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Preface

Pathcurves were first investigated by Felix Klein and Sophus Lie in 1871 (see [6]). The topic
did not meet much interest until George Adams in the 30s and Lawrence Edwards after World
War II studied the occurrence of these curves in forms of living nature. The work of Edwards
(see [3]) triggered me to dig into the matter. I reformulated the work of Klein and Lie with
Linear Algebra, and tried to extend it to the three-dimensional case.

The reader is supposed to be familiar with elementary Projective Geometry as well as with
Linear Algebra and Matrix Theory. Concerning the latter, in for instance [7] the reader will
find almost all he needs for this article, in particular a treatise on canonical matrix-forms.
For the basics of Projective Geometry one can consult for instance [1].

Specially the investigation of the 3-dimensional curves has been tough, and the work would
not have been possible without the support, comments and corrections of Gerard Hermans,
Ruud Pellikaan and Pepe Veugelers, to whom I like to express my gratitude.
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Introduction

Consider the n-dimensional projective space Pn over the real numbers. Its elements are points
(of dimension zero), lines (1-dimenional), planes (2-dimensional). . . but also the empty set ∅
(dimension -1) and the whole space itself. The elements are partially ordered: a ≤ b,b ≥ a,
a is contained in b, b contains a, all mean the same. As usual we accept a ≤ a. ∅ is the
minimal and Pn the maximal element. The join a∨b of two elements is the smallest element
containing both a and b. Their meet a ∧ b is the biggest element that is contained in both.
So the join of a point and a line is - in general - a plane, and their meet is empty. With these
conventions a projective space is a lattice. A map P : Pn −→ Pn is said to be projective if
meet and join are preserved, i.e. if

P (a ∨ b) = P (a) ∨ P (b) and P (a ∧ b) = P (a) ∧ P (b)

for any two elements a,b. A projective map P is necessarily bijective. A map is projective if
and only if it is bijective and it preserves order:

a ≤ b⇐⇒ P (a) ≤ P (b)

A projective map is fully determined by the images of a basis. Given a fixed coordinate system
in Pn, every projective map is characterized by any of a family of regular (n + 1)× (n + 1)-
matrices k · A, where k is any non-zero real number. We will identify P and these matrices,
so we will write P = A = kA.

Repeated application of P to some starting point x0 (not being an eigenvector of P ) produces
a series of different points

x1 = P (x0), x2 = P 2(x0), . . .

Taking the inverse P−1 of P , we get the points

x−1 = P−1(x0), x−2 = P−2(x0), . . .

The points xi are on a so called pathcurve1. The map Q = P 2, applied to x0 repeatedly,
defines the same pathcurve as P , but the motion has double ‘speed’. In many cases2 one
can define R = P v for any real number v. If v 6= 0, again, repeated application of R defines
the same pathcurve as P , but with ‘velocity’ v relative to P . In these cases P vt(x0) can be
considered as the locus at time t of a point that moves with ‘speed’ v along the pathcurve
defined by P and x0; here t can be any real number.

0.1 Non-integer powers of a matrix

Let P be a regular n×n matrix over the reals. From linear algebra (i.c. Jordan decomposition)
we know that there exist matrices M,N,Q and S and an integer m ≤ n such that Q =

1The German Felix Klein called it a W-Kurve, which was misunderstood as Weg-Kurve, and then translated
as pathcurve.

2If one allows imaginary numbers these powers are well-defined for every non-singular map.
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M−1PM = S(I + N), where S = (αiδij) is a diagonal-matrix, containing the (possibly
complex) eigenvalues of P , and Nm = 0. I is the identity.

The matrix N vanishes if all eigenvalues have multiplicity 1. If in P2 a is an eigenvalue of say
multiplicity 3, then either

N =

 0 1 0
0 0 1
0 0 0

 or N =

 0 1 0
0 0 0
0 0 0


or N = 0 (the remaining possibility is equivalent with the second). For real t define St =
(αtiδij) and

(I +N)t =
m−1∑
i=0

(
t
i

)
N i

the right part being the binomial development (which has a finite number of terms because
Nm = 0). Finally define P t=MQtM−1 = MSt(I + N)tM−1 . It is immediately clear that
with these definitions the following properties of powers also hold for matrices:

P aP b = P a+b and (P a)b = P ab

0.2 Classification criteria

A pathcurve is a parameter curve v = P ta, a not being an eigenvector of P (so the identity
is excluded). Obviously this curve is invariant under each power of P . Two curves P ta and
P tb either coincide or are disjoint. The pathcurve system of this map is the collection of all
curves that are invariant under P t for each real t.

Clearly, the eigenspaces are also invariant under each power of P , so classification starts with
studying eigenspaces. Let the map P have characteristic polynomial Πkpk

ak . The factors are
arranged such that the degree of pk is not smaller than that of pl whenever k > l, and if
they have equal degree, then ak ≥ bk. Also we assume pk irreducible over the reals. So the
ordering in the product is from high degree to low degree, and within the same degree from
high exponent to low exponent. A second map Q has characteristic polynomial Πkqk

bk , with
similar ordering.

Now P and Q are said to have the same eigenspace structure if for each k

- ak = bk, and

- the degrees of pk and qk are equal.

To put it short: apart from the coefficients within the factors, the polynomials are equal.
Having the same eigenspace structure is an equivalence relation.

Two maps P and Q are said to have the same shape if there exists a regular projective map
A and a real v 6= 0 such that Q = A−1P vA. P v and Q are called similar. Clearly A maps
every pathcurve v = Qta on a pathcurve w = P vtAa. A shape is an equivalence class of this
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relation. Similar maps have equal characteristic polynomials; maps with equal shapes have
the same eigenspace structure.

As a consequence, if P and Q have different eigenspace structures, they represent different
shapes. That the converse is not true will be shown in the sequel. So ‘shape’ is a refinement
of ‘eigenspace structure’.

Two systems P and Q are said to have the same position it there is a real v 6= 0 such that
Q = P v. In this case v is called the speed of Q with respect to P ; if v > 0, the maps are said
to have equal senses, else they have opposite senses. Evidently, the pathcurves of P and Q
(or rather their orbits) coincide.

Classification by ‘shape’ is very detailed. In § 2.3.2 for instance, we encounter a one-parameter
family of shapes that are spirals for all but one value of the parameter. For this exeptional
value, however, a set of ‘concentric conics’ appears. All these shapes have the same eigenspace
structure of one real and two imaginary eigenvectors. They differ in the ‘curvature’.
So, at the other hand, classification by eigenspace structure is not detailed enough. In this
example we want a classification that takes into account the topological property of being
closed.
In § 3.3.2 we’ll find a projective difference between two sets of shapes, again with equal
eigenspace structures.
Hence, there is a need for a third criterion, which groups together different shapes - and splits
up eigenspace classes - in geometric types. Intuitively this seems to be the most interresting
classification. However, until now we did not succeed in finding an algebraic definition of
‘type’. But may be we should not want to, and accept that geometry is not only a part of
algebra.

Summarizing we have the following classification tree of projective maps:

eigenspace structure - geometric type - shape - position - sense

0.3 Eigenspaces

So, our main concern is to investigate the invariant elements of the defining maps, i.e. finding
eigenvalues and eigenspaces of the corresponding matrices. Invariant points are the eigen-
vectors of the pathcurve map P , i.e. the solutions for v of (P − uI)v = 0, where u is any
eigenvalue and I the identity matrix.

Sometimes we may want to look at a transpose M−1PM rather than P itself. We have
M−1PM − uI = M−1PM −M−1uIM = M−1(P − uI)M so (M−1PM − uI)v = 0 has the
same solutions as M−1(P −uI)Mv = 0. But the last one is equivalent with (P −uI)Mv = 0
because M is regular. So v is a solution of the first equation, if and only if Mv is a solution
of the last one.

Let be given an arbitrary (n − 1)-dimensional subspace m and let n = (P τ )−1m. Then
P τn = m and nτP = mτ . Now take any point a of m, so mτa = 0, and let b = P (a).
Then nτb = nτP (a) = mτa = 0, so every point of m maps into a point of n: the inverse
of the transpose of P is the extension of P to the set of (n− 1)-dimensional subspaces. The
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invariant subspaces are the solutions for v of

((P τ )−1 − 1

u
I)v = 0

(To get the images of for instance lines in space, more sophisticated tools are available, see
[4] and [5].)

0.4 Intervals and duality

If a ≤ b the interval [a,b] consists of all elements between a and b:

[a,b] = {x|a ≤ x ≤ b}

Its length is dim a−dim b; its dimension is one less than its length. So if A is a point in some
plane α, [A,α] is the pencil of lines through A in α. It has length 2 and dimension 1.

A duality on an interval [a,b] of dimension ≥ 2 is a bijective map that reverses order:

a ≤ b⇐⇒ Pa ≥ Pb

A duality interchanges join and meet. The dual of [a,b] is denoted by [a,b]∗. Now in real
projective space we find the following non-trivial geometries:

1 dimensional: [∅, l] , [A,α] , [l,P3]

2 dimensional: [∅, α] , [∅, α]∗ , [A,P3] , [A,P3]∗

3 dimensional: [∅,P3] , [∅,P3]∗

where α is a plane containing line l, which in turn contains point A. In the sequel, motions
of points (in a line, plane or space) are studied, but the results are easily translated into the
other geometries of equal dimension.

0.5 Conventions

Points are given in brackets, like (x0 : · · · : xn), and will be identified with column vectors

x =


kx0

...
kxn

 , k 6= 0

The (n − 1)-dimensional subspaces (lines in P2, planes in P3) are given in square brackets,
[x0 : · · · : xn].

The orbit of a moving point vt = f(t) is the set {f(t)|t ∈ R}.
If limt→−∞ f(t) = v−∞ exists, then v−∞ is called the source of the curve. We also say that
the curve originates in v−∞. If limt→∞ f(t) = v∞ exists, then v∞ is called the sink of the
curve. We also say that the curve terminates in v∞. If all or ‘almost all’ pathcurves have the
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same source or sink, this point is also called the source/sink of the system or of the motion.
Clearly, source and sink of a pathcurve are eigenvectors of the defining map.

If the components fi(t) of vt are differentiable at t = t0 we denote v̇(t0) = f ′(t0) = (f ′i(t0)),
which is a point of the tangent to the curve at v(t0). Similarly v̈ is the second derivative, etc.
In 3-dimensional space the equation of the osculating plane is

det(x, v, v̇, v̈) = 0

Reals are printed in roman type. Greek letters denote imaginary numbers.

0.6 Numbers

In the projective plane there are seven continuous types of pathcurves, of which two contain
only straight lines.

In 3-dimensional projective space we found 27 different types of continuous pathcurve-systems.
Of these, five are made up of straight (semi-) lines. Seven types contain true plane curves but
no twisted ones. The remaining 15 types are true space systems3.

points straight plane twisted
lines curves curves

P1 1 3 0 0
P2 1 2 5 0
P3 1 5 7 15

Below we present the results of the classification in deatil. Section 1 gives some preliminary
considerations on projective maps of the line. A major part is dedicated to finding the powers
of a matrix with two imaginary eigenvalues. Section 2 deals with plane pathcurves, and of
course with invariant points and lines. In these two sections we also consider maps that
cannot be made continuous. In space (section 3) however, we restrict to continuous maps.
Also some invariant surfaces will be considered. After the summary you’ll find the figures.

3Baldus [2] found 14 types of collineations of the complex projective space. He did not study pathcurves
in detail.
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1 The projective line

This section gives an overview of the regular linear maps of the real projective line. If our
map is represented by the matrix

P =

(
a c
b d

)
its characteristic equation is

(a− x)(d− x)− bc = x2 − (a+ d)x+ (ad− bc) = 0

Depending on the value of the discriminant

∆ = (a+ d)2 − 4(ad− bc) = (a− d)2 + 4bc

there are 1 or 2 (complex) solutions, i.e. eigenvalues.

We have the following cases.

• (x− p)2 = 0, p 6= 0. The matrix is similar to either(
p 0
0 p

)
or

(
p 1
0 p

)

see § 1.1 and § 1.2.

• (x− p)(x− q) = 0, p 6= q, pq 6= 0. The matrix is similar to(
p 0
0 q

)

see § 1.3.

• (x− λ)(x− λ̄) = 0, see § 1.4.

If there are two different real invariant points, they split up the projective line in 2 intervals.

We will use the Riemann sphere as a model for the complex line (the 1-point compactification
of the Gaussian plane). From complex calculus we mention that linear transformations of
the extended Gaussian plane map circles (including straight lines, being circles with infinite
radius) onto circles.

If our map has two different (real or imaginary) eigenvectors a and b and if Q = P v, it
appears that the speed v is the quotient of logarithms of cross ratios :

v =
ln(abxQx)

ln(abxPx)

for every non-eigenvector x.
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1.1 Identity

The matrix is similar to (
p 0
0 p

)
=

(
1 0
0 1

)
P = P t is the identity. Every point is invariant, so there are no pathcurves.

1.2 Parabolic map

The matrix is similar to

P =

(
p 1
0 p

)
=

(
1 v
0 1

)
where v = p−1 6= 0, so

P t =

(
1 vt
0 1

)
v is the speed of the system with respect to(

1 1
0 1

)

If v > 0, the motion is from (1:0) via (-1:1), (0:1), (1:1) towards (1:0). If v < 0, it is the other
way round. Source and sink coincide in invariant point (1:0). All maps have the same shape.
This case is the intermediate between those of the next two sections.

In the extended Gaussian plane points move on lines parallel to the real axis under our P . In
the general case they move on circles that touch the real axis in its invariant point.

1.3 Hyperbolic map

The matrix can be written in the following form.

P =

(
p 0
0 q

)

If |p| > |q|, the source is (0:1), the sink (1:0); else the motion has opposite direction.

• If one parameter is negative P t is only defined for integer values of t. The points are
jumping from one interval to the other, or, more precisely: for a general point x the
points P nx are in one interval if n is even, and in the other if n is odd.

Extending to the complex line also this ‘jumping’ case can be made continuous. The
points move on loxodromes (spirals) from source to sink. 4

4Rudolf Steiner (1861-1925), without knowing this, at on hand associated the imaginary with the astral,
and at the other hand mentioned that what is a linear movement in the real world, becomes a spiral one in
the astral realm. A most remakable consistency!
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• If q = −p then the map is an involution. Though there are still two invariant points,
there is neither source nor sink.

In the Gaussian plane points now move on concentric circles around O; or, in the general
case, on Apollonian circles around the invariant points.

• If both p and q are positive the motion remains within one interval. We have

P t =

(
pt 0
0 qt

)

Without loss of generality we can take detP = pq = 1. So alternatively we can put

P t =

(
evt 0
0 e−vt

)

where v = ln p 6= 0 is the speed. There is only one shape.

In the Gaussian plane the pathcurves are half lines from O to ∞. Or in general, they
build a pencil of circles through the two invariant points; a single pathcurve is a segment
of such a circle between source and sink.

• If both parameters are negative we multiply with -1 to get the previous case.

1.4 Elliptic map

The discriminant
∆ = (a+ d)2 − 4(ad− bc) = (a− d)2 + 4bc

of the characteristic equation

x2 − (a+ d)x+ ad− bc = 0

of our map

P =

(
a c
b d

)
is negative. This implies detP = ad− bc > 0 and bc < 0. The roots are:

λ =
a+ d

2
+ i

√
−∆

2
= reiv, λ̄ =

a+ d

2
− i
√
−∆

2
= re−iv

where
r =
√
ad− bc =

√
detP

v =


arctan

√
−∆
a+d

if a+ d > 0

π/2 if a+ d = 0

π + arctan
√
−∆
a+d

if a+ d < 0

Note that v ∈ 〈0, π〉, so v > 0.

Clearly there are no real invariant points.

12



�
�
�
�
�
��

A
A
A
A
A
AU

��
�
��

�
��

�
��
�*

HHH
HHH

HHH
HHHj

- -

�
�
�
�
�
�

A
A
A
A
A
A

d a

s
u r

v

λ

λ̄a− λ

a− λ̄

1.4.1 Continuity

Independent eigenvectors of P are for instance(
c

λ− a

)
and

(
c

λ̄− a

)

or (
a− d± i

√
−∆

2b

)

Putting a− λ̄ = seui (see figure, it appears that s =
√
−bc) we transpose with

M =

(
c c

λ− a λ̄− a

)
=

(
c c

−se−ui −seui
)

Now we have

M−1PM =

(
λ 0
0 λ̄

)
so for any real number t

P t = M

(
λt 0
0 λ̄t

)
M−1

This real matrix can be written as

P t =
rt

sinu

(
sin(u+ vt) c√

−bc sin vt
b√
−bc sin vt sin(u− vt)

)

where

u = arg(a− λ̄) = arctan

√
−∆

a− d
or u = π + arctan

√
−∆

a− d
, u ∈ 〈0, π〉

Taking ‘small’ motions (i.e. t ≈ 0, but positive) it turns out to be that

13



• if b > 0, then the motion is one way round (‘to the left’, in the direction (1 : 0) →
(1:1)→ (0 : 1));

• if b < 0, then the motion is the other way round (‘to the right’).

In both cases the line is traversed infinitely many times for t ∈ R.

P is an involution iff a+ d = 0.

1.4.2 Speed and shape

The matrix

M =

(
1 a−d

2b

0 1

)
moves (0 : 1) to the real part of the eigenvectors, ((a− d)/2b : 1). Now transpose our map by
M :

M−1PM =

(
a+d

2
∆
4b

b a+d
2

)
Clearly, without loss of generality we can take a = d. Also, if necessary we can multiply our
matrix with −1, so we will assume a ≥ 0. As a consequence v ∈ 〈0, π/2]. So we have

P =

(
a c
b a

)

Also ∆ = 4bc < 0 and u = π/2. The eigenvectors (±qi : 1) are purely imaginary.

Next, transpose our map by:

M1 =

(
1 −1
q q

)

where q =
√
−b/c. Then

M−1
1 PM1 =

(
a −b/q
b/q a

)
So we can also take b+ c = 0 without loss of generality:(

a −b
b a

)

Finally, we can divide by r =
√

detP =
√
a2 + b2. Now our map becomes

P =

(
cos v − sin v
sin v cos v

)
if b > 0, and

P =

(
cos v sin v
− sin v cos v

)
if b < 0

If we allow v to assume negative values then we have

P =

(
cos v − sin v
sin v cos v

)
P t =

(
cos vt − sin vt
sin vt cos vt

)
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where v is defined as follows:

v =

{
b
|b| arctan |b|

a
if a > 0

π/2 if a = 0
v ∈ 〈−π/2, π/2] \ {0}

remembering that a ≥ 0.

Clearly all elliptic maps have the same shape. The eigenvalues are now cos v± i sin v and the
eigenvectors are (∓i : 1)

Though there are two invariant points in the complex line there is neither source nor sink.
The points move in Apollonian circles around the invariant points. This is easily seen by
computing the path of (pi : 1). This point moves on the circle with centre (p2 + 1)/2p and
radius (p2 − 1)/2p.

In the sequel we will frequently have to transpose our last real matrix P to its complex
normalized one. Let

M =

(
i −i
1 1

)
i.e. an eigenvector matrix. Then

M−1PM =
1

2

(
−i 1
i 1

)(
cos v − sin v
sin v cos v

)(
i −i
1 1

)
=

(
cos v + i sin v 0

0 cos v − i sin v

)
=

(
λ 0
0 λ̄

)
i.e. an eigenvalue matrix.
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2 Plane pathcurves

Plane pathcurves are the curves that are invariant under non-trivial linear maps P of the
projective plane. The characteristic equation of such a map is of degree 3 and has at least
one real root. Apart from the identity we have the following cases.

• (x− p)3 = 0, p 6= 0. The matrix is similar to either of the following (v = p−1 6= 0): p 0 0
0 p 1
0 0 p

 =

 1 0 0
0 1 v
0 0 1


see § 2.1.1; or :  p 1 0

0 p 1
0 0 p

 =

 1 v 0
0 1 v
0 0 1


see § 2.1.2.

• (x − p)2(x − q) = 0, p 6= q, pq 6= 0. The matrix is similar to either of the following:
(a = qp−1 6= 0, 1; v = p−1 6= 0): p 0 0

0 p 0
0 0 q

 =

 1 0 0
0 1 0
0 0 a


see § 2.2.1; or :  p 1 0

0 p 0
0 0 q

 =

 1 v 0
0 1 0
0 0 a


see § 2.2.2.

• (x− a)(x− b)(x− c) = 0, a, b, c all different and non-zero. The matrix is similar to a 0 0
0 b 0
0 0 c


see § 2.3.1.

• (x− λ)(x− λ̄)(x− r) = 0, r 6= 0. From the previous section we know that the matrix
is similar to  cos v − sin v 0

sin v cos v 0
0 0 r


see § 2.3.2.
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In this section lines are identified with row vectors in square brackets like [a : b : c].

We use the following named points: the origin O(0 : 0 : 1), X(1 : 0 : 0), Y (0 : 1 : 0).
The x-axis is the line [0 : 1 : 0] through O and X, the y-axis [1 : 0 : 0] through O and Y ;
∞ = XY = [0 : 0 : 1] is the ‘line at infinity’.

If there are n invariant non-concurrent lines, they divide the plane in 2n−1 disjoint regions
(n = 1, 2, 3). Each continuous non-straight pathcurve is completely within one region.

2.1 One eigenvalue

2.1.1 Elation

P =

 1 0 0
0 1 v
0 0 1

 P t =

 1 0 0
0 1 vt
0 0 1

 , v 6= 0

The point Y (0 : 1 : 0) is linewise invariant, the line ∞[0 : 0 : 1] is pointwise invariant. The
pathcurves are straight lines through Y (0 : 1 : 0) carrying parabolic motions; Y is source
as well as sink of the entire system. There is one shape only; v is the speed. See figure
1. In the affine case P is a translation parallel to the y-axis. It concerns type V of the
Klein/Lie-classification [6].

2.1.2 Contangential conics

P =

 1 v 0
0 1 v
0 0 1

 P t =

 1 vt 1
2
t(t− 1)v2

0 1 vt
0 0 1

 , v 6= 0

The line ∞[0 : 0 : 1] and the point X(1 : 0 : 0) are invariant. On this line there is a parabolic
motion. The remaining pathcurves are conics (parabolas in the affine case) that touch the
line at infinity in X, which is source and sink of the system. There is one region and one
shape only; v is the speed. See figure 2. It concerns type III of the Klein/Lie-classification.

Changing v seems to change the shape. However, let

A =

 1 1
2w

1
8vw

0 1 1
2v

0 0 1


and u = vt/w. Then

Qu = A−1P tA =

 1 wu 1
2u(u− 1)w2

0 1 wu
0 0 1


so P and Q have the same shape indeed.

17



2.2 Two different eigenvalues

2.2.1 Homology

P =

 1 0 0
0 1 0
0 0 a

 a 6= 0, 1

The line ∞[0 : 0 : 1] is pointwise invariant. The point O(0 : 0 : 1) is linewise invariant. If
|a| > 1 O is sink of the system, else it is its source.

• Suppose a < 0 but a 6= −1. A general point x and its image x′ = Px are on one line
l with O. If the common point of l and ∞ is called x0, then x and x′ separate O and
x0. So repeated application of P leads to points jumping between the two intervals of
l determined by x0 and O.

In the complex plane this point moves on a loxodrome from source to sink within the
complex line l.

• If a = −1 we have our map is an involution (reflection in ∞) and x,x′ are harmonic
with respect to x0, O.

In the complex plane points now move on Apollonian circles within the complex lines.

• If a > 0 (but a 6= 1), the motion can be made continuous.

P t =

 1 0 0
0 1 0
0 0 evt


where v = ln a 6= 0. The pathcurves are straight semi-lines between O and ∞. There is
only one shape; v is the speed. See figure 3.
It concerns type IV of the Klein/Lie-classification.

2.2.2 Logarithms

P =

 1 v 0
0 1 0
0 0 a

 a 6= 0, 1; v 6= 0

These systems are degenerate instances of the ones in §2.3.1. They arise when either source
or sink coincides with the third point of the invariant triangle. It concerns type II of the
Klein/Lie-classification. There are two invariant points, X(1 : 0 : 0) and O(0 : 0 : 1). Also
there are two invariant lines: ∞[0 : 0 : 1] and x[0 : 1 : 0]. There are two regions.
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• If a > 0 (but a 6= 1) then

P t =

 1 vt 0
0 1 0
0 0 esvt


where s = ln a

v
. The line at infinity carries a parabolic motion, the x-axis a hyperbolic

one. After a change of basis, the affine equation of a pathcurve can be put in the form

y = p+ q lnx

which explains the name. Also exponential pathcurve is used. Each curve is in one of
two regions.
Here for the first time we find different shapes, determined by the parameter s (v is the
speed).

If s and v are positive then the source is X, the sink O. Increasing s makes the curve
stay longer near the parabolic line and to avoid the hyperbolic one. See figure 4.

• If a < 0, a 6= −1, a general point jumps from one region to the other: in each region
they are on a pathcurve of the previous case, which is called a branch of the discrete
curve.

In the complex plane points now move on loxodrome-like curves from source to sink.

• If a = −1, these branches are the straight lines of the elation (see § 2.1.1) with centre
X and axis OX which carries an involution.

In the complex plane a general point moves along a spiral on a cone with apex X.

2.3 Three different eigenvalues

This case is type I of the Klein/Lie-classification.

2.3.1 All real: triangular system

• Assume first a, b and c positive (and different).

P =

 a 0 0
0 b 0
0 0 c

 P t =

 at 0 0
0 bt 0
0 0 ct

 , abc 6= 0, all different

This is the general form of the real plane pathcurve. Each vertex and line of the
fundamental triangle is invariant, which is why we call it the triangular system. Each
curve is within one of four regions. The motion is from the eigenvector with the smallest
eigenvalue towards the one with the biggest. If one of the eigenvalues is the geometric
mean of the other two (e.g. b2 = ac), then the curves are ‘half’ conics. Without loss of
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generality we can assume a > b = 1 > c. If we take v = ln a as the speed, s = − ln c
ln a

> 0
determines the shape:

P t =

 evt 0 0
0 1 0
0 0 e−svt


See figure 5. If s = 1 we have the above mentioned conics. If s > 1 the curves are ‘skew’
to one side: they are blunter near X and sharper near O. If s < 1 they are skew to the
other side. For s → ∞ and for s → 0 the curves degenerate into the straight lines of
the homology (see § 2.2.1).

• If one of the parameters is negative, for instance c < 0, c 6= −a, then t must be integer.
The points jump from one region to the other: the points within one region are again
on a pathcurve of the previous type, a branch of the discrete curve.

In the complex projective plane the points are moving on loxodrome-like curves from
source to sink.

• If e.g. a > b = 1, c = −a the branches are the straight lines of the homology (§ 2.2.1).

In the complex projective plane a general point moves along a spiral on a half cone.

• The remaining cases can be reduced to the previous ones by multiplying with −1.

2.3.2 One real, two imaginary

From §1.4.2 we conclude that the matrix is similar to

P =

 cos v − sin v 0
sin v cos v 0

0 0 r

 = M

 λ 0 0
0 λ̄ 0
0 0 r

M−1, v ∈ 〈−π/2, π/2〉 \{0}

where

M =

 i −i 0
1 1 0
0 0 1


and λ = cos v + i sin v. If r < 0 we multiply by −1; then by adding ±π to v this minus sign
is removed from the trigonometric functions. So we can assume r to be positive if we allow v
to have values in 〈−π, π〉 exept 0. Putting s = (ln r)/v we have

P =

 cos v − sin v 0
sin v cos v 0

0 0 esv

 , P t =

 cos vt − sin vt 0
sin vt cos vt 0

0 0 esvt

 v ∈ 〈−π, π〉 \ {0}
There is one invariant real point, O(0 : 0 : 1), and one invariant real line ∞[0 : 0 : 1]; hence
only one region.

As usual, v is the speed of the system, s is the shape. One could use ‘angular’ speed for v as
opposed to the ‘radial’ speed sv = ln r. The shape determines the ‘curvature’ (big s resulting
in almost straight lines).

There are two different types.
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• If s = 0 the invariant curves are ‘concentric’ conics (see figure 6), which are traversed
infinitely many times.

• Else they are (logarithmic) spirals (see figure 7). If s is positive, the curves are inward
spirals with common sink O; for t → −∞ they stretch more and more and approach
the line at infinity. For negative shapes O is common source of outward spirals.

The limiting case s = ±∞, or equivalently v = 0, is the homology of § 2.2.1.
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3 Pathcurves in space

We use the coordiates (x0 : · · · : x3) for points, and [u0 : · · · : u3] for planes. Since Plücker-
coordinates for lines are not generally known we will not use them. However, in determining
(limiting) tangents they play an important role.

The subspace x3 6= 0 we will call the affine space, so x3 = 0 represents the plane at infinity,
denoted by ∞.
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We use the following named points: the origin O(0 : 0 : 0 : 1), X(1 : 0 : 0 : 0), Y (0 : 1 : 0 :
0), Z(0 : 0 : 1 : 0). The x-axis is the line through O and X, the y-axis through O and Y , and
the z-axis through O and Z. The unit point (1:1:1:1) is inside the above tetrahedron.

3.0.3 The characteristic function

The characteristic function of a real 4x4-matrix P is a polynomial of degree 4. Imaginary
roots appear in pairs of conjugate complex numbers, so the polynomial cannot be irreducible:
it factors in at least two quadratic ones with real coefficients. Since kP represents the same
projective map as P for every real non-zero k, we can take one of the real eigenvalues equal
to 1, without loss of generality.

We distinguish the following cases.

1 eigenvalue

* (x− 1)4 = 0; see 3.1

2 eigenvalues

* (x− a)(x− 1)3 = 0; see 3.2.1 - 3.2.3

* (x− a)2(x− 1)2 = 0; see 3.2.4 - 3.2.6
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* (x2 + px+ q)2 = (x− λ)2(x− λ̄)2 = 0; see 3.2.7 - 3.2.9

3 eigenvalues

* (x− a)(x− b)(x− 1)2 = 0; see 3.3.1, 3.3.2

* (x2 + px+ q)(x− 1)2 = (x− λ)(x− λ̄)(x− 1)2 = 0; see 3.3.3, 3.3.4

4 eigenvalues

* all real: (x− 1)(x− a)(x− b)(x− c) = 0; see 3.4.1

* two real, two imaginary, see 3.4.2:

(x2 + px+ q)(x− a)(x− b) = (x− λ)(x− λ̄)(x− a)(x− b) = 0

* all imaginary, see 3.4.3:

(x2 + px+ q)(x2 + rx+ s) = (x− λ)(x− λ̄)(x− µ)(x− µ̄) = 0

If a pathcurve is entirely in one plane, it is called a plane curve, otherwise a twisted one.

If there are n invariant planes, they split the space in 2n−1 disjoint regions (n = 1, 2, 3, 4).
Each twisted curve remains within a single region.

3.0.4 Names

Several curves (e.g. the helix) are well known. Others are less known, or at least were not
known to me until now. Of these, some ask for obvious names, like cone spiral. Five curves
have been baptized by me; with the help of English, German and French colleagues I also
provided names in their languages. For brevity we often omitted the adjectives real, projective
and twisted.

3.0.5 Figures

We also tried to visualize the twisted curves. In general we plotted one single representative
curve from some system; often we added the motions on (some of) the invariant lines. In a
few cases we presented a series of curves of one system, in order to visualize a surface. Big
circles represent ‘nearby’ points, small circles remote ones.

3.1 One eigenvalue

3.1.1 Elation

P =


1 0 0 0
0 1 0 0
0 0 1 v
0 0 0 1

 , P t =


1 0 0 0
0 1 0 0
0 0 1 vt
0 0 0 1

 , v 6= 0
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The plane ∞[0 : 0 : 0 : 1] is pointwise invariant (and - of course - linewise too), the point
Z(0:0:1:0) is planewise invariant, i.e. every plane through Z is mapped onto itself. The
pathcurves are straight lines through Z each carrying a parabolic motion. Z is source and
sink of the entire motion. There are no twisted curves. There is one shape only, and v is the
speed of the system.
In the affine case P represents a translation parallel to the z-axis.

3.1.2 Parabolic congruence

P =


1 v 0 0
0 1 0 0
0 0 1 v
0 0 0 1

 , P t =


1 vt 0 0
0 1 0 0
0 0 1 vt
0 0 0 1

 , v 6= 0

The line XZ is point- and planewise invariant.
The plane through X,Z and (0 : p : 0 : q) contains a set of straight pathcurves, each carrying
a parabolic motion and converging to (p : 0 : q : 0), like in figure 1. We have a linear
congruence, namely a parabolic one. There are no twisted curves. The invariant lines have 2
degrees of freedom (there are∞2 invariant lines). There is one shape only, and v is the speed.

3.1.3 Plane contangential conics

P =


1 0 0 0
0 1 v 0
0 0 1 v
0 0 0 1

 , P t =


1 0 0 0
0 1 vt 1

2
v2t(t− 1)

0 0 1 vt
0 0 0 1

 , v 6= 0

The line XY is pointwise invariant, the line Y Z planewise.
Exept for the plane ∞ [0:0:0:1], every plane through Y Z contains a set of conics (parabolas
in the affine case) that all touch Y Z in Y (like in figure 2). Y Z carries a parabolic motion.
When such a plane turns towards infinity, the conics become ’sharper’. The limiting plane
∞[0:0:0:1] contains a pencil of straight lines through Y . Y is source and sink of the system.

There are no twisted curves. There is only one shape, v is the speed.

3.1.4 Cubics

P =


1 v 0 0
0 1 v 0
0 0 1 v
0 0 0 1

 , P t =


1 vt 1

2
v2t(t− 1) 1

6
v3t(t− 1)(t− 2)

0 1 vt 1
2
v2t(t− 1)

0 0 1 vt
0 0 0 1

 , v 6= 0
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There is one invariant point X(1 : 0 : 0 : 0), one invariant plane, ∞ [0 : 0 : 0 : 1] and one
invariant line XY .
The whole affine space is filled with twisted cubics each of which originates and terminates
in X (see figure 8). The cubics all have XY as tangent and ∞ as osculating plane. In turn,
∞ contains a set of conics all touching XY in X (like in figure 2). XY cariies a parabolic
motion.
There is only one shape; v is the speed of the system.

Changing v seems to change the shape. However, let

A =


1 1

3(2w − v) 0 0
0 1 1

6(v + w) 0
0 0 1 1

3(2v − w)
0 0 0 1


and u = vt/w. Then Qu = A−1P tA =

1 wu 1
2w

2u(u− 1) 1
6w

3u(u− 1)(u− 2)
0 1 wu 1

2w
2u(u− 1)

0 0 1 wu
0 0 0 1


So, again, P and Q have the same shape. Compare the remark at the end of § 2.1.2.

3.2 Two different eigenvalues

3.2.1 Homology

P =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 a

 , a 6= 0, 1

The point O(0:0:0:1) is planewise invariant, the plane ∞ [0 : 0 : 0 : 1] is pointwise invariant.
In the affine case the map P is a central multiplication from O with factor a.

If a > 0 the map can be made continuous and we have

P t =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 at

 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 evt


where v = ln a. The pathcurves are straight semi-lines through O, carrying hyperbolic mo-
tions. There is one shape only, and v determines the speed of the motion. If v < 0 (i.e.
0 < a < 1) the motion originates at O and terminates in ∞; otherwise otherwise. There are
no twisted curves.
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3.2.2 Plane logarithms, I

P =


1 v 0 0
0 1 0 0
0 0 1 0
0 0 0 a

 , a 6= 0, 1; v 6= 0

Eigenvalue 1 leads to a pointwise invariant line XZ and a planewise invariant line OX.
Eigenvalue a gives O as eigenvector and ∞ as invariant plane. The lines in ∞ through X are
invariant, and so are the lines in OXZ through O.

If a > 0 the map can be made continuous.

P t =


1 vt 0 0
0 1 0 0
0 0 1 0
0 0 0 esvt


where s = ln a

v
. Every plane through OX contains a set of logarithmic pathcurves like the

ones in figure 4, the second line (with the parabolic motion) being in ∞. When such a plane
turns towards OXZ, the curves stretch from O outward. OXZ in turn contains a pencil of
straight lines through O with a pointwise invariant line XZ, like the homology of figure 3.
The plane ∞ carries an elation with centre X and axis XZ (figure 1). The shape of the
system is determined by s, v is the speed. There are no twisted curves.

3.2.3 Conic turns

P =


1 v 0 0
0 1 v 0
0 0 1 0
0 0 0 a

 , a 6= 0, 1; v 6= 0

There are two invariant points, O(0 : 0 : 0 : 1) and X(1 : 0 : 0 : 0), two invariant planes
OXY [0 : 0 : 1 : 0] and ∞, and two invariant lines OX and XY .

If a > 0 the map can be made continuous.

P t =


1 vt 1

2
v2t(t− 1) 0

0 1 vt 0
0 0 1 0
0 0 0 esvt


where s = ln a

v
. There is a hyperbolic motion on OX, a parabolic one on XY . In ∞ we have

a set of conics all touching XY in X, like in figure 2. In OXY we have a set of logarithmic
pathcurves like in figure 4. The rest of the projective space is filled with beautiful twisted
curves like in figure 9. Each curve turns once around a semi-cone, which is why we call them
conic turn (Ge: Kegelschlag ; Fr: tour de cône; Du: kegelslag). Each cone has apex O and

26



one of the conics of ∞ as its base; so the cones all touch OXY in OX.
If a > 1 and v > 0, X is the source, O the sink of the entire motion. The shape is determined
by s, v is the speed of the system5. The invariant lines and planes are (limiting) tangents
resp. osculating planes of each twisted curve. Each curve is within one of two regions. Figure
10 shows a set of conic turns on one semi-cone.

3.2.4 Hyperbolic congruence

P =


a 0 0 0
0 a 0 0
0 0 1 0
0 0 0 1

 , a 6= 0, 1

The lines OZ and XY are pointwise and planewise invariant.

If a > 0 the map can be made continuous.

P t =


evt 0 0 0
0 evt 0 0
0 0 1 0
0 0 0 1


where v = ln a. All pathcurves are straight semi-lines joining OZ and XY . There is one
shape only, and v is the speed.
Again we encounter a linear congruence, this time a hyperbolic one. There are no twisted
curves.

3.2.5 Plane logarithms, II

P =


1 v 0 0
0 1 0 0
0 0 a 0
0 0 0 a

 , a 6= 0, 1; v 6= 0

The line OZ is pointwise invariant, the line XY planewise. Furthermore X and OXZ are
invariant. OXZ contains a pencil of invariant straight lines through X (homology).

If a > 0 the map can be made continuous.

P t =


1 vt 0 0
0 1 0 0
0 0 esvt 0
0 0 0 esvt


where s = ln a

v
. Each plane through XY contains a set of logarithmic pathcurves like in

figure 4. Note the difference with §3.2.2: there the invariant planes have the line with the two
double points in common; here it is the line with one double point. The shape is determined
by s, v is the speed. There are no twisted curves.

5See remark at the end of § 2.1.2.
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3.2.6 Long twisted logarithms

P =


1 v 0 0
0 1 0 0
0 0 a v
0 0 0 a

 , a 6= 0, 1; v 6= 0

X, Z, OZ,XY,XZ,OXZ and ∞ are invariant.

If a > 0 the map can be made continuous.

P t =


1 vt 0 0
0 1 0 0
0 0 at vtat−1

0 0 0 at

 =


1 vt 0 0
0 1 0 0
0 0 esvt vtesv(t−1)

0 0 0 esvt


where s = ln a

v
. The planes OXZ and ∞ each contain a set of logarithmic pathcurves like in

figure 4. All other pathcurves are twisted curves, like in figure 11, each within one of only two
regions. So they are twice as ‘long’ as the ones in §3.3.2 (each curve meets four of the eight
regions in which the fundamental tetrahedron divides space). The shape is determined by s, v
is the speed. Suppose a < 1 and v > 0. Then the motion originates in Z in the direction OZ,
turns through space in one long bow, and terminates in X, direction XY . Hence OZ and
XY are tangent to each curve, and these are skew. The planes OXZ and ∞ are (limiting)
osculating planes of each curve.

3.2.7 Elliptic congruence

P = M


λ 0 0 0
0 λ 0 0
0 0 λ 0
0 0 0 λ

M−1 =

(
Q 0
0 Q

)

where

Q =

(
cos v − sin v
sin v cos v

)
, v ∈ 〈−π/2, π/2〉 \{0}

(see § 1.4).

P t = M


λt 0 0 0

0 λ
t

0 0
0 0 λt 0

0 0 0 λ
t

M−1 =

(
Qt 0
0 Qt

)

where

Qt =

(
cos vt − sin vt
sin vt cos vt

)
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There are no real invariant points, nor planes. The image of an arbitrary point A(a0 : a1 :
a2 : a3) is

A(t) = cos vt


a0

a1

a2

a3

+ sin vt


−a1

a0

−a3

a2


so the pathcurves are straight lines with elliptic motions, all with the same speed v.
The pathcurves constitute a third type linear congruence, the elliptic one.
There are no twisted curves. There is only one shape.

3.2.8 Impossible case

Since the matrix 
λ 1 0 0
0 λ 0 0
0 0 λ 0
0 0 0 λ


is not invariant under complex conjugation this case cannot occur in real projective space.

3.2.9 Sheafs

P = M


λ 0 1 0
0 λ̄ 0 1
0 0 λ 0
0 0 0 λ̄

M−1 =

(
Q R
0 Q

)

Where

Q =

(
cos v − sin v
sin v cos v

)
, R =

(
r 0
0 r

)
, r > 0

(see 1.4.2). The last matrix commutes with every other 2 × 2−matrix. There are no real
invariant points, nor planes. There is one invariant line: XY .

P t =

(
Qt R(t)
0 Qt

)

where

Qt =

(
cos vt − sin vt
sin vt cos vt

)
and

R(t) = rt

(
cos v(t− 1)) − sin v(t− 1)
sin v(t− 1) cos v(t− 1)

)
The shape is s = r/v.
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It is not so easy to get an image of this system. Therefore we describe one curve in more detail
(see figure 12). Let v = 0.01, r = 1 and let our curve be defined by

v = P t


1
1
1
1


If t ≈ −∞ the orbit is an almost straight line very close but slightly skew to XY . If t increases
by one period π we are on the next part of the orbit, which is sligthly more skew and more
remote from XY . So, in the neighbourhood of t = −∞ we get a set of (almost straight) lines
on a hyperboloid-like surface.
Now let t further increase. Distance from XY and skewness increase, as does ‘curvature’.
Suddenly, in the neighbourhood of t = 0, the orbit becomes an almost planar semi-circle near
the plane OY Z. Then gradually it stretches, coming more and more in the direction of XY
again, but now approaching from the other side.

The complete picture - of one sigle orbit - looks like a sheaf of corn tied together by the
semi-circle, which is why we call it the sheaf (Ge: Garbe; Fr: gerbe; Du: schoof ). See figure
12.

3.3 Three different eigenvalues

3.3.1 Plane triangular systems

P =


1 0 0 0
0 1 0 0
0 0 a 0
0 0 0 b

 , a, b /∈ {0, 1}, a 6= b

All the points, lines and planes of the fundamental tetrahedron are invariant. In addition,
XY is pointwise and OZ is planewise invariant. Finally the lines through O in OXY and the
lines through Z in ∞ are invariant.

If a and b are positive the map can be made continuous.

P t =


1 0 0 0
0 1 0 0
0 0 evt 0
0 0 0 esvt


where v = ln a and s = ln b

v
. Each plane through OZ contains a triangular sytem of pathcurves

like in figure 5. In ∞ as well as in OXY the pathcurves are like in figure 3. The shape is
determined by s, v is the speed. One can distinguish two cases:

• s < 0 (1 is between a and b): the motion is between O and Z.

• Else (s > 0) the motion is between XY and either O or Z.

There are no twisted curves.
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3.3.2 Short twisted logarithms

P =


1 v 0 0
0 1 0 0
0 0 a 0
0 0 0 b

 , a, b /∈ {0, 1}, a 6= b, v 6= 0

O,X,Z,OXZ,OXY and ∞ are invariant. So are the lines of the tetrahedron exept OY and
Y Z.

If a and b are positive the map can be made continuous.

P t =


1 vt 0 0
0 1 0 0
0 0 at 0
0 0 0 bt


OXZ contains a set of general pathcurves like in figure 5. OXY and ∞ each contain a set
of logarithmic pathcurves like in figure 4. All other pathcurves are twisted ones, each within
one of four regions. Compare with section 3.2.6, where there are only two regions. The shape
has two degrees of freedom; it is determined by ln a

v
and ln b

v
; v is the speed.

• If 1 is between a and b, say 0 < a < 1 < b, (and v > 0) then the common source is
Z, the sink O, limiting directions are ZX and OX, limiting osculating planes ∞ and
OXY . See figure 13.

• In the other case, say 1 < a < b, (and v > 0) each curve originates at X in direction
XY and terminates in O, direction ZO; the limiting osculating planes are∞ and OXZ.
See figure 14.

Note the difference between these two cases. In the former the limiting tangents meet in X,
their join is OXZ. In the latter they are skew.

At first sight the curves look very much the same as the conic turns. The difference becomes
obvious if we compare sets of curves, each building a surface, see figures 10, 15 and 16. In the
first figure the surface is a semi-cone. In the other two it is a cone-like shape with a triangular
opening at the rear side. In the first figure the (bottom) border is a conic, in the other two a
(non-closed) plane logarithm. Also, the limiting osculating planes of the conic turn conincide.

3.3.3 Plane spirals

P = M


1 0 0 0
0 1 0 0
0 0 λ 0
0 0 0 λ

M−1 =


r 0 0 0
0 r 0 0
0 0 cos v − sin v
0 0 sin v cos v

 , v ∈ 〈−π, π〉 \ {0} , r > 0

see 1.4.2. X, Y,OY Z and OXZ are invariant; XY is point-, OZ planewise invariant.
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The map can be made continuous.

P t =


esvt 0 0 0
0 esvt 0 0
0 0 cos vt − sin vt
0 0 sin vt cos vt


where s = ln r

v
is the shape. Each invariant plane contains a set of

• concentric conics if s = 0 (see figure 6);

• spirals if s 6= 0 (see figure 7).

There are no twisted curves.

3.3.4 Long spirals

P = M


1 w′ 0 0
0 1 0 0
0 0 λ 0
0 0 0 λ

M−1 =


1 w 0 0
0 1 0 0
0 0 r cos v −r sin v
0 0 r sin v r cos v

 , v ∈ 〈−π, π〉 \ {0} , r > 0, w 6= 0

X,XY,OZ and OXZ are invariant. The map can be made continuous.

P t =


1 wt 0 0
0 1 0 0
0 0 rt cos vt −rt sin vt
0 0 rt sin vt rt cos vt


OZ contains an elliptic, XY a parabolic motion. There is only one region. We can take v as
the speed of the system. The shape is determined by (ln r)/v and w/v.

• If r = 1, the invariant plane contains a bundle of concentric conics like in figure 6. The
remaining pathcurves are spirals on cones. Each curve originates and terminates in X,
the common apex of all cones. See figure 17. The shape has one degree of freedom. In
the affine case we have the helix.

• If r 6= 1, the invariant plane contains a set of spirals like in figure 7. The remaining
pathcurves are spirals on ‘vortices’, all originating in X. For t→∞ each orbit stretches
and approaches OZ and OXZ. The vortices have their source in their covering plane
and extend through the whole space. They are ‘twice as long’ as the vortices of §3.4.2.
See figure 18. The shape has two degrees of freedom.
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3.4 Four different eigenvalues

3.4.1 All real: tetrahedral system

P =


a 0 0 0
0 b 0 0
0 0 c 0
0 0 0 1


with a, b, c /∈ {0, 1}, no two of them equal.
The fundamental tetrahedron is invariant.

If a, b and c are positive the map can be made continuous.

P t =


at 0 0 0
0 bt 0 0
0 0 ct 0
0 0 0 1


This is the general real type, or the tetrahedral type. Each line of the tetrahedron contains
a hyperbolic motion, Each invariant plane contains a triangular system like in figure 5. We
can take v = ln a as the speed. The shape is determined by ln b

v
and ln c

v
, so it has two degrees

of freedom. If say a > b > c > 1, then O is the source of each twisted pathcurve, X their
common sink. XY and OZ are tangent to, OY Z and∞ are osculating planes of each twisted
curve. Each curve is within one of eight regions. See figure 19.

Two orbits in ‘opposite’ regions add up to a closed curve. Depending on the point of view
(centre), the projection of this curve is topologically equivalent to

• a bow or

• an oval or

• a lemniscate.

The last one we call a path lemniscate. It is different from the lemniscates of Lissajous/Gerono,
Booth and Bernoulli.

3.4.2 Two real, two imaginary

P = M


a 0 0 0
0 b 0 0
0 0 λ 0
0 0 0 λ

M−1 =


a 0 0 0
0 b 0 0
0 0 cos v − sin v
0 0 sin v cos v

 , a, b 6= 0, a 6= b

X, Y,OY Z,OXZ,XY and OZ are invariant.
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If a and b are positive the map can be made continuous.

P t =


at 0 0 0
0 bt 0 0
0 0 cos vt − sin vt
0 0 sin vt cos vt


OZ contains an elliptic motion, XY a hyperbolic one. The shape is determined by ln a

v
and

ln b
v

, v is the speed. There are two regions. We have the following cases.

• 1 is between a and b, e.g. 0 < a < 1 < b.
Each invariant plane contains a set of spirals like in figure 7. In one plane they are
outward, in the other inward. The remaining pathcurves are spirals on ‘eggs’, see figure
20. They all originate in X and terminate in Y , touching OXZ resp. OY Z. The shape
has two degrees of freedom.

• One of a, b equals 1, e.g. a = 1, b > 1.
One invariant plane contains spirals, the other concentric conics, like figure 6. The
remaining pathcurves are spirals on semi-cones with common source Y . For t → ∞
they approach a conic in OXZ. See figure 21. The shape has one degree of freedom.
Note the difference with the helix of §3.3.4.

• a, b at one side of 1, e.g. a < b < 1.
Again the invarant planes contain spirals, but now all inward. The remaining pathcurves
are spirals on ‘vortices’ with common source X, and common ‘covering plane’ OY Z.
For t→∞ the orbits stretch towards OZ. See figure 22. The shape has two degrees of
freedom.

3.4.3 All imaginary

P = M


λ 0 0 0
0 λ 0 0
0 0 µ 0
0 0 0 µ

M−1 =


r cosw −r sinw 0 0
r sinw r cosw 0 0

0 0 cos v − sin v
0 0 sin v cos v


where r > 0 and v, w ∈ 〈−π, π〉 \ {0}.

P t =


rt cos svt −rt sin svt 0 0
rt sin svt rt cos svt 0 0

0 0 cos vt − sin vt
0 0 sin vt cos vt


The lines XY and OZ are invariant, each containing an elliptic motion. The shape is deter-
mined by (ln r)/v and s = w/v; v is the speed of the system. There are three cases.

• r 6= 1. Every point not on one of the invariant lines, winds infinitely through space.
With positive and increasing t the orbit stretches and approaches the line OZ while
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winding around it. If t << 0 and decreasing, it stretches again, but now coming closer
and closer to XY while winding around it. These two windings however are different
in quality. If say r > 1 and |v| < |w|, then for t → ∞ the orbit really winds around
XY like a coil. At the other hand, for t → −∞ the line OZ is covered by almost
straight lines that turn around it while coming closer and closer. They resemble a one-
blade hyperboloid; however this surface itself winds around OZ as well as around XY ,
becoming more and more narrow and cylindric6. Its equation is of the form

x2
0 + x2

1 = r
2
v

arctan
x2
x3

+kπ
(x2

2 + x2
3), k ∈ Z

A curve of this type we’ll call a line winding (Ge: Geradenwickel ; Fr: enroulage de
lignes ; Du: lijnenwikkel). See figure 23. The shape has two degrees of freedom.

• If r = 1 there is no such stretching for t → ±∞. Exept for the situation of the third
case (see below) the points stray through space without any goal, which is why we call
a curve of this type a stray (Ge: Irrkurve; Fr: courbe errante; Du: dwaalcurve). Now
each orbit is on a hyperboloid. The orbit is dense in the surface, like the rationals being
dense in the reals. See figure 24. The shape has one degree of freedom.

• If in addition to r = 1 there exist integers n,m such that mv = nw i.e. s = m/n is
rational, then the curves are closed. We call a curve of this type a multi loop ( Ge:
Multi-Schleife; Fr: multi-boucle; Du: multi-lus). See figure 25. There are countably
infinite shapes.

6Edwards [3] calls it the Chalice surface.
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4 Summary

Below we summarise the results of the previous sections. The first column contains the
dimension of the space; the second the number of roots of the characteristic polynomial. The
third refers to the subsection where the case is treated. If the map can be made continuous for
all values of its paramaters, then the column ‘cont’ contains a ‘y’. The last but one contains
the degree of freedom of the shape. The last one shows the ‘dimension’ of the system, i.e. 3
if the system has twisted curves, 2 if it has not but does have non-straight plane curves, etc.

n roots of Eigen-space cont name shape system-
char. pol. structure d.o.f. dim

1 1 real 1.2 y parabolic motion 0 1
2 real 1.3 n hyperbolic motion 0 1
2 im 1.4 y elliptic motion 0 1

2 1 real 2.1.1 y elation 0 1
2.1.2 y contangential conics 0 2

2 real 2.2.1 n homology 0 1
2.2.2 n logarithms 1 2

3 real 2.3.1 n triangular system 1 2
1 real, 2 im 2.3.2 y spirals 1 2

y concentric conics 0 2
3 1 real 3.1.1 y elation 0 1

3.1.2 y parabolic congruence 0 1
3.1.3 y contangential conics 0 2
3.1.4 y cubics 0 3

2 real (1,3) 3.2.1 n homology 0 1
3.2.2 n plane logarithms I 1 2
3.2.3 n conic turns 1 3

2 real (2,2) 3.2.4 n hyperbolic congruence 0 1
3.2.5 n plane logarithms II 1 2
3.2.6 n long logarithms 1 3

2 im (2,2) 3.2.7 y elliptic congruence 0 1
3.2.9 y sheafs 1 3

3 real 3.3.1 n triangular systems 1 2
3.3.2 n short logarithms 2 3

n skew short logarithms 2 3
1 real, 2 im 3.3.3 y plane spirals 1 2

y concentric conics 0 2
3.3.4 y long vortex spirals 2 3

y helixes 1 3
4 real 3.4.1 n tetrahedral system 2 3
2 real, 2 im 3.4.2 n egg spirals 2 3

n cone spirals 1 3
n vortex spirals 2 3

4 im 3.4.3 y line windings 2 3
y strays 1 3
y multi loops 07 3

7There are countably infinite shapes.
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5 Metamorphosis and degeneration

There are many ways of transforming one pathcurve system into another. Sometimes we get a
degeneration: the homology is a degenerate spiral system (with zero angular speed). In other
cases we prefer the term metamorphosis, for instance the transistion of the triangular, via the
logarithmic to the spiral type. To be precise, a transformation of one pathcurve system into
another one with a different eigenspace structure is called a metamorphosis if each system
has n+ 1 different invariant points, n being the dimension of the projective space.

We present a summary of the most important transformations.

5.1 Planar systems

5.1.1 Metamorphosis of triangular into spiral system

We start with the triangular type, fig. 5. If we look at the sides of the triangle we note
that

• from the source O there are 4 outgoing motions

• at the stationary point Y there are 2 out- and 2 ingoing motions

• at the sink X there are 4 ingoing motions.

If we move the stationary point Y of the system onto the source O (or the sink), we get the
logarithmic type, fig. 4. One line has a parabolic motion, the other still a hyperbolic one.
The spiral type is about to come into existence.

From the matrix representation one might expect to get the homology of section 2.2.1. How-
ever, considering that (

p 1
b−a

0 1
p

)(
a 0
0 b

)(
1
p

1
a−b

0 p

)
=

(
a p
0 b

)

and that the last matrix is more general than its conjugate in the middle at the left side, we
must accept that in general the triangular system transforms into the logarithm.

If we split the coinciding points O, Y into a pair of complex conjugates, we get the spiral
type. There remains one real invariant point and one invariant line with an elliptic motion.

5.1.2 Degenerations

If we decrease the angular speed of the spirals to zero (or increase the absolute value of the
radial speed to infinity), we get the homology, fig. 3. If we move the invariant point of the
homology onto the invariant line we get the elation, fig. 1.

If we decrease the absolute radial speed of the spirals to zero, we get the concentric conics,
fig. 6. If we move the invariant point of the concentric conics onto the invariant line we get
the contangential conics fig. 2.
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There are several other ways of transforming one system into the other. For instance, de-
creasing the speed on one side of the triangle of the first system to zero leads to the homology
again.

5.2 Space systems

For sake of brevity we restrict to a maximum of 4 invariant points, 6 invariant lines and 4
invariant planes, i.e. types that have twisted curves.

It should be noted that it is hardly possible to make drawings of the 3-dimensional metamor-
phoses, and yet it is indispensable to draw sketches in order to support the imagination.

5.2.1 Metamorphosis

1 We start with the tetrahedral type, section 3.4.1, fig. 19, which has 4/6/4 invariant
points/lines/planes, all real. We suppose that a > b > c > 1. If we look at the sides of
the tetrahedron we note that

– from the source O there are 6 outgoing motions

– at the sink X there are 6 ingoing motions

– at one stationary point, Z, there are 4 out- and 2 ingoing motions

– at the remaining (stationary) point, Y , there are 2 out- and 4 ingoing points

From the tetrahedral type we can move one stationary point onto the other to get a
short logarithm, section 3.3.2 fig. 13. Note that now a > b = c > 1, and that indeed
we found the non-skew type. The same trick as in section 5.1.1 can be used to show
that in general we do not get the plane triangular systems of section 3.3.1.

Next we move the coinciding points into the imaginary, getting the egg spiral, section
3.4.2, fig. 20. The matrix becomes:

a 0 0 0
0 r cos v −r sin v 0
0 r sin v r cos v 0
0 0 0 1


with a > r ≈ b = c > 1. Changing the shape-parameters (e.g. increasing r) transforms
this one via cone spiral (r = a, fig. 21) into vortex spiral (fig. 22). Note that in these
last three cases there are now two invariant (real) points, two invariant lines and two
invariant planes.

Going on from the egg-spiral, move O onto X, to get the helix, fig. 17.

Finally, we also move O and X into the imaginary, getting one of the chalice lines,
section 3.4.3, figs. 23-25 (try first to imagine the cone of the helix to transform into a
hyperboloid, with a stray or multiloop on it). There are still two invariant lines, but no
invariant real points, nor planes.
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2 Again we start with the tetrahedral type, but now we move one of the stationary points
towards source or sink, say Z onto O. We now get the short skew logarithm. Moving
Z and O into the imaginary, results in the short vortex spiral. Next move X onto
Y to get the long vortex spiral, and moving them into the imaginary finally leads to
the line winding again.

3 After moving Z onto O, we can move Y onto Z, to get the long logarithm. The points
and planes have multiplicity 2, OX = Y Z has multiplicity 4. Next we split one point
in two complex conjugate ones to get a long spiral again, and finally split the other one
to get at a chalice line. This indeed is rather artificial, but it is the only way to get the
long logarithm.

We leave it as an exercise for the reader to check that moving Z onto X or Y onto O produces
the plane logarithms of section 3.2.2, and that moving source O onto sink X produces the
elation of section 3.1.1.

5.2.2 Degenerations

1 Let’s start to move Z onto O, to get a short logarithm. From here we can also move Y
onto O = Z. Now we seem to have 2 invariant points (multiplicity 1 and 3), 3 invariant
lines (multiplicity 1, 2, 3) and 3 invariant planes (multiplicity 1, 2, 1). From duality
consideartions this is not possible. So in moving Y to Z the ‘single’ line (the z-axis)
turns towards XZ and we are left over with the conic turn of section 3.2.3, fig. 10.
The two lines, the point O = Y = Z and one plane all have multiplicity 3.

Finally we can move X onto the other. The planes collapse into one, as do the lines.
We get the cubic of section 3.1.4, fig. 8. The single invariant point has multiplicity 4,
as has the invariant plane. The invariant line has multiplicity 6.

Of course, one could transform the cubic by moving points into the imaginary. This,
however, is too artificial to my taste.

2 We start from the long logarithm, fig. 11 (see the third metamorphosis of the previous
section). Now instead of splitting one point into two imaginary ones, we move one point
onto the other, getting the cubic again.

3 A last degeneration, again a rather artificial one, is produced by moving one invariant
line of the line-winding onto the other, to get the sheaf. In doing so we should imagine
the coil around one line (the part for t close to infinity) getting more and more narrow
and finally collapsing onto its axis. The other part (for t near −∞) transforms into the
sheaf.

There are many ways of transforming one system into another by changing the shape-
parameters. We leave this as an exercise for the reader.
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5.2.3 Summary

We can visualize the above with the following scheme.

long logarithm conic turn

cubic

tetra

logarithm

short spiral

long spiral

chalice line

sheaf

6 Figures
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Figure 1: plane elation
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Figure 2: plane contangential conics
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Figure 3: plane homology
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Figure 4: plane logarithms
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Figure 5: plane triangular system
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Figure 6: plane concentric conics
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Figure 7: plane spirals
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Figure 8: cubic
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Figure 9: conic turn
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Figure 10: set of conic turns
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Figure 11: long logarithm

51



Figure 12: sheaf
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Figure 13: logarithm
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Figure 14: skew logarithm
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Figure 15: set of logarithms
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Figure 16: set of skew logarithms
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Figure 17: helix

57



Figure 18: long vortex spiral
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Figure 19: tetrahedral pathcurve
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Figure 20: egg spiral
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Figure 21: cone spiral
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Figure 22: vortex spiral
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Figure 23: line winding
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Figure 24: stray
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Figure 25: multi loop
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