number of times is imple-
mented, there is another practical consideration: the software users’ network
connection to the software providers must be anonymous and not traceable.
Otherwise, even if a user uses a pseudonym to access a software, he can still be
traced through his network connection (e.g., his IP address). An anonymous
communication network is needed. The most common anonymous communi-
cation network is onion routing [44, 45, 20], whose most popular real-world
version is Tor [34]. However, application of onion routing to private usage of
cloud software faces a challenge: onion routing is usually one-way and only
deals with a transmit from a sender to a receiver where the receiver does not
respond to the sender. More precisely, although a software user can submit
his pseudonym and input to a software provider through onion routing, the
software provider still needs additional support to return the output of the
software to the software user as the user is anonymous and his location is un-
known. Therefore, a two-way anonymous communication network is needed.
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In this section, onion routing is optimised to support anonymous usage of
cloud software. Firstly, an anonymous token technique is proposed to enable
the software users to buy tokens from the software providers and use them
anonymously. A token from a software provider permits a software user to use
the software of the provider once. A special mechanism prevents the users from
tampering with their tokens or reusing them. Secondly and more importantly,
a two-way onion routing technique is proposed to support two-way anonymous
communication between the software providers and the software users. As
efficiency of onion routing deteriorates after extension to two-way use, an
efficiency improvement mechanism is applied to it to prevent its high efficiency
from being compromised.

5.3.1 How to Obtain Anonymous Usage Permit
of a Cloud Software: Anonymous Token

If a software provider wants to sell online usage of cloud software, he can act
as follows.

• He publishes detailed information about the software such as its func-
tionality and performance. He publishes the price of online usage of the
software as well.

• He chooses an RSA composite N = pq where p and q are large primes.
He chooses his RSA private key d and publishes his public key e =
d−1 mod N .

A user wanting to buy the usage of the cloud software can buy an anony-
mous token as his access privilege to the software as follows.

1. He employs a one-way and collision-resistant hash function H() from Zl

to ZN where l is a security parameter.

2. He randomly chooses an integer t from Zl and calculates t′ = H(t).

3. He randomly chooses another integer r from ZN and calculates T =
t′re mod N .

4. He pays the price for the software to the provider and asks the provider
to sign T .

5. The provider receives the money and returns the user T ′ = T d mod N .

The user can extract an anonymous token from T ′ and employ it to use
the cloud software anonymously as follows.

1. He calculates κ = T ′/r mod N .

2. When he wants to use the cloud software, he submits (t, κ) as his anony-
mous token to the software provider together with his input to the soft-
ware.
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3. The software provider verifies validity of the token as follows.

(a) He first checks his database that stores the used tokens. The re-
ceived token cannot exist in the database.

(b) He verifies κ = h(t)d mod N , which must be satisfied.

If and only if both verifications are passed, the user has the access priv-
ilege to the software. When the verifications are passed, the software
provider runs the software with the user’s input and sends the output
of the software to the user. Otherwise, the user’s request is rejected.

4. The software provider inserts the used token into his database and it
cannot be used again.

The difficulty of factorizing N and thus finding d given e and the one-way
nature and collision-resistance of the employed hash function guarantee that
anonymous tokens cannot be forged or malleated. This security assumption is
similar to the popular security assumption for the hash-and-sign technology
in digital signature (Chapter 11 of [71]), which assumes that when a digital
signature is the hash function of the message to sign raised to the power of
an RSA private key, it cannot be forged if RSA assumption is solid and the
employed hash function is one-way and collision-resistant. Under the secu-
rity assumption, no polynomial adversary can forge an anonymous token or
malleate a used token into a new token. Moreover, as a random integer r is
involved in generation of T and its influence is removed when the anonymous
token, (t, κ), is extracted, the software provider cannot link the anonymous
token (t, κ) to the corresponding T he signs earlier and the anonymity of the
software user is achieved.

Any user can buy multiple tokens for multiple-time usage of cloud software.
A software provider can sell a permanent token to users frequently using a
software. When buying a permanent token, the software user and the software
provider use a special public/private key pair different from (e, d). When a
permanent token is used, the software user and the software provider employ
the special public/private key pair to generate and verify the token and there
is no database to record the used tokens.

So far we have not discussed how the software users and the software
providers communicate to each other when purchasing and consuming anony-
mous tokens. When a software user buys an anonymous token, he can visit
the software provider in person and make the payment in the normal way.
Alternatively, the software user can buy the token online using credit card
or e-cash [26, 24]. Choice of the employed communication network for the
purchase communication depends on whether the software user wants to hide
his identity completely. If a software user wants to buy a token using his real
identity and use it anonymously later, he can buy it through normal net-
work connections. If a software user does not want to reveal his identity when
buying a token, he needs to employ the anonymous communication network
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proposed in Section 5.3.3 to communicate with the software provider and pay
by anonymous e-cash [26, 24]. Communication network for the software access-
ing communication must be anonymous and so must employ the anonymous
communication network proposed in Section 5.3.3.

A main difference of our anonymous token from anonymous e-coin (e-cash)
is that the receiver of any anonymous token is unique, while an e-coin is issued
by a finance institute (e.g. bank) and may be received by any vendor. So the
database of used e-coins is maintained by their issuing bank and needed to
be checked by any vendor. Therefore, to detect invalid e-coins in real time
a vendor needs to have a real-time network connection to the bank. In our
design of anonymous tokens, every software provider can maintain his own
database and does not need help from any third party. Another difference is
that our anonymous token is simpler than e-coin as it does not need to contain
information like issuing party and value.

As mentioned before, even if a software user uses an anonymous token to
access cloud software he still needs an anonymous communication network
to communicate with the software provider. As the most popular anonymous
communication network, onion routing, usually only supports one-way anony-
mous communication, it is extended to support two-way anonymous commu-
nication in this section. Moreover, its efficiency is optimised by employing a
more efficient key exchange mechanism than that in Tor.

5.3.2 Two-Way Onion Routing to Support Anonymous
Usage of Cloud Software

The new design adopts two ideas. Firstly, two-way onion routing is imple-
mented such that the initial sender of an onion packet can fetch some in-
formation from a receiver of the onion. More precisely, an onion packet is
routed back to its initial sender after obtaining some information from the
router at the end of its route. Secondly, as in Tor, a symmetric cipher is em-
ployed in encryption and decryption of the onion layers, while every router’s
secret session key is distributed by the sender using a separate Diffie-Hellman
handshake. The new protocol describes a more detailed implementation of
symmetric cipher operations and the supporting key distribution mechanism
in onion routing as key distribution for symmetric cipher is not implemented
in detail in the description of Tor in [34].

Suppose an inquiry package m (which contains at least the input to cloud
software and an anonymous token enabling the user to use the software) is sent
by the user S through n routers P1, P2, . . . , Pn to a software provider Pn+1.
Encryption of the inquiry package may actually contain multiple symmetric
ciphertext blocks as the inquiry package may be long and is divided into mul-
tiple blocks when being encrypted. For convenience of description, encryption
of the inquiry package is still denoted as a single variable and the readers
should be aware that it is the encryption of the whole inquiry package and
may contain multiple blocks. Although a different number of routers can be
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chosen to route the inquiry result (output of the software) back to the software
user, for simplicity of description, we suppose that it is sent by the software
provider back to the software user through n routers Pn+2, Pn+3, . . . , P2n+1.
In practice it is very probable that the number of routers to transfer the in-
quiry result is different from the number of routers to transfer the inquiry
package. The two sets of routers do not have to be completely different and
some routers may be employed in both transfers. The two-way onion routing
protocol is described as follows.

1. For the software provider and the routers Pi for 1 ≤ i ≤ 2n + 1, the
software user randomly chooses an integer si from Zq and generates a
session key ki = ysii .

2. The software user encrypts the inquiry package m, the key base list
gs1 , gs2 , . . . , gs2n+1 and the route list p1, p2, . . . , p2n+1, S as follows.

(a) He calculates e = Ek1,k2,...,kn+1(Pn+1,m).

(b) He calculates Ki = Ek1,k2,...,ki−1(g
si) for i = 2, 3, . . . , 2n+ 1.

(c) He calculates pi = Ek1,k2,...,ki
(Pi+1) for i = 1, 2, . . . , 2n+ 1 where

P2n+2 = S.

(d) He sends out the initial onion packet

O1 = (a1, b1,1, b1,2, . . . , b1,2n+1, c1,1, c1,2, . . . , c1,2n+1)

= (e,K1,K2, . . . ,K2n+1, p1, p2, . . . , p2n+1)

to P1 where K1 = gs1 mod p.

3. For i = 1, 2, . . . , n each router Pi routes the onion packet
as follows where the onion he receives is in the form Oi =
(ai, bi,1, bi,2, . . . , bi,2n+1, ci,1, ci,2, . . . , ci,2n+1).

(a) Pi generates his session key ki = bxi

i,1 mod p.

(b) Pi uses ki to decrypt ci,1 and obtains Pi+1 = Dki
(ci,1).

(c) Pi sends

Oi+1 = (ai+1, bi+1,1, bi+1,2, . . . , bi+1,2n+1, ci+1,1, ci+1,2, . . . , ci+1,2n+1)

to Pi+1 where ai+1 = Dki
(ai), bi+1,j = Dki

(bi,j+1) and ci+1,j =
Dki

(ci,j+1) for j = 1, 2, . . . , 2n and bi+1,2n+1 and ci+1,2n+1 are
two random ciphertexts in the ciphertext space of the employed
symmetric encryption algorithm.

4. After the routing by P1, P2, . . . , Pn, the software provider Pn+1 receives

On+1 = (an+1, bn+1,1, bn+1,2, . . . , bn+1,2n+1, cn+1,1, cn+1,2, . . . , cn+1,2n+1)

and operates as follows.
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(a) Pn+1 generates his session key kn+1 = b
xn+1

n+1,1 mod p.

(b) Pn+1 uses kn+1 to decrypt cn+1,1 and obtains Pn+2.

(c) Pn+1 uses kn+1 to decrypt an+1 and obtains the inquiry package
m and his own identity Pn+1. He knows that he is the software
provider as Pn+1 is his own identity. He verifies validity of the
anonymous token, runs the software using the input in m, obtains
an output R, and generates an+2 = (Em(R), H(m)) where Em()
denotes symmetric encryption using key m and H() is a one-way
and collision-free hash function.

(d) Pn+1 sends

On+2 =(an+2, bn+2,1, bn+2,2, . . . , bn+2,2n+1, cn+2,1, cn+2,2, . . . ,

cn+2,2n+1)

to Pn+2 where bn+2,j = Dkn+1(bn+1,j+1) and cn+2,j =
Dkn+1(cn+1,j+1) for j = 1, 2, . . . , 2n and bn+2,2n+1 and cn+2,2n+1

are two random ciphertexts in the ciphertext space of the employed
symmetric encryption algorithm.

5. For i = n + 2, n + 3, . . . , 2n + 1, each router Pi routes the onion
packet as follows where the onion he receives is in the form Oi =
(ai, bi,1, bi,2, . . . , bi,2n+1, ci,1, ci,2, . . . , ci,2n+1).

(a) Pi generates his session key ki = bxi

i,1 mod p.

(b) Pi uses ki to decrypt ci,1 and obtains Pi+1 = Dki
(ci,1).

(c) Pi sends

Oi+1 = (ai+1, bi+1,1, bi+1,2, . . . , bi+1,2n+1, ci+1,1, ci+1,2, . . . , ci+1,2n+1)

to Pi+1 where ai+1 = Dki
(ai), bi+1,j = Dki

(bi,j+1) and ci+1,j =
Dki

(ci,j+1) for j = 1, 2, . . . , 2n and bi+1,2n+1 and ci+1,2n+1 are
two random ciphertexts in the ciphertext space of the employed
symmetric encryption algorithm.

6. After the routing by Pn+2, Pn+3, . . . , P2n+1, the software user S receives

O2n+2 = (a2n+2, b2n+2,1, b2n+2,2, . . . , b2n+2,2n+1,

c2n+2,1, c2n+2,2, . . . , c2n+2,2n+1)

and operates as follows.

(a) S calculates k = bx2n+2,1 mod p where x is his own private key.

(b) S tries to use k to decrypt c2n+2,1 but does not obtain a legal
identity in its correct format.2 He knows that he is not a router or
software provider. The only possibility is that his own onion packet
is returned by the software provider.

2The concrete format of a legal participant’s identity depends on the concrete applica-
tion.
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(c) S calculates (ρ, τ) = Ekn+2,kn+3,...,k2n+1(a2n+2). If τ = H(m), he is
ensured that the software provider Pn+1 returns him an encrypted
inquiry result. He can extract the inquiry result as R = Dm(ρ)
where Dm() denotes symmetric decryption using key m.

Note that although the encryption chain for the next router’s identity
is completely decrypted and discarded by each router, the length of the en-
crypted route list is kept unchanged in the routing protocol for the sake of
untraceability. If an onion packet becomes shorter after each router’s routing,
its change in length can be observed and exploited to trace it. We keep the
length of the encrypted route list constant to maintain the size of an onion
packet. This is implemented in the routing protocol by inserting a random
tag into the onion packet after an encryption chain is discarded. This routing
protocol only employs symmetric cipher in encryption and decryption opera-
tions. The only public key cryptographic operations in it are 2n+1 instances
of Diffie-Hellman key exchange. Although needing more encryption and de-
cryption operations than traditional onion routing, it is still more efficient in
computation than the latter. However, it is not efficient in communication as
its onion packet contains additional encrypted key bases bi,1, bi,2, . . . , bi,2n+1,
which are large integers used in public key crypto.3 So its efficiency still needs
improving and our final proposal will be presented in Section 5.3.3 to achieve
higher efficiency.

5.3.3 Efficiency Optimisation: Two-Way Onion Routing
with Compact Diffie-Hellman Handshakes

The routing protocol in Section 5.3.2 has demonstrated that direct application
of Diffie-Hellman key exchange in multiple separate instances to onion routing
cannot achieve satisfactory advantage in efficiency. To reduce the additional
communication cost and additional encryption and decryption operations, a
novel technique, compact Diffie-Hellman handshakes, is designed. It seals the
Diffie-Hellman key bases for all the routers and the software provider in a sin-
gle integer. For each router, to generate his session key, he needs his private
key and a key base initially sealed by the software user and then recovered by
cooperation of all the previous routers in the course of routing. As only one sin-
gle integer is needed in each onion packet to commit to all the Diffie-Hellman
key bases, a very small amount of additional communication is employed and
very few additional encryption (decryption) operations are needed.

In the optimised two-way onion routing, an onion packet consists of three
parts: message, route list and key base. Route list contains the identities of
all the nodes on the route. Key base is the base to generate the session keys
(symmetric keys) distributed to the routers. The message part in the optimised
two-way onion routing is similar to that in most onion routing schemes. The

3The integers used in public key crypto (except for elliptic curve) are usually much larger
than the integers employed in block cipher.
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message is encrypted in a chain using the sessions keys of all the routers. Like
in the routing protocol in Section 5.3.2 an efficient block cipher is employed in
the encryption chain. In the optimised two-way onion routing, the route list
is similar to that in other onion routing schemes. It consists of all the routers’
identities. One block cipher encryption chain is used to seal each router’s
identity using the session keys of the all the routers before it.

The most important novel technique in the optimisation is generation and
update of the key base, which enables key exchanges for all the routers’ session
keys. Each router builds his session key on the base of the key base using his
private key and updates the key base for the next router. The key generation
function employs the principle of Diffie-Hellman assumption, but it does not
employ separate Diffie-Hellman handshakes to distribute the session keys to
the routers. Instead the key base updating mechanism actually generates a
key base chain and so all the session keys and their generation functions are
linked in a compact chain structure. The technique is called the compact Diffie-
Hellman key exchange. After obtaining his session key, each router extracts
the identity of the next router from the route list using his session key, removes
one layer of encryption from the message and the route list using his session
key and then forwards the onion packet to the next router. Compact Diffie-
Hellman key exchange only needs the bandwidth of one integer, and thus is
much more efficient than separate key exchanges in communication.

As in the routing protocol in Section 5.3.2, for simplicity, in description
of the optimised two-way onion routing protocol, simple denotations are em-
ployed. We suppose that an inquiry package m is sent by a software user
through n routers P1, P2, . . . , Pn to the software provider Pn+1 and then
through routers Pn+2, Pn+3, . . . , P2n+1 back to himself with an inquiry result
from the software provider although the two sets of routers may actually dif-
fer in quantity and share some routers. The optimised two-way onion routing
protocol is as follows.

1. Firstly, the software user generates the session keys k1, k2, . . . , k2n+1

respectively for P1, P2, . . . , P2n+1 as follows.

(a) The software user randomly chooses an integer s1 from Zq.

(b) The software user calculates P1’s session key k1 = ys11 mod p.

(c) The software user calculates s2 = s1 + k1 mod q.

(d) The software user calculates P2’s session key k2 = ys22 mod p.
. . . . . .
. . . . . .

(e) The software user calculates s2n+1 = s2n + k2n mod q.

(f) The software user calculates P2n+1’s session key k2n+1 =
y
s2n+1

2n+1 mod p.

Generally speaking, for i = 1, 2, . . . , 2n+ 1,
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(a) If i > 1 the software user calculates si = si−1 + ki−1 mod q as his
secret seed to generate ki.

(b) He then calculates ki = ysii mod p where s1 is randomly chosen
from Zq.

In summary, the software user uses the sum of the previous router’s
session key and his secret seed in generating the previous router’s session
key as his secret seed to generate a router’s session key. The other secret
seed to generate the router’s session key is the router’s own private key.

2. The software user generates an onion packet containing an inquiry pack-
age, a key base and a route list. The inquiry package m contains at least
the input to a cloud software and an anonymous token enabling him
to use the software and is encrypted into e = Ek1,k2,...,kn+1(Pn+1,m).
The key base is gs1 . The route list consists of p1, p2, . . . , p2n+2 where
pi = Ek1,k2,...,ki

(Pi+1) for i = 1, 2, . . . , 2n+ 1 and Pn+2 = S. The initial
onion

O1 = (a1, b1, c1,1, c1,2, . . . , c1,2n+1) = (e, gs1 , p1, p2, . . . , p2n+1)

is sent to P1.

3. P1 receives O1 from the software user and then operates as follows.

(a) P1 generates his session key k1 = bx1
1 mod p.

(b) P1 uses k1 to decrypt c1,1 and obtains P2 = Dk1(c1,1).

(c) P1 calculates the new key base b2 = b1g
k1 mod p.

Finally, P1 sends

O2 = (a2, b2, c2,1, c2,2, . . . , c2,2n+1)

to P2 where a2 = Dk1(a1) and c2,i = Dk1(c1,i+1) for i = 1, 2, . . . , 2n and
c2,2n+1 is a random ciphertext in the ciphertext space of the employed
block encryption algorithm.

4. More generally, for i = 2, 3, . . . , n each Pi receives Oi =
(ai, bi, ci,1, ci,2, . . . ci,2n+1) and operates as follows.

(a) Pi generates his session key ki = bxi

i mod p.

(b) Pi uses ki to decrypt ci,1 and obtains Pi+1 = Dki
(ci,1).

(c) Pi calculates the new key base bi+1 = big
ki mod p.

Finally, Pi sends

Oi+1 = (ai+1, bi+1, ci+1,1, ci+1,2, . . . , ci+1,2n+1)

to Pi+1 where ai+1 = Dki
(ai) and ci+1,j = Dki

(ci,j+1) for j =
1, 2, . . . , 2n and ci+1,2n+1 is a random ciphertext in the ciphertext space
of the employed symmetric encryption algorithm.
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5. After the routing by P1, P2, . . . , Pn, the software provider Pn+1 receives

On+1 = (an+1, bn+1, cn+1,1, cn+1,2, . . . , cn+1,2n+1)

and operates as follows.

(a) Pn+1 generates his session key kn+1 = b
xn+1

n+1 mod p.

(b) Pn+1 uses kn+1 to decrypt cn+1,1 and obtains Pn+2.

(c) Pn+1 uses kn+1 to decrypt an+1 and obtains the inquiry package
m and his own identity Pn+1. He knows that he is the software
provider as Pn+1 is his own identity. He verifies validity of the
anonymous token, runs the software using the input in m, obtains
an output R, and generates an+2 = (Em(R), H(m)) where Em()
denotes symmetric encryption using key m and H() is a one-way
and collision-free hash function.

(d) Pn+1 sends

On+2 = (an+2, bn+2, cn+2,1, cn+2,2, . . . , cn+2,2n+1)

to Pn+2 where bn+2 = bn+1g
kn+1 mod p and cn+2,j =

Dkn+1(cn+1,j+1) for j = 1, 2, . . . , 2n and cn+2,2n+1 is a random
ciphertext in the ciphertext space of the employed symmetric en-
cryption algorithm.

6. For i = n + 2, n + 3, . . . , 2n + 1 each router Pi routes the onion
packet as follows where the onion he receives is in the form Oi =
(ai, bi, ci,1, ci,2, . . . , ci,2n+1).

(a) Pi generates his session key ki = bxi

i mod p.

(b) Pi uses ki to decrypt ci,1 and obtains Pi+1 = Dki
(ci,1).

(c) Pi calculates the new key base bi+1 = big
ki mod p.

Finally, Pi sends

Oi+1 = (ai+1, bi+1, ci+1,1, ci+1,2, . . . , ci+1,2n+1)

to Pi+1 where ai+1 = Dki
(ai) and ci+1,j = Dki

(ci,j+1) for j =
1, 2, . . . , 2n and ci+1,2n+1 is a random ciphertext in the ciphertext space
of the employed symmetric encryption algorithm.

7. After the routing by Pn+2, Pn+3, . . . , P2n+1, the software user S receives

O2n+2 = (a2n+2, b2n+2, c2n+2,1, c2n+2,2, . . . , c2n+2,2n+1)

and operates as follows.

(a) S calculates k = bx2n+2 mod p where x is his own private key.
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(b) S tries to use k to decrypt c2n+2,1 but does not obtain a legal
identity. He knows that he is not a router or software provider of
the onion packet. The only possibility is that his own onion packet
is returned by the software provider.

(c) S calculates (ρ, τ) = Ekn+2,kn+3,...,k2n+1(a2n+2). If τ = H(m), he is
ensured that the software provider Pn+1 returns him an encrypted
inquiry result. He can extract the inquiry result as R = Dm(ρ)
where Dm() denotes symmetric decryption using key m.

The new key exchange mechanism improves efficiency of the two-way onion
routing technique. As most of its operations depend on symmetric encryptions
and decryptions and employ small (in comparison with the large integers in
asymmetric cipher operations) integers and the number of asymmetric cipher
operations is minimized, efficiency of onion routing is not compromised after
it is extended to support two-way anonymous communication.

5.3.4 Security Analysis

Security of the optimised two-way onion routing scheme depends on hardness
of the Diffie-Hellman problem as its key exchange mechanism is an extension
of Diffie-Hellman key exchange. Its main trick is combining key exchanges
into a compact chain such that every router can obtain his session key with
the help of previous routers. As security of Diffie-Hellman key exchange has
been formally proved and hardness of the Diffie-Hellman problem is widely
accepted, no further proof of security is needed except for Theorem 22, which
shows that the session keys can be correctly exchanged.

Theorem 22 For i = 1, 2, . . . , 2n+ 1, the same session key ki is generated,
respectively by the software user as ki = ysii mod p and by Pi as ki = bxi

i mod
p.

To prove Theorem 22, a lemma has to be proved first.

Lemma 13 For i = 1, 2, . . . , 2n+ 1, bi = gsi mod p.

Proof: Mathematical induction is used.

1. When i = 1, b1 = gs1 mod p.

2. Suppose when i = j and j ≥ 1 it is still satisfied that bi = gsi mod p.
Then a deduction can be made in next step.

3. When i = j + 1, bj+1 = bjg
kj = gsjgkj mod p as expected in the last

step that bi = gsi when i = j,

bj+1 = gsjgkj = gsj+kj = gsj+1 mod p
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Therefore, bi = gsi mod p for j = 1, 2, . . . , 2n+ 1 as a result of mathematical
induction. ✷

Proof of Theorem 22:
According to Lemma 13,

ysii = gxisi = bxi

i mod p

for i = 1, 2, . . . , 2n+ 1. ✷

The new solution allows users caring about their privacy to use paid cloud
software online anonymously. The users buy anonymous tokens to access the
softwares they need and employ an efficient two-way onion routing network
to communicate with the software providers.
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Chapter 6

Practical Systems to
Achieve Anonymity: How
to Use Them

Suppose there is a user who wants to be anonymous when using the Internet.
There are several anonymous communciation systems he can employ. Besides
Tor which has been extensively discussed in this book, there are some similar
tools as alternatives. They include I2P, JAP/JonDo and QuickSilver. A brief
guide is provided in this chapter on installation and usage of these tools. Their
usability can be evaluated according to the following standards.

• CT1 Successfully install the anonymization software and the compo-
nents.

• CT2 Successfully configure the browser (email client in Mixmas-
ter/QuickSilver case) to work with the anonymization software.

• CT3 Confirm that the web-traffic/email is anonymized.

• CT4 Successfully disable the anonymization software and return to a
direct connection.

• G1 Users should be aware of the steps they have to perform to complete
a core task.

• G2 Users should be able to determine how to perform the steps.

• G3 Users should know when they have successfully completed a core
task.

165
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• G4 Users should be able to recognize, diagnose, and recover from non-
critical errors.

• G5 Users should not make risky errors from which they cannot recover.

• G6 Users should be comfortable with the terminology used in any inter-
face dialogues or documentation.

• G7 Users should be sufficiently comfortable with the interface to con-
tinue using it.

• G8 Users should be aware of the status of the application at all times.

6.1 Installation and Usage of Tor

Tor is the most famous and frequently used anonymous communication net-
work and it is provided through http://www.torproject.org/.

6.1.1 Download and Installation

Tor’s project website presents a good starting point to achieve anonymity in
the Internet, i.e., to accomplish the tasks CT-1 to CT-3. A user can choose
on the website between many languages. The website itself has a clear layout.
Additionally, the operators of the site use a simple and natural language
(conforms with G6). A general explanation on how Tor works is given directly
on the first page. Furthermore, a user can find some helpful examples of typical
Tor users as well as some links to more detailed information. The start page of
Tor contains three statements under the title “three pieces of fine print”. They
clearly state that anonymity in the Internet via Tor may only be achieved if
and only if Tor is used correctly. A link to a list of some warnings is given
with the aim to prevent the user from fatal errors (conforms with G5).

The statements declare that despite a correct use of Tor, there are still
possible attacks that compromise user’s protection (conforms with G5). Fur-
ther, the statements make it clear that no anonymity system is perfect and
thus users with a demand for strong anonymity should not rely on Tor. Both
last declarations provide clarity. However, some users might become scared.
This is a dilemma which is not easy to solve. We believe that a good expla-
nation of the circumstances the Tor site provides is the best way to deal with
the dilemma.

The “Summary” navigation on the right side of the first page contains a
button labeled “Download Tor”. A click on the button leads to a download
page (conforms with G1, G2). Next, users have the opportunity to choose
between two Windows installation bundles and one for OS X. An inconsistent
point to G1 and G2 is reflected in the absence of a hint to an installation
manual. However, if the user clicks on “See advanced choices” she gets to
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Figure 6.1: Installing Tor

another site which contains links to a step-by-step installation manual as well
as more download choices.

A filename for the download “Vidalia-bundle” is suggested. The same name
is also used during the installation process for the Tor package (see Figure 6.1).
The name is not announced and therefore a novice user might be scared away
due to a missing explanation on the link between the terms of “Vidalia” and
“Tor”. In the first dialog of the installation the user can choose between nine
different languages. Unfortunately, not every one of the following dialogs is
fully translated. Moreover, not every dialog provides the same level of detail,
e.g., the Italian version does not provide detailed information on the purposes
of the different components on the second dialog. However, even the possibil-
ity to choose between different languages greatly contributes to the usability
(conforms to G2, G6).

The installation process asks the user to install Vidalia (a GUI for Tor,
http://www.vidalia-project.net/), Privoxy (an application layer filtering web
proxy) and Torbutton (a Firefox extension). The purpose of the components is
briefly explained during the installation process. In addition, the installation
manual on the project’s website also contains a brief description. The rest of
the installation is straightforward. All this supports the user to achieve CT1
(conforms with G1, G2).

G8 is implemented through the realization of an installation progress
bar which shows the progress of unpacking the program packages. Once the
progress bar reaches 100%, the Firefox standard dialogue for installing exten-
sions pops up and provides a recommendation to install add-ons only from
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trusted sources. With the conformation to install the extension, the installa-
tion of the Vidalia Bundle is completed. This will be illustrated in an extra
dialogue together with the standard check box “Run installed components
now” and link to https://www.torproject.org/docs/tor-doc-windows. At this
point the confirmation screen signals the user that CT1 is completed (con-
forms with G3).

6.1.2 Configuration

When the Tor program is started by the user, the Vidalia control panel (see
Figure 6.2) opens and connects to the Tor network. The duration of estab-
lishment of such a connection is about two minutes. However, the user is not
aware of the application status (violates G8). Moroever, a window pops up to
confirm successful connection to Tor as shown in Figure 6.3 In addition, there
are two new icons in the task-bar installed:

• A green onion (alternative-text4: “connection to the network estab-
lished”)

• An animated blue circle with a white “P” (Privoxy)

In Firefox the newly installed plugin adds a cue to the status bar indicating
“Tor deactivated”. Once a user clicks on the cue, the message changes and
the following message is displayed if the current Firefox (version 3) is used:

• Warning! Torbutton on Firefox 3 is known to leak your timezone and
livemark feeds during Tor usage.

• In addition, it has not been as extensively tested for Tor security and
usability as Firefox 2. Do you wish to continue anyway?

Due to the warning, a user might not know how to proceed (violates G2,
G6). Through clicking on the OK button the cue switches to “Tor activated”.
Now the user knows that his traffic is anonymized (conforms with G8). With
the standard settings Tor works immediately. No further configuration is nec-
essary and thus CT2 is completed.

Up to now, the user receives feedback by the “green onion” that Tor is
working properly. Unfortunately, the user cannot easily check if her traffic is
actually relayed through the Tor network (CT3). Tor does not provide an easy
to find reference like a button or bookmark to such a service, e.g., a website
which checks whether the traffic is anonymized or not, although a server of
the Tor project hosts a webservice which checks, if traffic was relayed through
the Tor network.

CT4 can also be easily performed by clicking the cue in Firefox. After the
click the traffic will no longer be relayed through the Tor network. The fact
that the user has to click on the cue again can be considered as G2 compatible.
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Figure 6.2: Vidalia Control Panel

6.2 Installation and Usage of I2P

I2P is another frequently used anonymous communication network and it is
provided through http://www.i2p2.de.

6.2.1 Download and Installation

The Website of the I2P project is available in English and German. The page
is clearly arranged and welcomes the visitor with an introduction on I2P.
The introduction presents some of the supported applications, gives a brief
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Figure 6.3: Successful Connection to Tor

statement about anonymity and mentions the fact that I2P is evolving over
time and should only be used for testing and development purposes.

In the introduction are several notable aspects. Firstly, it is strange that
the list of possible applications does not contain web browsing even though it
is supported and one of the most important applications in the Internet. The
language is technical and maybe too technical for a novice user (violates G6).
The picture which explains the function of I2P is also not easy to understand
(violates G1, G2). Secondly, the statement that the current software should
only be used for testing and development purposes can be seen as a prob-
lematic aspect. Without an explanation of the background, the statement can
distract users.

In order to complete CT1 a user needs to find the link “Download”. We
assume that a novice user can achieve this due to the common layout of
I2P’s website. After user opens the download site, she is confronted with
three different downloadable versions: graphical installer, headless install and
source install. The descriptions given for each version might direct novice
users to download the graphical version (conforms with G2). Nevertheless,
G2 and G6 are violated since the statement regarding the precondition for
the installation of I2P (Sun Java 1.5 or higher, or equivalent JRE) does not
refer to any manual or explanation. It is uncertain if a novice user knows Java
and even knows how to install it without any help. If Java is missing, the
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Figure 6.4: Attempted Installation of I2P

execution of the downloaded file will show “Cannot find Java 1.5.0”. When
the user confirms the error the installer terminates and opens the website of
Sun, where the user can download Java (conforms with G1). At the same
time it disregards G6, due to the too brief error description. Beginning and
end of the installation of a graphical version of I2P are shown in Figure 6.4
and Figure 6.5.

In case Java is installed correctly, the installer shows in its first dialogue a
small welcome message. The following procedure is similar to typical installa-
tion processes. The installation progress is as in the case of Tor displayed by a
progress bar. Afterwards the user needs to decide if she wants the setup rou-
tine to create shortcuts on the user’s desktop. In the last dialog, I2P signals
the user that the installation process is finished. This installation procedure
is straightforward and complies with G1, G2, G3 and G6; CT1 is reached.

After the user closes the installer, Windows displays a dialogue. It informs
the user that the program she wanted to install has maybe not been correctly
installed. In addition the dialogue offers the user two different options (see
Figure 6.6). This incident clearly violates several guidelines such as G1, G2
and G8.

If a user selects the default options of the I2P installer, three icons are cre-
ated on the user’s desktop: “Start I2P (no window)”, “Start I2P (restartable)”
and “I2P router console”. The same shortcuts are created in the start menu
of Windows. In addition, a shortcut to an uninstall procedure is added in the
start menu.
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Figure 6.5: Successful Installation of I2P

Figure 6.6: Warning Message
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In order to complete CT2, with regard to the manual, the user should
simply click on the “Run I2P” button which will bring up the router console
with further instructions. Because there is no button or shortcut named “Run
I2P” (see above which shortcuts have been created) the user does not know
how to proceed (violates G1, G2). It also cannot be assumed that a novice
user knows what a router console is, so G6 is disregarded. Since a router
console is mentioned in the instruction, a user might click on the “I2P router
console” shortcut. If the user had managed to open the I2P configuration
site, the browser presents a welcome page to the user. The page has three
different parts that contain a lot of information. Thus, the page appears (quite)
complex. The first part is a sidebar on the left. The sidebar is divided in
seven categories. Each presents information to the user, e.g., the status of the
established tunnels.

The navigation bar is on the top of the page. It contains links to various
services of I2P, e.g., Susimail, SusiDNS. The content area is placed under the
navigation bar. The content area itself is again divided into two scopes. The
first scope shows the phrase “Congratulations on getting I2P installed!” and
gives further instructions on how to proceed and configure I2P. The informa-
tion is displayed in English as well as in German. The second scope of the
welcome page provides instructions how to use and configure different services
in the I2P net as well as the Internet. This instruction is only displayed in
one language, but the user is able to pick one of four languages. However, the
confirmation of the successful installations fits G3 and signals again that CT1
is completed.

6.2.2 Configuration

To complete CT2 a user needs to read both instructions on the welcome page.
The instructions of the first scope are similar with those on the download
page. They may fulfill G1 and G2 in order to perform CT2. Unfortunately,
the instructions are written in a technical language. The user is asked to
adjust the bandwidth, to open port 8887 on the user’s firewall and to enable
“inbound TCP” on the configuration page. The instructions do clearly not
address novice users (violates G6). Hence, errors in the configuration are more
probable (violates G5). If the user had completed the tasks (adjusting the
firewall and bandwidth settings), I2P neither provides feedback nor clearly
states how the user can check if she has finished successfully the configuration
of the first scope. This disregards G3.

The second scope of the content area deals with configuration of different
applications and services. However, for a novice user the separation may not be
understandable. Therefore it does not support users in achieving CT2 (violates
G1, G2). The “browse the web” instruction refers to another part. The referred
part states that the user should tell the browser “to use the HTTP proxy at
localhost port 4444”. Clearly, the description is not suited for a novice user:
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it uses technical language (violates G6) and a user might not know how to
complete the task (violates G2).

After the user finishes the instructions in both scopes, she has com-
pleted CT2. However, I2P does not present any information that the user
has achieved CT2 (violates G3). Beside the mentioned shortcomings, I2P cur-
rently also presents too many tasks and options to the user. It hinders her
from using I2P comfortably (violates G7) and safely; the latter is due to the
fact that the more users tweak their settings, the more likely they can be
identified by an adversary because of their individual behaviour.

Now, if the user finishes the configuration within a short time frame, she
might receive the following error message, after she has requested a website:

The WWW Outproxy was not found. It is offline, there is network
congestion, or your router is not yet well-integrated with peers.
You may want to retry as this will randomly reselect an outproxy
from the pool you have defined here (if you have more than one
configured). If you continue to have trouble you may want to edit
your outproxy list here.
Could not find the following destination:
http://some-URL/
WWW proxy: false.i2p.

The message displayed is another example that the authors of I2P fail to
use a non-technical language (violates G6). A novice user might not under-
stand the message. Thus, she does not know how to proceed (violates G1,
G2). Just by waiting some minutes the user will be able to open the same
website successfully. This behaviour might not be understandable for the user
(violates G8).

Verification and deactivation of I2P: Since I2P offers neither an application
nor a link to the user, she cannot check if her traffic is anonymized or not
(CT3). In order to check whether CT3 was successfully finished, the user
needs to compare her own (real) IP address with the one a receiver gets with
her request. Again, this is probably too difficult for a novice user. CT4 can be
performed by clicking a “shutdown” link the configuration page. But as this
just turns off I2P, the user additionally has to reverse the configuration in the
browser, too. Due to the fact that the initial configuration step violated G2
and G6, it is clear that the reverse action does the same.

6.3 Installation and Usage of JAP/JonDo

The JAP/JonDo anonymizer is known under various names and is called
JonDo here. The name was established by the commercial anonymization
service JonDonym. The service as well as the software build upon the AN.ON
project and its client. The client software of the AN.ON project is JAP. Even
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though JonDonym is a commercial service some of the mix cascades are freely
available. It is provided through http://www.jondos.de/.

6.3.1 Download and Installation

The JonDo website is available in English and German. G6 is satisfied through
an explanation and an illustration of how JonDo works. The illustration can
be found directly on the first website. An issue worth mentioning is that
there are no hints on possible dangers or attacks, contrary to other examined
websites (violates G5).

A download button is visible on the left-hand side, so the user is aware
of the next steps she has to do (conforms with G1, G2). With a click on
the button a user can choose between different JonDo versions, namely for
Windows, Linux and MacOS X. At this point an explanation is given that
no registration is required and “the software and simple services it provides
access for, are free of charge”. Further, it is clearly declared that payment
is only required for the optional premium services. The premium services
offer a higher speed and better security by allocating enough cascades for
the connection, providing longer mix cascades which are typically spread over
several countries and offer all Internet ports for usage, whereas the free services
only allow web surfing.

On the download site some additional information can be found. Firstly,
some installations hints and an easy to use “download button” are presented
to the visitors of the website (conforms with G2). Secondly, an announcement
is made that the installation process of JonDo does not make any changes that
affect the user’s computer. It simply copies the JonDo packages to a default
directory or to another directory the user may choose. Thirdly, an introduc-
tion to browser configuration is given for the reason that each browser used
along with JonDo has to be individually configured. This declaration refers to
a wizard that helps the user through such a configuration. The wizard starts
when the application is executed for the first time (conforms with G1, G2).
Alternatively, users have the option to use a preconfigured browser named
JonDoFox instead of configuring the browser on their own. The JonDoFox
browser is recommended by the JonDo provider in order to eliminate non-
recoverable errors (conforms with G5). Fourthly, the website provides users
with some information about the downloadable files. Fifthly, the download
page provides some information how to update the JonDo software. Sixthly,
a recommendation is given to the user to check the authenticity of the down-
loaded file. Beside the recommendation, the download page provides the user
with a reference how she can perform the authenticity check. The last part
of the page briefly states that the user is allowed to distribute the software
(conforms to G1, G2).

The user is directed to another web page if she chooses to install the
Windows version. On this page she has the choice to install the JonDo desktop
or the JonDo portable version. Both versions require Java 1.3 or higher to
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Figure 6.7: Installation Assistant

work. For this purpose, a link to the Java homepage (http://java.com/) is
given. However, if the user has not installed Java, the installer will install
Java 1.3 on the user’s computer. There is no indication about the purpose
of Java (violates G6). The default name for the installation package is given
as japsetup.exe. Such a name may not be expected since JAP is the name of
the client software in the AN.ON project which might be confusing for some
users (violates G6). The application version number is specified above the
navigation menu on the left side, but the version number is specified neither
on the download page nor on the package name. This is not contradictory to
any of the guidelines as presented earlier. However, more clarity on the version
number can be useful for users, for example, when checking for updates.

The installation process starts with a dialogue where the installation com-
ponents can be chosen. As a preselected configuration JAP, Swing and Java
1.3 are set. In the dialogue, the JAP name is used five times instead of JonDo.
It may bother the users and thus be in conflict with G6, because it is not nec-
essary to know that JAP is a different name of JonDo. Moreover, it might
violate G2. A clearly defined name which can be used continuously will be
more comprehensible. After the installation process, the installer informs the
user that the installation was successful. CT1 is reached. Two installation
interface pictures are shown in Figure 6.7 and Figure 6.8.

6.3.2 Configuration

At the first start of the JonDo application a wizard starts to configure
JAP/JonDo in the respective browsers. An explanation is given on how to use
the JAP/JonDo proxy settings for each of the browsers. The used language is
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Figure 6.8: Configuration Confirmation

non-technical (conforms with G6) and offers a straightforward description of
the single steps (conforms with G2). Warnings are displayed once the user tries
to open a website, if JAP/JonDo is switched off. In order to test the connec-
tion to the anonymity service, the user will be directed to switch anonymity on
and to surf the Internet. Due to the interface (see Figure 6.9) this is straight-
forward. In our examination, the test was not achievable because a timeout
limitation had occurred. The fact that a connection was established, but no
website has been presented, indicates to the user that she should choose the
option “Connection established but web surfing impossible” in the configura-
tion wizard. Subsequently, the wizard requests to choose the cascade with the
name “Dresden Dresden” and prompt browsing in the web becomes possible.

Guidance to disable Java, JavaScript, ActiveX, Flash, etc. according to
the type of browser is given in the next dialogue of the wizard, as these web
technologies threaten the user’s privacy and can be used by adversaries to cir-
cumvent network layer anonymization. Next, a dialogue is presented with the
option to run JonDo in either a simple or an extended view. A link is given to
the JonDo FAQ and at last a confirmation screen of a successful configuration
of JAP/JonDo is shown by the wizard. Thus, it gives the user a feedback
that CT2 is achieved (conforms with G3). The step-by-step wizard has been
proven as a good way to prevent users from making errors throughout the
configuration of JonDo (conforms with G4, G5) and is simple to understand
(conforms with G6). Further, the wizard can be restarted from the JonDo
application and in this manner supports G4.

Verification and deactivation of JonDo: An anonymity test is available
on the JonDo website which shows transmitted information from the visiting
system (conforms with G3). CT4 can be achieved by clicking the “anonymity
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Figure 6.9: JonDo Anonymity Switch

off” switch. When a user clicks on the button a message is displayed that
JonDo does not support any protection further on (conforms with G1, G2,
G3).

6.4 Installation and Usage of QuickSilver

QuickSilver is a kind of so-calledMixmaster client, which is used for email mes-
saging and usenet. It is provided through http://mixmaster.sourceforge.net.

6.4.1 Download and Installation

The QuickSilver website uses a simple layout and consists of pure textual con-
tent. An introduction about QuickSilver, how it works and why it is interesting
to use is given at the beginning of the website. The author of the site states
that QuickSilver provides complete privacy. Therefore, a message which is sent
via the QuickSilver client cannot be traced backward in order to identify the
sender. The language of the website is simple and non-technical (conforms
with G6). The fact that QuickSilver is just a user interface for Mixmaster
is explained on the website. In addition, it is stated that only one person,
Richard Christman, develops the client. In order to download the package a
hyperlink is given in conjunction with a hint to read the welcome.txt file of
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Figure 6.10: QuickSilver Warning Message

the client packages. Thus, a user can determine how to perform the remaining
steps (conforms with G2).

The installation process can be started after downloading the file
QS1.2.7.exe. A dialogue pops up and by pressing the setup button a wizard
installation program starts. The user has the opportunity to select an instal-
lation directory or to use the default suggestion offered by the wizard. In
addition, she can decide whether a shortcut to her desktop should be added
as well as whether a program group should be created. Such a step is known
by users (conforms with G2).

The second dialogue demands the user to provide her email address and an
SMTP host (Figure 6.10). To help the user to fill in the required information a
text and two examples are given. The text explains for what purpose the email
address and the mail server are used. In addition, some examples are provided.
Both the text and the two examples illustrate a violation to G6 because users
may feel confused (violates G6). Considering the examples alone, the user
cannot find out how to complete the step (violates G2).

The last dialogue of the installation process gives an overview of the op-
tions which have been chosen in the configuration. A confirmation will be
given as soon as the installation is completed. Thus a user recognizes that
she reached CT1 (conforms with G3). The wizard style installation helps to
avoid nonrecoverable errors. Due to the “next” and “back” options, a user
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can easily change incorrect statements made during the installation process
(conforms with G5).

6.4.2 Configuration

As soon as QuickSilver has been started, a prompt pops up to inform the
user that Mixmaster is not installed despite being an essential component. A
button labelled with non-technical language (conforms with G6) “Get Mix-
master” indicates the next step (conforms with G2). If the user clicks on “Get
Mixmaster” a wizard is started. In the first dialogue some information is pre-
sented to the user. The information points to the source code of QuickSilver
and provides the user with an email address in case a bug is discovered. The
user’s only possibility is to confirm this information. Afterward the installer
asks the user to pick an FTP site from a dropdown list. If the user does not
know the word FTP, she cannot proceed from this point (violates G6). Once
the user chooses the default site, the wizard shows a list of available updates
among other Mixmaster (Mix29b39.zip). A user might be swamped due to the
possibilities offered by the list (violates G2, G6).

After downloading the Mixmaster package of QuickSilver, the user can
start the install routine which is similar to the QuickSilver installer. Unfortu-
nately, some very technical terms are used without a good explanation (vio-
lates G6):

In actual use, this will be the directory where Mixmaster looks for
‘mix.cfg’ and QuickSilver looks for ‘mixlib.dll’ and ‘libeay32.dll’.

In order to obtain some random data for the initialization of the random
mix pool, the install routine asks the user in the next dialogue to write her
name using the mouse. This illustrates a distinct instruction even if the user
does not know its purpose (conforms with G6). The user can observe the
progress of the pool initialization via an indicator that displays the progress
in percentage. The progress advances according to the user’s mouse writing.
As soon as the indicator reaches 100% an “install” button becomes available.
Once the Mixmaster setup is completed, it will be announced by a confirma-
tion screen (conforms with G3).

Consequently, the QuickSilver interface opens and indicates that QuickSil-
ver is ready to be used. Unfortunately, the GUI offers various buttons whose
functionality is unclear (violates G7). The help system of QuickSilver provides
a Quickstart section; sadly the steps specified in the section take a lot of time
to be performed. This might appear as the opposite of quick. Chapter “I-8
Anonymous Messages” of the help system describes how to use QuickSilver to
send anonymous messages. Additionally, it explains the interface “New Mes-
sage”. Unfortunately, the interface has a non-standard design. Thus, users are
probably not familiar with its handling from other programs or applications.
In essence, it contains a text field with predefined values where users have the
possibility to edit or add some parameters. CT214 cannot be achieved with
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such a design. It is not intuitive. In addition, it does not prevent the user from
making erroneous inputs (violates G5, G7).

As soon as the user has composed a test message and pressed the “Send”
button, a dialogue appears with the note “Mixmaster Remailer Document
is missing”. This means that CT2 is not fulfilled yet. Up to this point, the
user had no chance to recognize this problem (violates G1). In order to lead
the user through the configuration step, a “Get documents” button is offered
(conforms with G2). After clicking on the button, a dialogue with several other
options is displayed. Here the user has the opportunity to specify URLs for the
download of the missing files, e.g., “mlist.txt” or “pubring.mix”. In addition,
a reference is provided, where the user can get a brief explanation about the
needed files (conforms with G2). After reading the help notes, executing the
instructions (check mlist.txt and rlist.txt) and clicking update, the application
fetches new remailers and keys.

The whole procedure is too complicated and opaque for a user who has not
read the complete manual. After a user has managed to receive the files and
tries to send a message, the process quits with an error message: “No reliable
remailers!”. In order to solve the problem, the user needs to seek new sources
of so-called remailer stats and keys. However, even for an average user the
procedure is too demanding (violates G2, G6). Moreover, the software fails
to send the message through the mail server entered during the installation
process. The reason for the failure was that no credentials were specified for the
mail server. Thus, a user needs to enter her credentials for the outbound mail
server to send anonymous email. Unfortunately, there is no hint given where
to enter such information. Therefore, a user has to find it herself (violates
G2). The whole configuration process is very complex and normal users have
no chance to master this task.
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