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PREFACE

Machinery's Handbook has served as the principal reference work in metalworking,
design and manufacturing facilities, and in technical schools and colleges throughout the
world, for nearly 100 years of continuous publication. Throughout this period, the inten-
tion of the Handbook editors has always been to create a comprehensive and practical tool,
combining the most basic and essential aspects of sophisticated manufacturing practice. A
tool to be used in much the same way that other tools are used, to make and repair products
of high quality, at the lowest cost, and in the shortest time possible.

The essential basics, material that is of proven and everlasting worth, must always be
included if the Handbook is to continue to provide for the needs of the manufacturing com-
munity. But, it remains a difficult task to select suitable material from the almost unlimited
supply of data pertaining to the manufacturing and mechanical engineering fields, and to
provide for the needs of design and production departments in all sizes of manufacturing
plants and workshops, as well as those of job shops, the hobbyist, and students of trade,
technical, and engineering schools.

The editors rely to a great extent on conversations and written communications with
users of the Handbook for guidance on topics to be introduced, revised, lengthened, short-
ened, or omitted. At the request of users, in 1997 the first ever large-print or “desktop” edi-
tion of the Handbook was published, followed in 1998 by the publication of the first
Machinery's Handbook CD-ROM including hundreds of additional pages of material
restored from earlier editions. The large-print and CD-ROM editions have since become
permanent additions to the growing family of Machinery's Handbook products.

Regular users of the Handbook will quickly discover some of the many changes embod-
ied in the present edition. One is the combined Mechanics and Strength of Materials sec-
tion, arising out of the two former sections of similar name. The Plastics section, formerly
a separate thumb tab, has been incorporated into the Properties of Materials section.“Old
style” numerals, in continuous use in the first twenty-five editions, are now used only in the
index for page references, and in cross references throughout the text. The entire text of
this edition, including all the tables and equations, has been reset, and a great many of the
numerous figures have been redrawn. The current edition has expanded to 2800 pages.

The 29th edition of the Handbook contains major revisions of existing content, as well as
new material on a variety of topics. The detailed tables of contents located at the beginning
of each section have been expanded and fine tuned to simplify locating topics; numerous
major sections have been extensively reworked and renovated throughout, including
Mathematics, Mechanics and Strength of Materials, Properties of Materials, Dimension-
ing, Gaging and Measuring, Machining Operations, Manufacturing Process, Fasteners,
Threads and Threading, and Machine Elements. New and recent material in this edition
include a new section on micromachining, expanded material on calculation of hole coor-
dinates, an introduction to metrology, further contributions to the sheet metal and presses
section, shaft alignment, taps and tapping, helical coil screw thread inserts, solid geometry,
distinguishing between bolts and screws, statistics, calculating thread dimensions, keys
and keyways, miniature screws, metric screw threads, and fluid mechanics.

Other subjects in the Handbook that are new or have been recently revised, expanded, or
updated are lubrication, CNC programming and CNC thread cutting, metric wrench clear-
ances, ANSI and ISO drafting practices, and 1SO surface texture.

The metric content of the Handbook has been greatly expanded in the 29th edition.
Throughout the book, where practical, metric units are shown adjacent to the US cus-
tomary units in the text. Many formulas are now presented with equivalent metric expres-
sions, and additional metric examples have been added.

The large-print edition is identical to the traditional toolbox edition, only the size is
increased by a comfortable 140% for easier reading, making it ideal as a desktop reference.
Other than size, there are no differences between the toolbox and large-print editions.
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PREFACE

The Machinery's Handbook 29 CD-ROM contains the complete contents of the printed
edition, presented in Adobe PDF format. This popular and well known format allows
viewing and printing of pages that are identical to those of the printed book, permits rapid
searching of the entire Handbook, and includes the ability to magnify the view of any page.
Navigation aids in the form of thousands of clickable bookmarks, page cross references,
and index entries take you quickly to any page referenced.

New and revised Handbook topics often requires cutting or removal of some older topics
to gain space for the new. Those topics removed from the print book are generally added to
the CD, which also contains much other material not available in the print editions.
Included are extensive indexes of materials and standards referenced in the Handbook,
numerous mathematical tables including trig, logarithms, and sine-bar tables, material on
cement and concrete, adhesives and sealants, recipes for coloring and etching metals, forge
shop equipment, silent chain, worm gearing and other material on gears, keys and key-
ways, numerous other topics, new and old, and more than five hundred additional pages.

Also found on the CD are numerous interactive math problems. The math solutions are

accessed directly from the CD by clicking an icon, located in the page margin adjacentto a
covered problem, (see figure shown here). An internet connection is required to use these
problems. A list of currently available interactive math solutions, arranged by topic, can be
found in the Index of Interactive Equations on Machinery’s Handbook 29 CD. A single
click on a page number in the index takes you to the page containing the topic of interest
and the icon to access the solution. Additional interactive solutions are added from time to
time as the need arises.

Those users involved in aspects of machining and grinding will be interested in the topics
Micromachining, Machining Econometrics and Grinding Feeds and Speeds, presented in
the Machining section. The core of all manufacturing methods start with the cutting edge
and the metal removal process. Improving the control of the machining process is a major
component necessary to achieve a Lean chain of manufacturing events. These sections
describe the means that are necessary to get metal cutting processes under control and how
to properly evaluate the decision making.

A major goal of the editors is to make the Handbook easier to use. The 29th edition of the
Handbook continues to incorporate the timesaving thumb tabs, much requested by usersin
the past. The table of contents pages beginning each major section, first introduced for the
25th edition, have proven very useful to readers. Consequently, the number of contents
pages has been increased to several pages each for many of the larger sections, to thor-
oughly reflect the contents of these sections.

The editors are greatly indebted to readers who call attention to possible errors and
defects in the Handbook, who offer suggestions concerning the omission of some matter
that is considered to be of general value, or who have technical questions concerning the
solution of difficult or troublesome Handbook problems. Such dialog is often invaluable
and helps to identify topics that require additional clarification or are the source of reader
confusion. Queries involving Handbook material usually entail an in depth review of the
topic in question, and may result in the addition of new material to the Handbook intended
to resolve or clarify the issue. The material on the mass moment of inertia of hollow circu-
lar rings, page 244, and on the effect of temperature on the radius of thin circular rings,
page 378, are good examples.

Our goal is to increase the usefulness of the Handbook as much as possible. All criticisms
and suggestions about revisions, omissions or inclusion of new material, and requests for
assistance with manufacturing problems encountered in the shop are welcome.

Christopher J. McCauley
Senior Editor
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NUMBERS, FRACTIONS, AND DECIMALS

MATHEMATICS

Table 1. Fractional and Decimal Inch to Millimeter, Exact? Values

Fractional Inch Decimal Inch Millimeters Fractional Inch Decimal Inch Millimeters
1/64 0.015625 0.396875 0.511811024 13
1/32 0.03125 0.79375 33/64 0.515625 13.096875
0.039370079 1 17/32 0.53125 13.49375
3/64 0.046875 1.190625 35/64 0.546875 13.890625
1/16 0.0625 1.5875 0.551181102 14
5/64 0.078125 1.984375 9/16 0.5625 14.2875
0.078740157 2 37/64 0.578125 14.684375
1/12 0.0833P 2.1166 7112 0.5833 14.8166
3/32 0.09375 2.38125 0.590551181 15
7164 0.109375 2.778125 19/32 0.59375 15.08125
0.118110236 3 39/64 0.609375 15.478125
1/8 0.125 3.175 5/8 0.625 15.875
9/64 0.140625 3.571875 0.62992126 16
5/32 0.15625 3.96875 41/64 0.640625 16.271875
0.157480315 4 21/32 0.65625 16.66875
1/6 0.166 4.233 2/3 0.66 16.933
11/64 0.171875 4.365625 0.669291339 17
3/16 0.1875 4.7625 43/64 0.671875 17.065625
0.196850394 5 11/16 0.6875 17.4625
13/64 0.203125 5.159375 45/64 0.703125 17.859375
7/32 0.21875 5.55625 0.708661417 18
15/64 0.234375 5.953125 23/32 0.71875 18.25625
0.236220472 6 47164 0.734375 18.653125
1/4 0.25 6.35 0.748031496 19
17/64 0.265625 6.746875 3/4 0.75 19.05
0.275590551 7 49/64 0.765625 19.446875
9/32 0.28125 7.14375 25/32 0.78125 19.84375
19/64 0.296875 7.540625 0.787401575 20
5/16 0.3125 7.9375 51/64 0.796875 20.240625
0.31496063 8 13/16 0.8125 20.6375
21/64 0.328125 8.334375 0.826771654 21
1/3 0.33 8.466 53/64 0.828125 21.034375
11/32 0.34375 8.73125 27/32 0.84375 21.43125
0.354330709 9 55/64 0.859375 21.828125
23/64 0.359375 9.128125 0.866141732 22
3/8 0.375 9.525 7/8 0.875 22.225
25/64 0.390625 9.921875 57/64 0.890625 22.621875
0.393700787 10 0.905511811 23
13/32 0.40625 10.31875 29/32 0.90625 23.01875
5/12 0.4166 10.5833 11/12 0.9166 23.2833
27/64 0.421875 10.715625 59/64 0.921875 23.415625
0.433070866 11 15/16 0.9375 23.8125
7/16 0.4375 11.1125 0.94488189 24
29/64 0.453125 11.509375 61/64 0.953125 24.209375
15/32 0.46875 11.90625 31/32 0.96875 24.60625
0.472440945 12 0.984251969 25
31/64 0.484375 12.303125 63/64 0.984375 25.003125
1/2 0.5 12.7

2Table data are based on 1 inch = 25.4 mm, exactly. Inch to millimeter conversion values are exact.
Whole number millimeter to inch conversions are rounded to 9 decimal places. .
b Numbers with an overbar, repeat indefinitely after the last figure, for example 0.0833 = 0.08333...




4 POSITIVE AND NEGATIVE NUMBERS

Numbers

Numbers are the basic instrumentation of computation. Calculations are made by opera-
tions of numbers. The whole numbers greater than zero are called natural numbers. The
firstten numbers0, 1, 2, 3,4, 5, 6, 7, 8, 9 are called numerals. Numbers follow certain for-
mulas. The following properties hold true:

Associative law: x + (y + z) = (x +y) + z, x(yz) = (xy)z

Distributive law: x(y + z) = xy + xz

Commutative law: x+y=y+x

Identity law: 0+ x=x, 1x=x

Inverse law: x—x=0,x/x=1

Positive and Negative Numbers.—The degrees on a thermometer scale extending
upward from the zero point may be called positive and may be preceded by a plus sign; thus
+5 degrees means 5 degrees above zero. The degrees below zero may be called negative
and may be preceded by a minus sign; thus, — 5 degrees means 5 degrees below zero. In the
same way, the ordinary numbers 1, 2, 3, etc., which are larger than 0, are called positive
numbers; but numbers can be conceived of as extending in the other direction from 0, num-
bers that, in fact, are less than 0, and these are called negative. As these numbers must be
expressed by the same figures as the positive numbers they are designated by a minus sign
placed before them, thus: (—3). A negative number should always be enclosed within
parentheses whenever it is written in line with other numbers; for example: 17 + (-13) - 3
x (-0.76).

Negative numbers are most commonly met with in the use of logarithms and natural trig-
onometric functions. The following rules govern calculations with negative numbers.

A negative number can be added to a positive number by subtracting its numerical value
from the positive number.

Example:4+(-3)=4-3=1

A negative number can be subtracted from a positive number by adding its numerical
value to the positive number.

Example:4—(-3)=4+3=7

A negative humber can be added to a negative number by adding the numerical values
and making the sum negative.

Example: (—4) + (-3) =-7

A negative number can be subtracted from a larger negative number by subtracting the
numerical values and making the difference negative.

Example: (—4) - (-3)=-1

A negative number can be subtracted from a smaller negative number by subtracting the
numerical values and making the difference positive.

Example: (—3)—(-4) =1

If in a subtraction the number to be subtracted is larger than the number from which it is
to be subtracted, the calculation can be carried out by subtracting the smaller number from
the larger, and indicating that the remainder is negative.

Example:3—-5=—(5-3)=-2

When a positive number is to be multiplied or divided by a negative numbers, multiply or
divide the numerical values as usual; the product or quotient, respectively, is negative. The
same rule is true if a negative number is multiplied or divided by a positive number.

Examples: 4x(=3) = =12 (-4)x3=-12

15+(-3) = -5 (-15)+3=-5

When two negative humbers are to be multiplied by each other, the product is positive.

When a negative number is divided by a negative number, the quotient is positive.



RATIO AND PROPORTION 5

Examples: (—4) x (-3) =12; (-4) + (-3) = 1.333
The two last rules are often expressed for memorizing as follows: “Equal signs make
plus, unequal signs make minus.”

Sequence of Performing Arithmetic Operations.—When several numbers or quanti-
ties in a formula are connected by signs indicating that additions, subtractions, multiplica-
tions, and divisions are to be made, the multiplications and divisions should be carried out
first, in the sequence in which they appear, before the additions or subtractions are per-
formed.

Example: 10+26x7-2 =10+182-2 = 190
18+6+15x3 = 3+45 = 48
12+14+2-4 =12+7-4 =15
When itis required that certain additions and subtractions should precede multiplications
and divisions, use is made of parentheses () and brackets [ ]. These signs indicate that the
calculation inside the parentheses or brackets should be carried out completely by itself

before the remaining calculations are commenced. If one bracket is placed inside another,
the one inside is first calculated.

Example: (6-2)x5+8 = 4x5+8 =20+8 = 28
6Xx(4+7)+22 = 6x11+22 = 66+22 = 3
2+[10x6(8+2)-4]x2 =2+[10x6x10-4]x%x2

= 2+[600-4]%x2=2+596x2=2+1192 =1194

The parentheses are considered as a sign of multiplication; for example:

6(8+2)=6x(8+2).

The line or bar between the numerator and denominator in a fractional expression is to be
considered as a division sign. For example,
% = (12+16+22)+10 = 50+10 = 5

In formulas, the multiplication sign (x) is often left out between symbols or letters, the
values of which are to be multiplied. Thus,

AB = AxB  and é-gg:(AxBxC)+D

Ratio and Proportion.—The ratio between two quantities is the quotient obtained by
dividing the first quantity by the second. For example, the ratio between 3 and 12 is %, and

the ratio between 12 and 3 is 4. Ratio is generally indicated by the sign (:); thus, 12 : 3 indi-
cates the ratio of 12 to 3.

A reciprocal, Or inverse ratio, is the opposite of the original ratio. Thus, the inverse ratio
of 5:7is7:5.

In a compound ratio, each term is the product of the corresponding terms in two or more
simple ratios. Thus, when

8:2 =4 9:3 =3 10:5 =2
then the compound ratio is
8x9x10:2x3x%x5
720:30
Proportion is the equality of ratios. Thus,
6:3 = 10:5 or 6:3::10:5

4x3x%x2
24



6 RATIO AND PROPORTION

The first and last terms in a proportion are called the extremes; the second and third, the
means. The product of the extremes is equal to the product of the means. Thus,

25:2 = 100:8 and 25x8 = 2x100
_ Ifthlree terms in a proportion are known, the remaining term may be found by the follow-
ing rules:
The first term is equal to the product of the second and third terms, divided by the fourth.
The second term is equal to the product of the first and fourth terms, divided by the third.
The third term is equal to the product of the first and fourth terms, divided by the second.
The fourth term is equal to the product of the second and third terms, divided by the first.
Example: Let x be the term to be found, then,

x:12 =35:21 x = —=—/—== = ==2
21 21

Yoix = 1442 vz hax42 _1 4.3
14 4 4

5:9 = x:63 = 2X63 _ 315 _ 45
9 9

%:7/8:4:)6 x:7_/3_><4:3_]/2:14
% %

If the second and third terms are the same, that number is the mean proportional between
the other two. Thus, 8:4 =42, and 4 is the mean proportional between 8 and 2. The mean
proportional between two numbers may be found by multiplying the numbers together and
extracting the square root of the product. Thus, the mean proportional between 3 and 12 is
found as follows:

3x12 = 36 and 36 =6
which is the mean proportional.

Practical Examples Involving Simple Proportion: I it takes 18 days to assemble 4
lathes, how long would it take to assemble 14 lathes?

Let the number of days to be found be x. Then write out the proportion as follows:
4:18 = 14:x
(lathes : days = lathes : days)
Now find the fourth term by the rule given:

18 x 14
4

Ten linear meters (32.81 feet) of bar stock are required as blanks for 100 clamping bolts.
What total length x of stock would be required for 912 bolts?

X

= 63 days

10:100 = x:912 32.81:100 = x:912
(meters:bolts = meters:bolts) or (feet:bolts = feet:bolts)
v = 10x912 _ 912 m v = 32.81x912 _ 299.2 ft
100 100

Inverse Proportion: In an inverse proportion, as one of the items involved increases, the
corresponding item in the proportion decreases, or vice versa. For example, a factory
employing 270 men completes a given number of typewriters weekly, the number of work-
ing hours being 44 per week. How many men would be required for the same production if
the working hours were reduced to 40 per week?
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The time per week is in an inverse proportion to the number of men employed; the shorter
the time, the more men. The inverse proportion is written:

270:x = 40:44

(men, 44-hour basis: men, 40-hour basis = time, 40-hour basis: time, 44-hour basis)
Thus

270 _ 40 and X

X 44 40
Problems Involving Both Simple and Inverse Proportions: |If two groups of data are
related both by direct (simple) and inverse proportions among the various quantities, then
a simple mathematical relation that may be used in solving problems is as follows:

Product of all directly proportional items in first group
Product of all inversely proportional items in first group

_ _Product of all directly proportional items in second group
Product of all inversely proportional items in second group

Example: If aman capable of turning 65 studs in a day of 10 hours is paid $6.50 per hour,
how much per hour ought a man be paid who turns 72 studs in a 9-hour day, if compensated
in the same proportion?

The first group of data in this problem consists of the number of hours worked by the first
man, his hourly wage, and the number of studs which he produces per day; the second
group contains similar data for the second man except for his unknown hourly wage, which
may be indicated by x.

The labor cost per stud, as may be seen, is directly proportional to the number of hours
worked and the hourly wage. These quantities, therefore, are used in the numerators of the
fractions in the formula. The labor cost per stud is inversely proportional to the number of
studs produced per day. (The greater the number of studs produced in a given time the less
the cost per stud.) The numbers of studs per day, therefore, are placed in the denominators
of the fractions in the formula. Thus,

10x6.50 _ 9xx

65 72

x = 10x650x72 _ $8.00 per hour

65 x 9
Percentage.—If out of 100 pieces made, 12 do not pass inspection, it is said that 12 per
cent (12 of the hundred) are rejected. If a quantity of steel is bought for $100 and sold for
$140, the profit is 28.6 per cent of the selling price.
The per cent of gain or loss is found by dividing the amount of gain or loss by the original
number of which the percentage is wanted, and multiplying the quotient by 100.

Example:Out of a total output of 280 castings a day, 30 castings are, on an average,
rejected. What is the percentage of bad castings?

30 _
280 x 100 = 10.7 per cent
If by a new process 100 pieces can be made in the same time as 60 could formerly be

made, what is the gain in output of the new process over the old, expressed in per cent?
Original number, 60; gain 100 — 60 = 40. Hence,

40 _
50 x 100 = 66.7 per cent
Care should be taken always to use the original number, or the number of which the per-

centage is wanted, as the divisor in all percentage calculations. In the example just given, it

_ 2710x44 _ 297 men
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is the percentage of gain over the old output 60 that is wanted and not the percentage with
relation to the new output too. Mistakes are often made by overlooking this important
point.

Fractions

Common Fractions.— Common fractions consist of two basic parts, a denominator, or
bottom number, and a numerator, or top number. The denominator shows how many parts
the whole unit has been divided into. The numerator indicates the number of parts of the
whole that are being considered. A fraction having a value of %, means the whole unit has
been divided into 32 equal parts and 5 of these parts are considered in the value of the frac-
tion.

The following are the basic facts, rules, and definitions concerning common fractions.

A common fraction having the same numerator and denominator is equal to 1. For exam-
ple, %, %, %, Y16 %, and 8%, all equal 1.

Proper Fraction: A proper fraction is a common fraction having a numerator smaller
than its denominator, such as %, %, and %%,.

Improper Fraction: An improper fraction is a common fraction having a numerator
larger than its denominator. For example, %, %, and 1%. To convert a whole number to an
improper fractions place the whole number over 1,asin4=% and 3=%

Reducible Fraction: A reducible fraction is a common fraction that can be reduced to
lower terms. For example, 7 can be reduced to %, and %, can be reduced to %. To reduce a
common fraction to lower terms, divide both the numerator and the denominator by the
same number. For example, %%, +%=3%,and %+ %=3,

Least Common Denominator: A least common denominator is the smallest denomina-
tor value that is evenly divisible by the other denominator values in the problem. For exam-
ple, given the following numbers, %, % , and %, the least common denominator is 8.

Mixed Number: A mixed number is a combination of a whole number and a common
fraction, such as 2%, 1%, 3%sand 1%,.

To convert mixed numbers to improper fractions, multiply the whole number by the
denominator and add the numerator to obtain the new numerator. The denominator
remains the same. For example,

ol _2x2+1 _ 5
2 2 2
gl - 3x16+7 _ 55
16 16 16

To convert an improper fraction to a mixed number, divide the numerator by the denom-

inator and reduce the remaining fraction to its lowest terms. For example,
14=17 +8=2%and %,,=26 + 16 = 11%,= 1%

A fraction may be converted to higher terms by multiplying the numerator and denomi-
nator by the same number. For example, % in 16ths =%, x %, = %sand %in 32nds = % x %, =
%

To change awhole number to acommon fraction with a specific denominator value, con-
vert the whole number to a fraction and multiply the numerator and denominator by the
desired denominator value.

Example: 4in 16ths =% x %, ="%)sand 3in 32nds = ¥ x %, =%,
Reciprocals.—The reciprocal R of anumber N is obtained by dividing 1 by the number; R

= 1/N. Reciprocals are useful in some calculations because they avoid the use of negative
characteristics as in calculations with logarithms and in trigonometry. In trigonometry, the
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values cosecant, secant, and cotangent are often used for convenience and are the recipro-
cals of the sine, cosine, and tangent, respectively (see page 95). The reciprocal of a frac-
tion, for instance ¥, is the fraction inverted, since 1 + %=1 x%=%.

Adding Fractions and Mixed Numbers

To Add Common Fractions: 1) Find and convert to the least common denominator; 2)
Add the numerators; 3) Convert the answer to a mixed number, if necessary; and

4) Reduce the fraction to its lowest terms.

To Add Mixed Numbers: 1) Find and convert to the least common denominator; 2) Add
the numerators; 3) Add the whole numbers; and 4) Reduce the answer to its lowest terms.

Example, Addition of Common Fractions: Example, Addition of Mixed Numbers:
1,3 .,7 1 1 15
S+ 242 = SH4=4+ 1= =
1716 8 2274713
CR R ()Y -
4\4 16 8 2\1 4 32
4 3,14 _21 16 8 15 39 7
—_—t —+ = = = — — — = 7— = 8§—
16 16 16 16 2R 3 13 T T3 7 8%

Subtracting Fractions and Mixed Numbers

To Subtract Common Fractions: 1) Convert to the least common denominator; 2) Sub-
tract the numerators; and 3) Reduce the answer to its lowest terms.

To Subtract Mixed Numbers: 1) Convert to the least common denominator; 2) Subtract
the numerators; 3) Subtract the whole numbers; and 4) Reduce the answer to its lowest
terms.

Example, Subtraction of Common Fractions: Example, Subtraction of Mixed Numbers:
16735 " 2315 -
12335 - 23(3)136 -
TR 235136 = 155

Multiplying Fractions and Mixed Numbers

To Multiply Common Fractions: 1) Multiply the numerators; 2) Multiply the denomi-
nators; and 3) Convert improper fractions to mixed numbers, if necessary.

To Multiply Mixed Numbers: 1) Convert the mixed numbers to improper fractions; 2)
Multiply the numerators; 3) Multiply the denominators; and 4) Convert improper frac-
tions to mixed numbers, if necessary.

Example, Multiplication of Common Fractions: Example, Multiplication of Mixed Numbers:
3_7 3x7 21 1,1 _9%x7 _ 63 7
=X — = = = 2=X3z = =—4——= = = =7
4 16 4x16 64 4 "2 4x2 8 8

Dividing Fractions and Mixed Numbers

To Divide Common Fractions: 1) Write the fractions to be divided; 2) Invert (switch)
the numerator and denominator in the dividing fraction; 3) Multiply the numerators and
denominators; and 4) Convert improper fractions to mixed numbers, if necessary.
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To Divide Mixed Numbers: 1) Convert the mixed numbers to improper fractions;

2) Write the improper fraction to be divided; 3) Invert (switch) the numerator and denom-
inator in the dividing fraction; 4) Multiplying numerators and denominators; and

5) Convert improper fractions to mixed numbers, if necessary.

Example, Division of Common Fractions: Example, Division of Mixed Numbers:
§ = l = §._.X_g = § = :]_l 2l = ]_Z = _.5._>.<_8._ = 4.:9 = ]_l
4 2 4x1 4 2 2 8 2x15 30 3

Decimal Fractions.—Decimal fractions are fractional parts of a whole unit, which have
implied denominators that are multiples of 10. A decimal fraction of 0.1 has a value of
1/10th, 0.01 has a value of 1/100th, and 0.001 has a value of 1/1000th. As the number of
decimal place values increases, the value of the decimal number changes by a multiple of
10. A single number placed to the right of a decimal point has a value expressed in tenths;
two numbers to the right of a decimal point have a value expressed in hundredths; three
numbers to the right have a value expressed in thousandths; and four numbers are
expressed in ten-thousandths. Since the denominator is implied, the number of decimal
places in the numerator indicates the value of the decimal fraction. So a decimal fraction
expressed as a 0.125 means the whole unit has been divided into 1000 parts and 125 of
these parts are considered in the value of the decimal fraction.

In industry, most decimal fractions are expressed in terms of thousandths rather than
tenths or hundredths. So a decimal fraction of 0.2 is expressed as 200 thousandths, not 2
tenths, and a value of 0.75 is expressed as 750 thousandths, rather than 75 hundredths. In
the case of four place decimals, the values are expressed in terms of ten-thousandths. So a
value of 0.1875 is expressed as 1 thousand 8 hundred and 75 ten-thousandths. When whole
numbers and decimal fractions are used together, whole units are shown to the left of a dec-
imal point, while fractional parts of a whole unit are shown to the right.

Example:

10.125

Whole | Fraction
Units | Units

Adding Decimal Fractions: 1) Write the problem with all decimal points aligned verti-
cally; 2) Add the numbers as whole number values; and 3) Insert the decimal point in the
same vertical column in the answer.

Subtracting Decimal Fractions: 1) Write the problem with all decimal points aligned
vertically; 2) Subtract the numbers as whole number values; and 3) Insert the decimal
point in the same vertical column in the answer.

Multiplying Decimal Fractions: 1) Write the problem with the decimal points aligned;

2) Multiply the values as whole numbers; 3) Count the number of decimal places in both
multiplied values; and 4) Counting from right to left in the answer, insert the decimal
point so the number of decimal places in the answer equals the total number of decimal
places in the numbers multiplied.

Example, Adding Decimal Fractions: Example, Subtracting Decimal Fractions:
0.125 1.750 1.750 2.625
1.0625 0.875 0250  or -1125
2.50 or 0.125 1.500 1.500
0.1875 2.0005

3.8750 4.7505
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Example, Multiplying Decimal Fractions:

0.75 1.625

0.25 0.033

375 (four decimal places) 4875 (six decimal places)
150 4875
0.1875 0.053625

Continued Fractions.—In dealing with a cumbersome fraction, or one which does not
have satisfactory factors, it may be possible to substitute some other, approximately equal,
fraction which is simpler or which can be factored satisfactorily. Continued fractions pro-
vide a means of computing a series of fractions each of which is a closer approximation to
the original fraction than the one preceding it in the series.

A continued fraction is a proper fraction (one whose numerator is smaller than its denom-
inator) expressed in the form shown at the left below; or, it may be convenient to write the
left expression as shown at the right below.

Sli=

1
D3+ .o

11 1 1
D, + D,*D,*D,*D,*

The continued fraction is produced from a proper fraction N/D by dividing the numerator
N both into itself and into the denominator D. Dividing the numerator into itself gives a
result of 1; dividing the numerator into the denominator gives a whole number D, plus a

remainder fraction R;. The process is then repeated on the remainder fraction R, to obtain
D, and R,; then D5, R5, etc., until a remainder of zero results. As an example, using N/D =
2153/9277,

2153 _ 2153+2153 _ 1 _ 1
9277 9277+2153 ,, 665 D;+R;
2153
665 1 1
R, = = = etc.
' 2183 5,158 D,+R,
665

from which it may be seen that D, = 4, R, = 665/2153; D, = 3, R, = 158/665; and, continu-
ing as was explained previously, it would be found that: D; =4, R;=33/158; ...; Dg=2, Rg
=0. The complete set of continued fraction elements representing 2153/9277 may then be
written as

2153 _1 11111111

0277 413t4tgqt1+3+1+2+2

By following asimple procedure, together with a table organized similar to the one below
for the fraction 2153/9277, the denominators Dy, D,, ...of the elements of a continued frac-
tion may be used to calculate a series of fractions, each of which is a successively closer
approximation, called a convergent, to the original fraction N/D.

1) The first row of the table contains column numbers numbered from 1 through 2 plus
the number of elements, 2 + 9 = 11 in this example.



12 CONJUGATE FRACTIONS

2) The second row contains the denominators of the continued fraction elements in
sequence but beginning in column 3 instead of column 1 because columns 1 and 2 must be
blank in this procedure.

3) The third row contains the convergents to the original fraction as they are calculated
and entered. Note that the fractions 1/0 and 0/1 have been inserted into columns 1 and 2.
These are two arbitrary convergents, the first equal to infinity, the second to zero, which
are used to facilitate the calculations.

4) The convergent in column 3 is now calculated. To find the numerator, multiply the
denominator in column 3 by the numerator of the convergent in column 2 and add the
numerator of the convergentin column 1. Thus,4x0+1=1.

5) The denominator of the convergent in column 3 is found by multiplying the denomina-
tor in column 3 by the denominator of the convergent in column 2 and adding the denomi-
nator of the convergent in column 1. Thus, 4 x 1 + 0 =4, and the convergent in column 3 is
then %, as shown in the table.

6) Finding the remaining successive convergents can be reduced to using the simple
equation
D,)(NUM,_;) + NUM
coNVERGENT, = L) (UM, ) n-2
(D,)(DEN, ) + DEN, _,

in which n = column number in the table; D, = denominator in column n; NUM,_; and
NUM,_, are numerators and DEN,_, and DEN,,_, are denominators of the convergents in
the columns indicated by their subscripts; and CONVERGENT,, is the convergent in col-
umnn.

Convergents of the Continued Fraction for 2153/9277

Column Number, n 1 2 3 4 5 6 7 8 9 10 11
Denominator,D, | — | — | 4 3 4 4 1 3 1 2 2
1 0 1 3 13 55 68 259 327 913 2153

convergent, |\ § | 1| 2 |13 |56 | 237 | 203 | 1116 | 1409 | 3034 | 9277

Notes: The decimal values of the successive convergents in the table are alternately larger and
smaller than the value of the original fraction 2153/9277. If the last convergent in the table has the
same value as the original fraction 2153/9277, then all of the other calculated convergents are cor-
rect.

Conjugate Fractions.— In addition to finding approximate ratios by the use of continued
fractions and logarithms of ratios, conjugate fractions may be used for the same purpose,
independently, or in combination with the other methods.

Two fractions a/b and ¢/d are said to be conjugate if ad — bc =+ 1. Examples of such pairs
are: 0/1and 171; 172 and 1/1; and 9710 and 8/9. Also, every successive pair of the conver-
gents of a continued fraction are conjugate. Conjugate fractions have certain properties
that are useful for solving ratio problems:

1) No fraction between two conjugate fractions a/b and ¢/d can have a denominator
smaller than either b or d.

2) A new fraction, e/f; conjugate to both fractions of a given pair of conjugate fractions,
a/b and ¢/d, and lying between them, may be created by adding respective numerators, a +
¢, and denominators, b + d, so that e/f= (a + c)/(b + d).

3) The denominator f=b + d of the new fraction e/fis the smallest of any possible fraction
lying between a/b and ¢/d. Thus, 17/19 is conjugate to both 8/9 and 9/10 and no fraction
with denominator smaller than 19 lies between them. This property is important if it is
desired to minimize the size of the factors of the ratio to be found.

The following example shows the steps to approximate a ratio for a set of gears to any
desired degree of accuracy within the limits established for the allowable size of the factors
in the ratio.
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Example: Find a set of four change gears, ab/cd, to approximate the ratio 2.105399 accu-
rate to within + 0.0001; no gear is to have more than 120 teeth.

Step 1. Convert the given ratio R to a number r between 0 and 1 by taking its reciprocal:
1/R=1/2.105399 = 0.4749693 = r.

Step 2. Select a pair of conjugate fractions a/b and ¢/d that bracket r. The pair /b = 0/1
and ¢/d = 1/1, for example, will bracket 0.4749693.

Step 3. Add the respective numerators and denominators of the conjugates 0/1 and /1 to
create a new conjugate e/fbetweenOand 1: e/f=(a+c)/(b+d)=(0+1)/(1+1)=1/2.

Step 4. Since 0.4749693 lies between 0/1 and 172, e/f must also be between 0/1 and 1/2:
e/f=(0+1)(1+2)=173.

Step 5. Since 0.4749693 now lies between 1/3 and 1/2, ¢/f must also be between 1/3 and
V2:e/f=(1+1)(3+2)=2/5.

Step 6. Continuing as above to obtain successively closer approximations of e/f to
0.4749693, and using a handheld calculator and a scratch pad to facilitate the process, the
fractions below, each of which has factors less than 120, were determined:

Fraction Numerator Factors Denominator Factors Error
19/40 19 2x2x2x%x5 +.000031
28/59 2x2x7 59 —.00039
47/99 47 3x3x11 —.00022
104,219 2x2x%x2x%x13 3x73 —.000083
123/259 3x41 7x37 —.000066
142/299 2x71 13x23 —.000053
161/339 7x23 3x113 —.000043
218/459 2x109 3x3x3x17 —.000024
256/539 2X2X2X2X2X2X2%X2 Tx7x11 —.000016
370/779 2x5x37 19x41 —.0000014
75971598 3x11x23 2x17x47 —.00000059

Factors for the numerators and denominators of the fractions shown above were found
with the aid of the Prime Numbers and Factors tables beginning on page 21. Since in Step
1 the desired ratio of 2.105399 was converted to its reciprocal 0.4749693, all of the above
fractions should be inverted. Note also that the last fraction, 75971598, when inverted to
become 1598/759, is in error from the desired value by approximately one-half the amount
obtained by trial and error using earlier methods.

Using Continued Fraction Convergents as Conjugates.—Since successive conver-
gents of a continued fraction are also conjugate, they may be used to find a series of addi-
tional fractions in between themselves. As an example, the successive convergents 55/237
and 68293 from the table of convergents for 2153/9277 on page 12 will be used to demon-
strate the process for finding the first few in-between ratios.

Desired Fraction N/D =2153/9277 = 0.2320793
alb elf cld
(1) 55/237 = 2320675 | 2123/530 = .2320755 error = —.0000039 68/293 = .2320819
2) 123/530 = .2320755 191/823 =.2320778 error = —.0000016 68/293 =.2320819
3 191/823 = .2320778 | 2259/1116 = .2320789 error = —.0000005 68/293 = .2320819
(4) 25971116 =.2320789 | 327/1409 =.2320795 error = +.0000002 68/293 = .2320819
(5) 25971116 =.2320789 586/2525 =.2320792 error = —.0000001 | 327/1409 = .2320795
(6) 586/2525=.2320792 | 913/3934 =.2320793 error = —.0000000 | 327/1409 =.2320795

20nly these ratios had suitable factors below 120.

Step 1. Check the convergents for conjugateness: 55x 293 — 237 x 68 =16115- 16116 =
—1 proving the pair to be conjugate.
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Step 2. Set up a table as shown above. The leftmost column of line (1) contains the con-
vergent of lowest value, a/b; the rightmost the higher value, ¢/d; and the center column the
derived value ¢/f found by adding the respective numerators and denominators of a/b and
¢/d. The error or difference between e/fand the desired value N/D, error = N/D — e/f, is also
shown.

Step 3. On line (2), the process used on line (1) is repeated with the e/f value from line (1)
becoming the new value of a/b while the ¢/d value remains unchanged. Had the error in e/f
been + instead of —, then e/f would have been the new ¢/d value and a/b would be
unchanged.

Step 4. The process is continued until, as seen on line (4), the error changes sign to + from
the previous —. When this occurs, the e/f value becomes the ¢/d value on the next line
instead of a/b as previously and the a/b value remains unchanged.

Powers and Roots

The square of a number (or quantity) is the product of that number multiplied by itself.
Thus, the square of 9 is 9 x 9 = 81. The square of a number is indicated by the exponent (2),
thus: 92=9x9=81.

The cube or third power of a number is the product obtained by using that number as a
factor three times. Thus, the cube of 4 is 4 x 4 x 4 = 64, and is written 42,

If a number is used as a factor four or five times, respectively, the product is the fourth or
fifth power. Thus, 3*=3x3x3x3=81,and 2°=2x2x 2 x 2 x 2=32. Anumber can be
raised to any power by using it as a factor the required number of times.

The square root of a given number is that number which, when multiplied by itself, will

give a product equal to the given number. The square root of 16 (written /16 ) equals 4,
because 4 x 4 = 16.
The cube root of a given number is that number which, when used as a factor three times,

will give a product equal to the given number. Thus, the cube root of 64 (written 3/64 )
equals 4, because 4 x 4 x 4 = 64.
The fourth, fifth, etc., roots of a given number are those numbers which when used as fac-

tors four, five, etc., times, will give as a product the given number. Thus, 4/16 = 2,
because 2x2x2x2=16.

Insome formulas, there may be such expressions as (a2)2 and a®2. The first of these, (a?)?,
means that the number a is first to be squared, a2, and the result then cubed to give a®. Thus,
(a?)?is equivalent to a® which is obtained by multiplying the exponents 2 and 3. Similarly,

a¥2 may be interpreted as the cube of the square root of a, (J/a)2, or (a¥?)3, so that, for
example, 163/2 = (,/16)° = 64 .

The multiplications required for raising numbers to powers and the extracting of roots are
greatly facilitated by the use of logarithms. Extracting the square root and cube root by the
regular arithmetical methods is a slow and cumbersome operation, and any roots can be
more rapidly found by using logarithms.

When the power to which a number is to be raised is not an integer, say 1.62, the use of
either logarithms or a scientific calculator becomes the only practical means of solution.

Powers of Ten Notation.—Powers of ten notation is used to simplify calculations and
ensure accuracy, particularly with respect to the position of decimal points, and also sim-
plifies the expression of numbers which are so large or so small as to be unwieldy. For
example, the metric (SI) pressure unit pascal is equivalent to 0.00000986923 atmosphere
or 0.0001450377 pound/inch2. In powers of ten notation, these figures are 9.86923 x 10-°
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atmosphere and 1.450377 x 10~* pound/inch2. The notation also facilitates adaptation of
numbers for electronic data processing and computer readout.

Expressing Numbers in Powers of Ten Notation.—In this system of notation, every
number is expressed by two factors, one of which is some integer from 1 to 9 followed by a
decimal and the other is some power of 10.

Thus, 10,000 is expressed as 1.0000 x 104 and 10,463 as 1.0463 x 10%. The number 43 is
expressed as 4.3 x 10 and 568 is expressed. as 5.68 x 102.

In the case of decimals, the number 0.0001, which as a fraction is %,y and is expressed

as 1x 10~*and 0.0001463 is expressed as 1.463 x 104, The decimal 0.498 is expressed as
4.98 x 10~1and 0.03146 is expressed as 3.146 x 102,

Rules for Converting Any Number to Powers of Ten Notation.—Any number can be
converted to the powers of ten notation by means of one of two rules.

Rule 1: 1f the number is a whole number or a whole number and a decimal so that it has
digits to the left of the decimal point, the decimal point is moved a sufficient number of
places to the left to bring it to the immediate right of the first digit. With the decimal point
shifted to this position, the number so written comprises the first factor when written in
powers of ten notation.

The number of places that the decimal point is moved to the left to bring it immediately to
the right of the first digit is the positive index or power of 10 that comprises the second fac-
tor when written in powers of ten notation.

Thus, to write 4639 in this notation, the decimal point is moved three places to the left
giving the two factors: 4.639 x 103. Similarly,

431.412 = 4.31412 x 102 986388 = 9.86388 x 10°

Rule 2: 1f the number is a decimal, i.e., it has digits entirely to the right of the decimal
point, then the decimal point is moved a sufficient number of places to the right to bring it
immediately to the right of the first digit. With the decimal point shifted to this position, the
number so written comprises the first factor when written in powers of ten notation.

The number of places that the decimal point is moved to the right to bring it immediately
to the right of the first digit is the negative index or power of 10 that follows the number
when written in powers of ten notation.

Thus, to bring the decimal point in 0.005721 to the immediate right of the first digit,
which is 5, it must be moved three places to the right, giving the two factors: 5.721 x 103,
Similarly,

0.469 = 4.69 x 101 0.0000516 = 5.16 x 10~°

Multiplying Numbers Written in Powers of Ten Notation.—When multiplying two
numbers written in the powers of ten notation together, the procedure is as follows:

1) Multiply the first factor of one number by the first factor of the other to obtain the first
factor of the product.

2) Add the index of the second factor (which is some power of 10) of one number to the
index of the second factor of the other number to obtain the index of the second factor
(which is some power of 10) in the product. Thus:

(4.31x1072) x (9.0125 x 10) = (4.31x9.0125) x 10-2*1 = 38.844 x 101

(5.986 x 104) x (4.375 x 103) = (5.986 x 4.375) x 104+3 = 26.189 x 107

In the preceding calculations, neither of the results shown are in the conventional powers
of ten form since the first factor in each has two digits. In the conventional powers of ten
notation, the results would be

38.844 x 1071 =3.884 x 10° = 3.884, since 10° =1, and 26.189 x 107 =2.619 x 108
in each case rounding off the first factor to three decimal places.
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When multiplying several numbers written in this notation together, the procedure is the
same. All of the first factors are multiplied together to get the first factor of the product and
all of the indices of the respective powers of ten are added together, taking into account
their respective signs, to get the index of the second factor of the product. Thus, (4.02 x
10-3) x (3.987 x 10) x (4.863 x 105) = (4.02 x 3.987 x 4.863) x 103+1+5) = 77 94 x 103 =
7.79 x 10 rounding off the first factor to two decimal places.

Dividing Numbers Written in Powers of Ten Notation.—When dividing one number
by another when both are written in this notation, the procedure is as follows:

1) Divide the first factor of the dividend by the first factor of the divisor to get the first
factor of the quotient.

2) Subtract the index of the second factor of the divisor from the index of the second fac-
tor of the dividend, taking into account their respective signs, to get the index of the second
factor of the quotient. Thus:

(4.31 x 1072) + (9.0125 x 10) =
(4.31 +9.0125) x (10-2-1) = 0.4782 x 10-3 = 4.782 x 10~

It can be seen that this system of notation is helpful where several numbers of different
magnitudes are to be multiplied and divided.

250 x 4698 x 0.00039
43678 x 0.002 x 0.0147

Example: Find the quotient of

Solution: Changing all these numbers to powers of ten notation and performing the oper-
ations indicated:

(2.5x10%) x (4.698 X 10%) x (3.9x 104 _
(4.3678 x 10%) x (2 x 1073) x (1.47 x 1072)

_ (25x4.698x3.9)(102*3-4) _ 45.8055 x 10
(4.3678 x 2 x 1.47)(104-3-2)  12.8413x 10!

= 3.5670 x 101-(-1) = 3,5670 x 102 = 356.70

Constants Frequently Used in Mathematical Expressions

0.00872665 = - 0.8660254 = =3 2.0043951 = 2% 4712389 = 3T
360 2 3 2
0.01745329 = X 1.0471975 = & 2.3561945 = 3F 52359878 = &
180 3 4 3
0.26179039 = L 11547005 = 243 25980762 = % 5.4077871 = I
3
0.39269908 = T _5mn 57595865 = 117
8 12047449 = g 26179939 = = 5
0.52359878 = g 14142136 = 3 3.1415927 = 6.2831853 = 2n
. -
g o 26651914 = 1T 9.8696044 = 1
0.57735027 = ?3 15707963 = 3 6 9.424778 = 3
_5n _
- oxusots F 17320508 = .3 3.9269908 = % 12566371 = 4
' = 3an 180
2 =
4n 2.4674011 = T.Z. 41887902 = % 57.29578 -
-
0.78530816 = ot - 3%
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Logarithms

Logarithms have long been used to facilitate and shorten calculations involving multipli-
cation, division, the extraction of roots, and obtaining powers of numbers; however, since
the advent of hand-held calculators logarithms are rarely used for multiplication and divi-
sion problems. Logarithms still come up in other problems, and the following properties of
logarithms are useful:

log.c =1 log.c? = p log.1 =0
log (a xb) = log a +log b log (a+b) = loga—log b
log(a?) = plog a loge(&/a) = 1/plog a

The logarithm of a number is defined as the exponent of a base number raised to a power.
For example, log,, 3.162277 = 0.500 means the logarithm of 3.162277 is equal to 0.500.

Another way of expressing the same relationship is 100500 = 3,162277, where 10 is the base
number and the exponent 0.500 is the logarithm of 3.162277. A common example of a log-
arithmic expression 102 = 100 means that the base 10 logarithm of 100 is 2, that is, log,,
100 = 2.00. There are two standard systems of logarithms in use: the “common” system
(base 10) and the so-called “natural” system (base e =2.71828...). Logarithms to base e are
frequently written using “In” instead of “log,” such as In 6.1 = 1.808289. Logarithms of a
number can be converted between the natural- and common-based systems as follows: In,
A =2.3026 x log;; A and log,y A =0.43430 x In, A.

A logarithm consists of two parts, a whole number and a decimal. The whole number,
which may be positive, negative, or zero, is called the characteristic; the decimal is called
the mantissa. As a rule, only the decimal or mantissa is given in tables of common loga-
rithms; tables of natural logarithms give both the characteristic and mantissa. Abbreviated
tables of logarithms and examples are given in MATHEMATICS in the ADDITIONAL
material on Machinery’s Handbook 29 CD.

Natural Logarithms.— In certain formulas and in some branches of mathematical analy-
sis, use is made of logarithms (formerly also called Napierian or hyperbolic logarithms).
As previously mentioned, the base of this system, e = 2.7182818284..., is the limit of cer-
tain mathematical series. The logarithm of a number A to the base e is usually written log,
A orlnA. Tables of natural logarithms for numbers ranging from 1 to 10 and 1.00 to 1.01
are given in this Handbook after the table of common logarithms. To obtain natural logs of
numbers less than 1 or greater than 10, proceed as in the following examples: log, 0.239 =
log, 2.39-10g, 10; log, 0.0239 =1log, 2.39 -2 log, 10; log, 239 = log, 2.39 + 2 log, 10; log,
2390=1log,2.39 +3log, 10, etc.

Using Calculators to Find Logarithms.—A scientific calculator is usually the quickest
and most accurate method of finding logarithms and numbers corresponding to given log-
arithms. On most scientific calculators, the key labeled log is used to find common loga-
rithms (base 10) and the key labeled In is used for finding natural logarithms (base ¢). The
keystrokes to find a logarithm will vary slightly from one calculator to another, so specific
instructions are not given. To find the number corresponding to a given logarithm: use the
key labeled 10% if a common logarithm is given or use the key labeled eX if a natural loga-
rithm is given; calculators without the 10X or ¢* keys may have a key labeled x¥ that can be
used by substituting 10 or e (2.718281...), as required, for x and substituting the logarithm
whose corresponding number is sought for y. On some other calculators, the log and In
keys are used to find common and natural logarithms, and the same keys in combination
with the INV, or inverse, key are used to find the number corresponding to a given loga-
rithm.
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Imaginary and Complex Numbers

Complex or Imaginary Numbers.—Complex or imaginary numbers represent a class of
mathematical objects that are used to simplify certain problems, such as the solution of
polynomial equations. The basis of the complex number system is the unitimaginary num-
ber i that satisfies the following relations:

P=(i=-1  i=J1 —i=-/1
In electrical engineering and other fields, the unit imaginary number is often represented
by j rather than i. However, the meaning of the two terms is identical.

Rectangular or Trigonometric Form: Every complex number, Z, can be written as the
sum of a real number and an imaginary number. When expressed as a sum, Z = a + bi, the
complex number is said to be in rectangular or trigonometric form. The real part of the
number is @, and the imaginary portion is bi because it has the imaginary unit assigned to it.

Polar Form: A complex number Z = a + bi can also be expressed in polar form, also
known as phasor form. In polar form, the complex number Z is represented by a magnitude
rand an angle 6 as follows:

Z=r/0
Z6 =adirection, the angle whose tangentis b + a, thus 6 = atanl—’ and

a
r= Ja? + b2 isthe magnitude

A complex number can be plotted on a real-imaginary coordinate system known as the
complex plane. The figure below illustrates the relationship between the rectangular coor-
dinates a and b, and the polar coordinates rand ©.

b a+bi

imaginary
axis

real axis a

Complex Number in the Complex Plane
The rectangular form can be determined from rand 6 as follows:

a = rcoso b = rsin® a+bi = rcos0O+irsin® = r(cosO +isin0)
The rectangular form can also be written using Euler’s Formula:
o -0 9, -i6
+i0 . . - +
e’ = cosf+isin® sin@ = 82—,3 cosf = ‘%
1

Complex Conjugate: Complex numbers commonly arise in finding the solution of poly-
nomials. A polynomial of n* degree has n solutions, an even number of which are complex
and the rest are real. The complex solutions always appear as complex conjugate pairs in
the form a + bi and a — bi. The product of these two conjugates, (a + bi) X (a — bi) = a®+ b?,
is the square of the magnitude r illustrated in the previous figure.

Operations on Complex Numbers

Example 1, Addition: When adding two complex numbers, the real parts and imaginary
parts are added separately, the real parts added to real parts and the imaginary to imaginary
parts. Thus,
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(aq +iby) +(a,+iby) = (ay+a,) +i(by+by)
(ay—ay) +i(by—by)
(3+4i)+(2+i) = (3+2)+(4+1)i =5+5}

Example 2, Multiplication: Multiplication of two complex numbers requires the use of
the imaginary unit, i2=—1 and the algebraic distributive law.

(ay +iby)(ay +iby) = aja, +iajby, +ia,by + i2b1b2

(7)(5) = (7)(31) +(2)(5) - (2)(3i)
35— 21i +10i - 67
= 35-21i+10i—(6)(-1) = 41-11i

Multiplication of two complex numbers, Z; = r,(cos, + isin6,) and Z, = r,(cos0, +

isin®,), results in the following:
Zy X Z,=r,(c0s6; +iSinB;) X r,(cos6, + iSing,) = ryr,[cos(0; + 6,) +isin(6; + 6,)]

Example 3, Division: Divide the following two complex numbers, 2 + 3i and 4 — 5i.

Dividing complex numbers makes use of the complex conjugate.

2+3i _ (2+3i)(4+5i) _ 8+12i+10i+15{° _ —7+22i _ (—_7)”(22
1

4-5i  (4-5)(4+5i)  1g400i_20i_2572 16+25 \4 41

(7 +2i)x (5 - 3i)

Example 4: Convert the complex number 8+6i into phasor form.
First find the magnitude of the phasor vector and then the direction.

magnitude = A/82 +6% = 10 direction = atang = 36.87°

phasor = 10.£36.87°

Factorial.—A factorial is a mathematical shortcut denoted by the symbol ! following a
number (for example, 3! is three factorial). A factorial is found by multiplying together all
the integers greater than zero and less than or equal to the factorial number wanted, except
for zero factorial (0!), which is defined as 1. Forexample: 3! =1x2x3=6;41=1x2x3
X4=24,71=1x2x3x4x5x6x7=5040; etc.

Example: How many ways can the letters X, Y, and Z be arranged?

Solution: The numbers of possible arrangements for the three lettersare 31 =3x2x1=6.
Permutations.— The number of ways r objects may be arranged from a set of n elements

n!

(n—r)!

Example: There are 10 people are participating in the final run. In how many different
ways can these people come in first, second and third.

Solution: Here ris 3and n is 10. So the possible numbers of winning number will be

10 100 _ 10! _

isgivenby "P, =

Py = ——— = — = 10x9x8 = 720
(10-3)! 7!
Combinations.— The number of ways r distinct objects may be chosen from a set of n ele-
|
mentsis givenby "C. = ——
g y & (n=r)'r!

Example: How many possible sets of 6 winning numbers can be picked from 52 numbers.
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Solution: Here ris 6 and n is 52. So the possible number of winning combinations will be

52 52! _ 92! _ 52x51x50x49x48x47

C, = = = 20358520
6 (52-6)16!  46!6! 1x2x3x4x5x%6

Prime Numbers and Factors of Numbers

The factors of a given number are those numbers which when multiplied together give a
product equal to that number; thus, 2 and 3 are factors of 6; and 5 and 7 are factors of 35.

A prime number is one which has no factors except itselfand 1. Thus, 2, 3,5, 7, 11, etc.,
are prime numbers. A factor which is a prime number is called a prime factor.

The accompanying “Prime Number and Factor Tables,” starting on page 21, give the
smallest prime factor of all odd numbers from 1 to 9600, and can be used for finding all the
factors for numbers up to this limit. For example, find the factors of 931. In the column
headed “900” and in the line indicated by “31” in the left-hand column, the smallest prime
factor is found to be 7. As this leaves another factor 133 (since 931 + 7 = 133), find the
smallest prime factor of this number. In the column headed “100” and in the line “33”, this
is found to be 7, leaving a factor 19. This latter is a prime number; hence, the factors of 931
are 7 x 7 x19. Where no factor is given for a number in the factor table, it indicates that the
number is a prime number.

The last page of the tables lists all prime numbers from 9551 through 18691; and can be
used to identify quickly all unfactorable numbers in that range.

For factoring, the following general rules will be found useful:

2 is a factor of any number the right-hand figure of which is an even number or 0. Thus,
28=2x14,and 210 =2x 105.

3is a factor of any number the sum of the figures of which is evenly divisible by 3. Thus,
3isafactor of 1869, because 1+8+6+9=24+3=8.

4 is a factor of any number the two right-hand figures of which, considered as one num-
ber, are evenly divisible by 4. Thus, 1844 has a factor 4, because 44 + 4 =11.

5 is a factor of any number the right-hand figure of which is 0 or 5. Thus, 85=5x17; 70
=5x14.

Tables of prime numbers and factors of numbers are particularly useful for calculations
involving change-gear ratios for compound gearing, dividing heads, gear-generating
machines, and mechanical designs having gear trains.

Example 1: A set of four gears is required in a mechanical design to provide an overall
gear ratio of 4104 + 1200. Furthermore, no gear in the set is to have more than 120 teeth or
less than 24 teeth. Determine the tooth numbers.

First, as explained previously, the factors of 4104 are determined tobe: 2x2x2x3x 3
x 57 = 4104. Next, the factors of 1200 are determined: 2 x 2 x2x 2 x5 x5 x 3 =1200.
4104 _ 2x2x2x3x3x57 _ 72x57
1200 2x2x2x2x5x5x3  24x50
72 x 57
16 x 75
not satisfy the requirement of no less than 24 teeth.

Example 2: Factor the number 25078 into two numbers neither of which is larger than
200.

The first factor of 25078 is obviously 2, leaving 25078 + 2 = 12539 to be factored further.
However, fromthe last table, Prime Numbers from 9551 to 18691, itis seen that 12539 isa
prime number; therefore, no solution exists.

Therefore . If the factors had been com-

bined differently, say, to give , then the 16-tooth gear in the denominator would
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Prime Number and Factor Table for 1 to 1199

1100
1200

11

19

11

17

31

13
19

11

29

11

1000
1100

17

19

13

17

11

29

13
23

900
1000

17

11

13

23

13

31

11

23

800
900

11

19

29

23

11
13

19

29

700
800

19

23

17

11

13

19
11

13

17

600
700

13

17

11

23

11

13

17

500
600

11

17
23

13

19

13

11

19

400
500

13

11

19

11

11

13

17

300
400

11

17

11

19

13

17

200
300

11

13

13

11

17

13

100
200

11

11

13

11

0
100

From
To

11
13
15
17
19
21

23
25
27
29
31

33
35
37

39

41

43

45

47

49

51

53
55
57

59

61

63
65
67

69

71

73
75
7

79
81

83
85
87

89
91

93
95
97
99
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Prime Number and Factor Table for 1201 to 2399
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Prime Number and Factor Table for 2401 to 3599

2500
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Prime Number and Factor Table for 3601 to 4799
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Prime Number and Factor Table for 4801 to 5999
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Prime Number and Factor Table for 6001 to 7199
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Prime Number and Factor Table for 7201 to 8399

7300
7400

8300
8400

19

53

11

13

31

19

17

61

13

11

17
83

37

8200
8300

59
13

29

43

19

73
37

23

11

17

43

8100
8200

11

23

11
47

79

17

29

31

41

11

13

19

8000
8100

53

13
71

23

29

11

13

83

11

41

59

7900
8000

11

41

89

17

13

73

19

31

13

79
23

61

11
19

7800
7900
29

37

73
13

41

17

11

47

29

17

13

53

7700
7800

13
11

59

11

71

61

23

17
19

31

43

13

11

7600
7700
11

23

19

29

13

17

13

47

79

11

43

7500
7600
13

11

73

17

19

67

11

71

7400
7500

11

31

41

13

17

43

11

29

17

31

59

67

71

13

17

11
41

17
37

53

73

47

11

83

19

13

7200
7300

19

31

13

11

53

13

11

19
29

37

23

From
To

11
13
15
17
19
21

23
25

27

29
31

33
35

37
39
41

43
45
47
49
51

53
55
57
59
61

63
65

67

69
71

73
75
7
79
81

83
85
87
89
91

93
95
97

99
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Prime Number and Factor Table for 8401 to 9599
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Prime Numbers from 9551 to 18691

PRIME NUMBERS

29

9551
9587
9601
9613
9619
9623
9629
9631
9643
9649
9661
9677
9679
9689
9697
9719
9721
9733
9739
9743
9749
9767
9769
9781
9787
9791
9803
9811
9817
9829
9833
9839
9851
9857
9859
9871
9883
9887
9901
9907
9923
9929
9931
9941
9949
9967
9973
10007
10009
10037
10039
10061
10067
10069
10079
10091
10093
10099
10103
10111
10133
10139
10141
10151
10159
10163
10169
10177

10181
10193
10211
10223
10243
10247
10253
10259
10267
10271
10273
10289
10301
10303
10313
10321
10331
10333
10337
10343
10357
10369
10391
10399
10427
10429
10433
10453
10457
10459
10463
10477
10487
10499
10501
10513
10529
10531
10559
10567
10589
10597
10601
10607
10613
10627
10631
10639
10651
10657
10663
10667
10687
10691
10709
10711
10723
10729
10733
10739
10753
10771
10781
10789
10799
10831
10837
10847

10853
10859
10861
10867
10883
10889
10891
10903
10909
10937
10939
10949
10957
10973
10979
10987
10993
11003
11027
11047
11057
11059
11069
11071
11083
11087
11093
11113
11117
11119
11131
11149
11159
11161
11171
11173
11177
11197
11213
11239
11243
11251
11257
11261
11273
11279
11287
11299
11311
11317
11321
11329
11351
11353
11369
11383
11393
11399
11411
11423
11437
11443
11447
11467
11471
11483
11489
11491

11497
11503
11519
11527
11549
11551
11579
11587
11593
11597
11617
11621
11633
11657
11677
11681
11689
11699
11701
11717
11719
11731
11743
11777
11779
11783
11789
11801
11807
11813
11821
11827
11831
11833
11839
11863
11867
11887
11897
11903
11909
11923
11927
11933
11939
11941
11953
11959
11969
11971
11981
11987
12007
12011
12037
12041
12043
12049
12071
12073
12097
12101
12107
12109
12113
12119
12143
12149

12157
12161
12163
12197
12203
12211
12227
12239
12241
12251
12253
12263
12269
12277
12281
12289
12301
12323
12329
12343
12347
12373
12377
12379
12391
12401
12409
12413
12421
12433
12437
12451
12457
12473
12479
12487
12491
12497
12503
12511
12517
12527
12539
12541
12547
12553
12569
12577
12583
12589
12601
12611
12613
12619
12637
12641
12647
12653
12659
12671
12689
12697
12703
12713
12721
12739
12743
12757

12763
12781
12791
12799
12809
12821
12823
12829
12841
12853
12889
12893
12899
12907
12911
12917
12919
12923
12941
12953
12959
12967
12973
12979
12983
13001
13003
13007
13009
13033
13037
13043
13049
13063
13093
13099
13103
13109
13121
13127
13147
13151
13159
13163
13171
13177
13183
13187
13217
13219
13229
13241
13249
13259
13267
13291
13297
13309
13313
13327
13331
13337
13339
13367
13381
13397
13399
13411

13417
13421
13441
13451
13457
13463
13469
13477
13487
13499
13513
13523
13537
13553
13567
13577
13591
13597
13613
13619
13627
13633
13649
13669
13679
13681
13687
13691
13693
13697
13709
13711
13721
13723
13729
13751
13757
13759
13763
13781
13789
13799
13807
13829
13831
13841
13859
13873
13877
13879
13883
13901
13903
13907
13913
13921
13931
13933
13963
13967
13997
13999
14009
14011
14029
14033
14051
14057

14071
14081
14083
14087
14107
14143
14149
14153
14159
14173
14177
14197
14207
14221
14243
14249
14251
14281
14293
14303
14321
14323
14327
14341
14347
14369
14387
14389
14401
14407
14411
14419
14423
14431
14437
14447
14449
14461
14479
14489
14503
14519
14533
14537
14543
14549
14551
14557
14561
14563
14591
14593
14621
14627
14629
14633
14639
14653
14657
14669
14683
14699
14713
14717
14723
14731
14737
14741

14747
14753
14759
14767
14771
14779
14783
14797
14813
14821
14827
14831
14843
14851
14867
14869
14879
14887
14891
14897
14923
14929
14939
14947
14951
14957
14969
14983
15013
15017
15031
15053
15061
15073
15077
15083
15091
15101
15107
15121
15131
15137
15139
15149
15161
15173
15187
15193
15199
15217
15227
15233
15241
15259
15263
15269
15271
15277
15287
15289
15299
15307
15313
15319
15329
15331
15349
15359

15361
15373
15377
15383
15391
15401
15413
15427
15439
15443
15451
15461
15467
15473
15493
15497
15511
15527
15541
15551
15559
15569
15581
15583
15601
15607
15619
15629
15641
15643
15647
15649
15661
15667
15671
15679
15683
15727
15731
15733
15737
15739
15749
15761
15767
15773
15787
15791
15797
15803
15809
15817
15823
15859
15877
15881
15887
15889
15901
15907
15913
15919
15923
15937
15959
15971
15973
15991

16001
16007
16033
16057
16061
16063
16067
16069
16073
16087
16091
16097
16103
16111
16127
16139
16141
16183
16187
16189
16193
16217
16223
16229
16231
16249
16253
16267
16273
16301
16319
16333
16339
16349
16361
16363
16369
16381
16411
16417
16421
16427
16433
16447
16451
16453
16477
16481
16487
16493
16519
16529
16547
16553
16561
16567
16573
16603
16607
16619
16631
16633
16649
16651
16657
16661
16673
16691

16693
16699
16703
16729
16741
16747
16759
16763
16787
16811
16823
16829
16831
16843
16871
16879
16883
16889
16901
16903
16921
16927
16931
16937
16943
16963
16979
16981
16987
16993
17011
17021
17027
17029
17033
17041
17047
17053
17077
17093
17099
17107
17117
17123
17137
17159
17167
17183
17189
17191
17203
17207
17209
17231
17239
17257
17291
17293
17299
17317
17321
17327
17333
17341
17351
17359
17377
17383

17387
17389
17393
17401
17417
17419
17431
17443
17449
17467
17471
17477
17483
17489
17491
17497
17509
17519
17539
17551
17569
17573
17579
17581
17597
17599
17609
17623
17627
17657
17659
17669
17681
17683
17707
17713
17729
17737
17747
17749
17761
17783
17789
17791
17807
17827
17837
17839
17851
17863
17881
17891
17903
17909
17911
17921
17923
17929
17939
17957
17959
17971
17977
17981
17987
17989
18013
18041

18043
18047
18049
18059
18061
18077
18089
18097
18119
18121
18127
18131
18133
18143
18149
18169
18181
18191
18199
18211
18217
18223
18229
18233
18251
18253
18257
18269
18287
18289
18301
18307
18311
18313
18329
18341
18353
18367
18371
18379
18397
18401
18413
18427
18433
18439
18443
18451
18457
18461
18481
18493
18503
18517
18521
18523
18539
18541
18553
18583
18587
18593
18617
18637
18661
18671
18679
18691
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ALGEBRA AND EQUATIONS

An unknown number can be represented by a symbol or a letter which can be manipu-
lated like an ordinary numeral within an arithmetic expression. The rules of arithmetic are
also applicable in algebra.

Rearrangement and Transposition of Terms in Formulas

Aformulaisarule fora calculation expressed by using letters and signs instead of writing
out the rule in words; by this means, it is possible to condense, in a very small space, the
essentials of long and cumbersome rules. The letters used in formulas simply stand in place
of the figures that are to be substituted when solving a specific problem.

As an example, the formula for the horsepower transmitted by belting may be written
_ Svw

33,000

where P = horsepower transmitted; S = working stress of belt per inch of width in
pounds; V = velocity of belt in feet per minute; and, W = width of belt in inches.

If the working stress S, the velocity V, and the width Ware known, the horsepower can be
found directly from this formula by inserting the given values. Assume S =33; V=600; and
W=5.Then

_ 33x600x5 _
33,000
Assume that the horsepower P, the stress S, and the velocity V are known, and that the
width of belt, W, is to be found. The formula must then be rearranged so that the symbol W

will be on one side of the equals sign and all the known quantities on the other. The rear-
ranged formula is as follows:

P

P x 33,000 _
SV
The quantities (S and V) that were in the numerator on the right side of the equals sign are
moved to the denominator on the left side, and *33,000,” which was in the denominator on
the right side of the equals sign, is moved to the numerator on the other side. Symbols that
are not part of a fraction, like “P” in the formula first given, are to be considered as being
numerators (having the denominator 1).
Thus, any formula of the form A = B/C can be rearranged as follows:

AxXxC =B and =B
A
Suppose a formula to be of the form A = B;C
BxC AXD AXD
Th D = =B =C
en A c B

The method given is only directly applicable when all the quantities in the numerator or
denominator are standing independently or are factors of a product. If connected by + or —
signs, the entire numerator or denominator must be moved as a unit, thus,

B+C _ D+E
F

A
Tosolve for F, rearrange in F _D+E and F = A(D+E)

Given:

two steps as follows: A B+C B+C
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A quantity preceded by a + or — sign can be transposed to the opposite side of the equals
sign by changing its sign; if the sign is +, change it to — on the other side; if it is—, change it
to +. This process is called transposition of terms.

Example: B+C=A-D then A=B+C+D
B=A-D-C
C=A-D-B

Principal Algebraic Expressions and Formulas

axa=aa=a2

w

a _ (2)3
axaxa = aaa = a3 b3 b
axXb = ab -];:(%)3:61_3
a’b? = (ab)? as
a2ad = g2+3 = 45 (a2)3 = ¢2%3 = (a3)2 = 4b
a*+a3 =a%"3 =4 ad+b3 = (a+b)(a?-ab+b?)
a =1 a®-b3 = (a-b)(a?+ab + b?)
a?=b? = (a+b)(a=b) (a+b)® = > +3d%b +3ab® +b°
+b)2 = g+ + b2
(a+b) ac+2ab+b (a—b)3:a3—3a2b+3ab2—b3
(a-b)2 = a?-2ab+b? 3
9 2 ad+ b3 = (a+b) —3ab(a+b)
a 2 2 a’=b° = (a-b)’ +3ab(a-b)
Jaxa = a Sfab = 3/ax3/b
3fax3fax3fa = a 3ﬁ=%
Ga)’ = a b
Ya? = o) = a2 b= Lt=
< 3
4o = <% = ia
Ja+ b = Ja+b+2.Jab
When axb = x then loga + logb = logx
a+b =x then loga —logb = logx
ad = x then 3loga = logx
3/a = x then loga _ logx

3
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Equation Solving

An equation is a statement of equality between two expressions, as 5x = 105. The
unknown quantity in an equation is frequently designated by the letter such as x. If there is
more than one unknown quantity, the others are designated by letters also usually selected
from the end of the alphabet, as y, z, u, t, etc.

An equation of the first degree is one which contains the unknown quantity only in the

first power, as in 3x = 9. A quadratic equation is one which contains the unknown quantity
in the second, but no higher, power, as in x2 + 3x = 10.
Solving Equations of the First Degree with One Unknown.— Transpose all the terms
containing the unknown x to one side of the equals sign, and all the other terms to the other
side. Combine and simplify the expressions as far as possible, and divide both sides by the
coefficient of the unknown x. (See the rules given for transposition of formulas.)

Example: 22x-11 = 15x+ 10
22x-15x = 10+ 11
7x =21
x =3

Solution of Equations of the First Degree with Two Unknowns.— The form of the sim-
plified equations is

apx+byy=cy
ax +byy=c,
Then, c10g — coby 412~ 4924
X = — y = ——
ayby—azby ayby—azby
Example: 3x+4y = 17
5x—2y = 11
L= UX(2)-11x4 _ -34-44 _ 78 _ 4
3x(-2)-5x4 -6-20 -26

The value of y can now be most easily found by inserting the value of x in one of the equa-
tions:

5x3-2y =11  2y=15-11=4  y=2

Solution of Quadratic Equations with One Unknown.—If the form of the equation is
ax?+ bx+c¢=0, then

_ —b+Jb2-4ac
2a
Example: Given the equation, 1x2+ 6x+5=0,thena=1,b=6,and c =5.
— 2 _ _ —6) —
L =6%/62-4x1Ix5_(6)+4_ , . (6)=4_ .
2x1 2 2
If the form of the equation is ax? + bx = ¢, then
- —b+ Jb?2+4ac
2a

Example: Aright-angle triangle has a hypotenuse 5 cm long and one side which is one cm
longer than the other; find the lengths of the two sides.
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Let x =oneside and x + 1 = other side; then x2 + (x + 1)2 =52 or x2 + x2 + 2x + 1 = 25; or 2x?
+ 2x = 24; or x2 + x = 12. Now referring to the basic formula, ax? + bx = ¢, we find that a =
1,b=1,and ¢ =12; hence,

1t TaxIx1? _ (- _1)-
Lo AR IHAXAXT2 L ()T g o = CD=T -
2x1 2 2

Since the positive value (3) would apply in this case, the lengths of the two sides are x =3
cmandx+1=4cm.

Factoring a Quadratic Expression.—The method described below is useful in deter-
mining factors of the quadratic equation in the form ax2 + bx + ¢ = 0. First, obtain the prod-
uct ac from the coefficients a and ¢, and then determine two numbers, f; and f,, such thatf;

X f5 = |ac|, and f; + f, = bif ac is positive, or f; — f, = b if ac is negative.

The numbers f; and f, are used to modify or rearrange the bx term to simplify factoring the

quadratic expression. The roots of the quadratic equation can be easily obtained from the
factors.

Example: Factor 8x? + 22x + 5 = 0 and find the values of x that satisfy the equation.

Solution: In this example, a =8, b = 22, and ¢=5. Therefore, ac = 8 x 5 = 40, and ac is
positive, so we are looking for two factors of ac, f; andf,, such thatf; X, =40, and f; +f,
=22.

The ac term can be written as 2 x 2 x 2 x 5 = 40, and the possible combination of numbers
for f; and f, are (20 and 2), (8 and 5), (4 and 10) and (40 and 1). The requirements for f; and
f, are satisfied by fi=20and f, =2, i.e.,, 20x2=40and 20 + 2 =22. Using f; and f, the
original quadratic expression is rewritten and factored as follows:

8x°+22x+5 = 0
8x°+20x+2x+5 = 0
4x(2x+5)+1(2x+5) =0
2x+5)(4x+1) =0
If the product of the two factors equals zero, then each of the factors equals zero, thus, 2x
+5=0and 4x +1=0. Rearranging and solving, x =—%and x = -,
Example: Factor 8x2 + 3x — 5 = 0 and find the solutions for x.

Solution: Herea=8,b=3, ¢ =-5,and ac =8 x (-5) =—40. Because ac is negative, the
required numbers, f; and f,, mustsatisfy f; x f, = |ac| = 40 and f; — f, = 3.

As in the previous example, the possible combinations for f; and f, are (20 and 2), (8 and
5), (4and 10) and (40 and 1). The numbersf; = 8 and f, = 5 satisfy the requirements because

8x5=40and 8-5=3. Inthe second line below, 5x is both added to and subtracted from
the original equation, making it possible to rearrange and simplify the expression.

8x’+3x-5= 0

8x2+8x-5x-5=0
8x(x+1)-5(x+1) =0
(x+1)(8x-5) =0

Solving, forx+1=0,x=-1;and, for8x—5=0,x=%
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Cubic Equations.—If the given equation has the form: x3 + ax + b =0 then

1/3 13
x:(_lz+ /93#23) +(_lz_ /23+b_2)
2 27 4 2 271 4
The equation x3 + px? + gx + r = 0, may be reduced to the form x;® + ax; + b =0 by substi-

tuting x, —g for x in the given equation.

Solving Numerical Equations Having One Unknown.— The Newton-Raphson method
is a procedure for solving various kinds of numerical algebraic and transcendental equa-
tions in one unknown. The steps in the procedure are simple and can be used with either a
handheld calculator or as a subroutine in a computer program.
Examples of types of equations that can be solved to any desired degree of accuracy by
this method are
f(x) = x2-101 =0, f(x) =x3-2x2-5=0
and f(x) = 29x—-cosx-1 =0
The procedure begins with an estimate, r,, of the root satisfying the given equation. This

estimate is obtained by judgment, inspection, or plotting a rough graph of the equation and
observing the value r; where the curve crosses the x axis. This value is then used to calcu-

late values r,, r5,..., r, progressively closer to the exact value.

Before continuing, it is necessary to calculate the first derivative. f “(x), of the function. In
the above examples, f”(x) is, respectively, 2x, 3x2 — 4x, and 2.9 + sin x. These values were
found by the methods described in Derivatives and Integrals of Functions on page 35.

In the steps that follow,
rq is the first estimate of the value of the root of f{x) = 0;

f(ry) is the value of f{x) for x = ry;
f’(x) is the first derivative of f{x);
f’(ry) isthe value of f”(x) for x = r.
The second approximation of the root of f{x) = 0, r,, is calculated from
ry = rl_[f(rl)/f,(rl)]
and, to continue further approximations,
ry = Ty =, _0)/f(r, 9)]
Example: Find the square root of 101 using the Newton-Raphson method. This problem
can be restated as an equation to be solved, i.e., f(x) = x2-101 = 0
Step 1. By inspection, it is evident that r; = 10 may be taken as the first approximation of
the root of this equation. Then, f(r;) = f(10) = 102-101 = -1
Step 2. The first derivative, f’(x), of x2 — 101 is 2x as stated previously, so that
f7(10) =2(10) = 20.
Then, ry=r;—f(r;)}f’(r;)=10—(-1)/20 =10+ 0.05=10.05
Check: 10.05% = 101.0025; error = 0.0025
Step 3. The next, better approximation is
rg = ry=[f(ry)/f'(ry)] = 10.05-[f(10.05)/f’(10.05)]

= 10.05-[(10.052-101)/2(10.05)] = 10.049875
Check:10.0498752 = 100.9999875; error = 0.0000125
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Series.—Some hand calculations, as well as computer programs of certain types of math-
ematical problems, may be facilitated by the use of an appropriate series. For example, in
some gear problems, the angle corresponding to a given or calculated involute function is
found by using a series together with an iterative procedure such as the Newton-Raphson
method described on page 34. The following are those series most commonly used for
such purposes. In the series for trigonometric functions, the angles x are in radians (1
radian = 180/r degrees). The expression exp(—x2) means that the base e of the natural log-
arithm system is raised to the —x? power; e = 2.7182818.

Q) sinx=x—x3/31+x5/50 —x7[71 + .- for all values of x.
(2) cosx=1-x221 +x* /41 —x8/6! + ... for all values of x.
(3) tanx=x+x3/3+2x515+ 17x7/315 + 62x%/2835 + - for |x| <m/2.
(4) arcsinx=x+x36+1-3-x5/(2-4-5)+1-3-5-x7/(2-4-6-7)+ for |y <1.
(5) arccosx=m/2—arcsinx
(6) arctanx=x—x3/3+x35—x"[7+ for x| < 1.
(7) mWA=1-1/3+15-1/7+1/9 - +1/(2x—1)F - for all values of x.
(8) e=1+1/11+2/21+1/31+ . for all values of x.
(9) eX=1+x+x221+x3/31 + ... for all values of x.
(10) exp(=x?)=1—x2+x42! —x8/3! + - for all values of x.
(11) @*=1+xlog,a+ (xlog,a)?/2! + (xlog, a)®/3! + - for all values of x.
(12) 1/A+x)=1-x+x2—x3+x*—. for x| < 1.
(13) U(A-x)=1+x+x2+x3+x4+-- for x| < 1.
(14) 1/(1+x)2=1-2x+3x2—4x3+5x4— for x| < 1.
(15) U(1-x)2=1+2x+3x2+4x3+5x5+ for |x| < 1.
(1) JAT0) =1+af2-27(2-4)+1.3-29(2-4-6) forx <1.
~1-3-5-x4(2-4-6-8)— -
(A7) 1/(J1+x) =1-x2+1-3-x%(2-4)-1-3-5-x3/(2-4-6) + - for |x| < 1.
(18) (a+x)'=a"+na"Lx+n(n—1)a"2x22"+n(n—1)(n—2)a"3 x3/3! + - for x2 < a2,

Derivatives and Integrals of Functions.—The following are formulas for obtaining the
derivatives and integrals of basic mathematical functions. In these formulas, the letters a
and c denotes constants; the letter x denotes a variable; and the letters « and v denote func-
tions of the variable x. The expression d/dx means the derivative with respect to x, and as
such applies to whatever expression in parentheses follows it. Thus, d/dx (ax) means the
derivative with respect to x of the product (ax) of the constant a and the variable x.

Formulas for Differential and Integral Calculus

Derivative Value Integral Value
%(c) 0 jcdx cx
%(x) 1 J'ldx x
%(X") ax L Ix"dx zn:i
4 (gt gy [ Linjax+ 5
%(u(x) +(x)) %u(x) + %v(x) j(u(x) +v(x))dx ju(x)dx + [v(x)dx
%(u(x) X (X)) u(x)%v(x) + v(x)%u(x) ju(x)v(x)dx u(x)v(x) - jv(x)du(x)
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Formulas for Differential and Integral Calculus (Continued)

Derivative Value Integral Value
d d
i(u{x)) V(X)EM(X) —M(X)EV(X) Jgfg 2 /i
dx\v(x) v(x)z Jx
d, . .
E(SIHX) COSx J.COSxdx sinx
%( Cosx) —sinx jsinxdx —cosx
i(tan;c) 2 tanxdx -
ax secx j X 0g Cosx
%( cotx) —COSEC2x J.COt)Cdx |Og sinx
%(sec;c) secxtanx jsinzxdx (—%) sin(2x) + %x
d 2 1. 1
~(escx) —CSCx Cotx '[cos xdx Z5in(2x) + 5x
) & fe'ax ¢
d 1 1
%(Iogx) : J‘;dx logx
d, x X x ax
—(a a dx
dx( ) a'loga J. loga
d, . 1 _dx X
= (asinx) asin=
dx Al i b — b
-1 dx
%(acos)c) T 7 acosh’i = log(x + 4/x° - b?)
_y .
d 1 dx 1 X
——(atan - 5 =atan=
4 (atan) e = petany
d -1 dx 1 x _ =1, (x=b])
—(acot - 5 =atanh= = —lo
2x' 800t 1442 j;,?_xz H M T 259 (kT B
d 1 dx 1 x = L, (x=b])
— - 5 —=acoth= = =lo
2x858C0) xx2-1 Ixz e %" T 26 (xr )
d -1 dx 2 atan (2ax+ D)
~—(acscx —_—
dx( ) xax2-1 Iaxz+bx+c A/4ac—b2 J4ac-b2
d . . (asinbx —bcosbx) ax
- (logsinx) cotx je”smbxdx 7., e
ax acos(bx) + bsin(b
%(Iog c0sx) —tanx Ie cos(bx)dx (acos( ;2 e (bx)) jax
d 2 1 X
a — —_ logtan=
dx(log tanx) sin2x Ismxdx g 2
d -2 1 (1_1 N )_c)
E(Iog cotx) sin2x cosx™ log tan 4 2
d 1 1 X
a — tan=
dx(“ﬁc) 2.Jx jl + cos;cdx 2
lo
%(loglox) i Jlogxdx xlogx—x
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GEOMETRY

Arithmetical Progression

An arithmetical progression is a series of numbers in which each consecutive term differs
from the preceding one by a fixed amount called the common difference,d. Thus, 1, 3,5, 7,
etc., isan arithmetical progression where the difference d is 2. The difference here is added
to the preceding term, and the progression is called increasing. In the series 13, 10, 7, 4,
etc., the difference is ( —3), and the progression is called decreasing. In any arithmetical
progression (or part of progression), let

a =first term considered
[ =last term considered
n =number of terms

d =common difference
S =sum of n terms

Then the general formulasare!/ = a+ (n—1)d and S = —xXxn

In these formulas, d is positive in an increasing and negative in a decreasing progression.
When any three of the preceding live quantities are given, the other two can be found by the
formulas in the accompanying table of arithmetical progression.

Example: In an arithmetical progression, the first term equals 5, and the last term 40. The
difference is 7. Find the sum of the progression.

_atl _ .y = 2+40 ey -
§=5-(+d-a) = S-2(40+7-5) = 135

Geometrical Progression

A geometrical progression or a geometrical series is a series in which each term is
derived by multiplying the preceding term by a constant multiplier called the ratio. When
the ratio is greater than 1, the progression is increasing; when less than 1, it is decreasing.
Thus, 2, 6, 18, 54, etc., is an increasing geometrical progression with a ratio of 3, and 24,
12, 6, etc., is a decreasing progression with a ratio of 1/2.

In any geometrical progression (or part of progression), let
a =firstterm
[ =last (or nth) term
n =number of terms
r =ratio of the progression
S =sum of n terms

g = rl—a
r—1
When any three of the preceding five quantities are given, the other two can be found by

the formulas in the accompanying table. For instance, geometrical progressions are used
for finding the successive speeds in machine tool drives, and in interest calculations.

Example: The lowest speed of a lathe is 20 rpm. The highest speed is 225 rpm. There are
18 speeds. Find the ratio between successive speeds.

-1 17
Ratio r = [1 = /% = 17/11.5 = 1.153
a

Then the general formulasare/ = ar"~1 and
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Formulas for Arithmetical Progression

To Find

Given

Use Equation

l

I-(n-1)d

S n_lxd

n 2

d, 1

4= 2 _
2_2A/(21 +d)*-8dS

25 _
n

l—a
n-1
2S—2an
n(n-1)
12_a2

2S-1-a
2nl-28
nn-1)

at((n-1)d

d,1 2
_a,= + _
8dS +(2a-d)

d-2a, 1 005+ (2a-d)?

2d ~2d
25
a+l

20+d, 1 o1y a)2-8ds

2d " 2d

g[Za +(n-1)d]

a+l ?-a? _a+l
+ = 1+ d-
2 2d 2d ¢ a)

S+

n
SL20=(n-1)d]
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Formulas for Geometrical Progression

39

To Find Given Use Equation
a = !
h rn—l
. q = (r=-1S
m=-1
a
r a=Ir-(r-1)§
n a(S—a)"~1 = 1(§-1r-1
n [ =arm-1
_1
r I = ;[a+(r—1)S]
)
n I(S-nHn-1 = qa(S-a)-1
- /= S(r=1)rm-1
m-1
/ . = logl-loga , 4
logr
. 0= logla+ (r—1)S]-loga
logr
n
/ 0= log/-loga
log(S—a)-log(S-1)
- 0= Iogl—log[lr—(r—l)S]+1
logr
n-1
l r = Jz
a
" n=Sr,a-=S
a a
! s
_ —da
! "5
AL
! A R
n—1
S = a\r
" r—=1
! g = Ir—a
r—1
S l S _ n-1 ln I’l—]/.\/;l
n—%_n—%
" g = (" =1)
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Analytical Geometry

Straight Line.—A straight line is a line between two points with the minimum distance.

Coordinate System: It is possible to locate any point on a plane by a pair of numbers
called the coordinates of the point. If P is a point on a plane, and perpendiculars are drawn
from P to the coordinate axes, one perpendicular meets the X-axis at the x- coordinate of P
and the other meets the Y-axis at the y-coordinate of P. The pair of numbers (x;, y;), in that

order, is called the coordinates or coordinate pair for P.

4 1T

21

31

41

Fig. 1. Coordinate Plan

Distance Between Two Points: The distance d between two points P, (x;,y,) and P,(x,,y,)
is given by the formula:

2 2
d(P1.Py) = 0= xp)? + (= v1)
Example 1:What is the distance AB between points A(4,5) and B(7,8)?
Solution: The length of line AB is

d=J7-42+8-57% = J3?+3% = /18 = 3.2

Intermediate Point: An intermediate point, P(x, y) on a line between two points, P;(x1,y;)
and P,(x,,y,), Fig. 2, can be obtained by linear interpolation as follows,

Xyt rox riyrtroy
y = At 7272 and y = L1272

ritry rytry

where r; is the ratio of the distance of P, to P to the distance of P, to P,, and r, is the ratio of

the distance of P, to P to the distance of P, to P,. If the desired point is the midpoint of line

P,P,, then r; = r, =1, and the coordinates of P are:
Xt X

= ——= and =
X 2 y

ity
2

Example 2:What is the coordinate of point P(x,y), if P divides the line defined by points
A(0,0) and B(8,6) at the ratio of 5:3.
_5x0+3x8 _ 24

24 _ 4 y:5><0+3><6
5+3 8 5+3

= 225

Solution: X 1'8—8
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External Point: Apoint, Q(x, y) on the line P,P,, and beyond the two points, P, (x;,y;) and
P,(x,,y,), can be obtained by external interpolation as follows,

F1Xq — FoX riy1 =71,y
1*1 22 and :11 272

ri—n rp—r

X

where r, is the ratio of the distance of P, to Q to the distance of P, to P,, and r, is the ratio of
the distance of P, to Q to the distance of P, to P,.

Y

B (x]!y])
0] X

Fig. 2. Finding Intermediate and External Points on a Line
Equation of a line P,;P,: The general equation of a line passing through points P (x;,y;)

. - X—X
and Pz(xZ,yz) IS Y yl = 1 .
Yi=Y2 X17X

. L . . Y=y
The previous equation is frequently written in the form y —y; = L 2(x—xl)
X=X
Y1=Y2 . .
where —— isthe slope of the line, m, and thus becomes y —y; = m(x —x;) where y,
X1 =X

is the coordinate of the y-intercept (0, ;) and x, is the coordinate of the x-intercept (x;, 0).
Ifthe line passes through point (0,0), then x; =y; = 0and the equation becomes y = mx. The
y-intercept is the y-coordinate of the point at which a line intersects the Y-axis atx=0. The
x-intercept is the x-coordinate of the point at which a line intersects the X-axis aty =0.

If a line AB intersects the X-axis at point A(a,0) and the Y-axis at point B(0,b) then the
equation of line AB is

Q1=

+X:1
b

Slope: The equation of a line in a Cartesian coordinate system is y = mx + b, where xand
yare coordinates of a pointon a line, m is the slope of the line, and b4 is the y-intercept. The
slope is the rate at which the x coordinates are increasing or decreasing relative to the y
coordinates.

Another form of the equation of a line is the point-slope form (y — y;) = m(x — x;). The
slope, m, is defined as a ratio of the change in the y coordinates, y, — y;, to the change in the
x coordinates, x, — xy,

m = él = y—z_yl
Ax  xy—xq
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Example 3:What is the equation of a line AB between points A(4,5) and B(7,8)?

Solution:
it R

Yi=Y2 X17X

y=5_x-4

5-8 4-7

y-5=x-4
y—-x =1

Example 4. Find the general equation of a line passing through the points (3, 2) and (5, 6),
and its intersection point with the y-axis.

First, find the slope using the equation above
Ay _6-2_14
Ax 5-3 2
The line has a general form of y = 2x + b, and the value of the constant » can be determined
by substituting the coordinates of a point on the line into the general form. Using point

(3,2), 2=2x3 + b and rearranging, b = 2 — 6 = —4. As a check, using another point on the
line, (5,6), yields equivalent results, y=6=2x5+bandb=6—-10=-4.

The equation of the line, therefore, is y = 2x — 4, indicating that line y = 2x — 4 intersects
the y-axis at point (0,—4), the y-intercept.

Example 5: Use the point-slope form to find the equation of the line passing through the
point (3,2) and having a slope of 2.

m =2

(y-2) = 2(x-3)
y=2x-6+2
y = 2x-4

The slope of this line is positive and crosses the y-axis at the y-intercept, point (0,—4).

Parallel Lines: The two lines, P,P, and Q,Q,, are parallel if both lines have the same
slope, that is, if m,;= m,.

Y Y

Q (g ) g

= P,(x5177)

W Py(x2172) < 22
my Yy
Qfg73)
Py(xq237) Pyrpry) Qf*33)
0 X 0 %
Fig. 3. Parallel Lines Fig. 4. Perpendicular Lines

Perpendicular Lines: The two lines PP, and 0,0, are perpendicular if the product of
their slopes equal -1, that is, mym, = —1.

Example 6: Find an equation of a line that passes through the point (3,4) and is (a) parallel
to and (b) perpendicular to the line 2x — 3y = 16?

Solution (a): Line 2x — 3y = 16 in standard form is y = % x —19, and the equation of a line
passing through (3,4)is y—4 = m(x-3).
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If the lines are parallel, their slopes are equal. Thus, y—4 = %(x—3) is parallel to line

2x — 3y =—6 and passes through point (3,4).
Solution (b): As illustrated in part (a), line 2x — 3y = —6 has a slope of %. The product of

the slopes of perpendicular lines =—1, thus the slope m of a line passing through point (4,3)
and perpendicular to 2x — 3y = —6 must satisfy the following:

m==2=2t-_3
my 2 2
3

The equation of a line passing through point (4,3) and perpendicular to the line 2x — 3y =
16isy — 4 =3(x— 3), which rewritten is 3x + 2y = 17.

Angle Between Two Lines: For two non-perpendicular lines with slopes m,; and m,, the
angle between the two lines is given by

mq,—m
tan9 = 1 72

1+mym,
Note: The straight brackets surrounding a symbol or number, as in |x|, stands for absolute

value and means use the positive value of the bracketed quantity, irrespective of its sign.
Example 7: Find the angle between the following two lines: 2x—y =4 and 3x + 4y =12
Solution: The slopes are 2 and -3, respectively. The angle between two lines is given by

m,;—m 2_(_% 2+§ 8 11
tane:‘ll o T - 3:446:‘%:?
+mym, (_%) 1-9 4-6 |-

1+2 1 7
6 = atanll

atan= = 79.70°
2

Distance Between a Point and a Line: The distance between a point (x;,y;) and a line

givenbyAx+By+C=0is
_|Axy+By, +C
JA® + B
Example 8: Find the distance between the point (4,6) and the line 2x + 3y —9=0.
Solution: The distance between a point and the line is

= ’Ax1+By1+C’ _[2x4+3x6-9 _ [8+18-9] _ 17

Coordinate Systems.— Rectangular, Cartesian Coordinates: In a Cartesian coordinate
system the coordinate axes are perpendicular to one another, and the same unit of length is
chosen on the two axes. This rectangular coordinate system is used in the majority of cases.

Polar Coordinates: Another coordinate system is determined by a fixed point O, the ori-
ginor pole, and a zero direction or axis through it, on which positive lengths can be laid off
and measured, as a number line. A point P can be fixed to the zero direction line at a dis-
tance r away and then rotated in a positive sense at an angle 6. The angle, 6, in polar coor-
dinates can take on values from 0° to 360°. A point in polar coordinates takes the form of
(r,9).
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Changing Coordinate Systems: For simplicity it may be assumed that the origin on a
Cartesian coordinate system coincides with the pole on a polar coordinate system, and its
axis with the x-axis. Then, if point P has polar coordinates of (,0) and Cartesian coordi-
nates of (x, y), by trigonometry x = r x cos(0) and y = r x sin(8). By the Pythagorean theo-

rem and trigonometry
r o= m 0= atan)Xc
Example 1:Convert the Cartesian coordinate (3, 2) into polar coordinates.
= f3?+2%= o+d=/B=36 0= atan§:33.69°

Therefore the point (3.6, 33.69) is the polar form of the Cartesian point (3, 2).

Graphically, the polar and Cartesian coordinates are related in the following figure

(.2

3.6

33.69

0
0 1 2 3

Example 2: Convert the polar form (5, 608) to Cartesian coordinates. By trigonometry, x
=rxco0s(8) and y = r x sin(B). Then x =5 cos(608) = —-1.873 and y = 5 sin(608) = —4.636.
Therefore, the Cartesian point equivalent is (—1.873, —4.636).

Spherical Coordinates: 1t is convenient in certain problems, for example, those con-
cerned with spherical surfaces, to introduce non-parallel coordinates. An arbitrary point P
in space can be expressed in terms of the distance » between point P and the origin O, the
angle ¢ that OP’makes with the x-y plane, and the angle A that the projection OP’ (of the
segment OP onto the x-y plane) makes with the positive x-axis.

R ———

The rectangular coordinates of a point in space can therefore be calculated by the formu-
las in the following table.
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Relationship Between Spherical and Rectangular Coordinates

Spherical to Rectangular Rectangular to Spherical
.= /xz +y2+z2
- Z
¢ = atan > (for x2 + y2 £ 0)
x ty
X = rcos¢ CcosA
y = rcosdsin A= atanﬁ (for x>0,y > 0)
z = rsing
A = m+ atan¥ (for x < 0)
X
A = 2n + atan? (for x>0, y < 0)
X

Example 3:\What are the spherical coordinates of the point P(3, -4, -12)?

r= 3+ (c4)? + (12)% = 13

o = atan——2__ = aan-12 = _g7.38°

3%+ (-4)?
A = 360° + atan—%' = 360°—53.13° = 306.87°

The spherical coordinates of P are therefore =13, ¢ =—67.38°, and A = 306.87°.

Cylindrical Coordinates: For problems on the surface of a cylinder it is convenient to use
cylindrical coordinates. The cylindrical coordinates r, 0, z, of P coincide with the polar
coordinates of the point P” in the x-y plane and the rectangular z-coordinate of P. This gives
the conversion formula. Those for 6 hold only if x? + y? = 0; 6 is undetermined if x =y = 0.

Cylindrical to Rectangular | Rectangular to Cylindrical /—\
z

X = rcoso cosO =
= rsin®
7=z .
sin@ =
Z =

X P’ y

Example 4: Given the cylindrical coordinates of a point P, r =3, 0 =-30°, z =51, find the
rectangular coordinates. Using the above formulas x = 3cos (—30°) = 3cos (30°) = 2.598; y
= 3sin (-30°) = -3 sin(30°) = —1.5; and z = 51. Therefore, the rectangular coordinates of
point Pare x=2.598, y=-1.5,and 7 =51.
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Circle.—The general form for the equation of a circle is x2 + y? + 2gx + 2fy + ¢ = 0, where

—g and —f are the coordinates of the center and the radius is r = A/g2 +f2 -c.
The center radius form of the circle equation is Y
(x=m)+ -k =

where » =radius and point (, k) is the center. Center (h, k)
When the center of circle is at point (0,0), the equation of

. 2.2 _ 2
circlereducesto x“ +y° = r or r= Jx2+y?

Example:Point (4,6) lies on a circle whose center is at
(=2,3). Find the circle equation? X

Solution: The radius is the distance between the center
(—2,3) and point (4,6), found using the method of Example 1 on page 40.

r= 4= (2P +(6-3)" = /6’ +3° = /i

The equation of the circle is

2

(x=h)’+ -k’ =r

()c+2)2+(y—3)2 = x2+4x+4+y2—6y+9

45

x2+y2+4x—6y—32 =0

Additional Formulas: Listed below are additional formulas for determining the geome-
try of plane circles and arcs. Although trigonometry and circular measure are related, they
both deal with angles in entirely different ways.

L =perimeter of circle = nD = 2nR

R =radius = Jg = A/X2+Y2

D =diameter of circle = 2R =

’47 D
Tangent

Tangent

L
T
. 2
N =total area of a circle = TR
X=JR* =Y Y=JR-X°

M =area of complement section = I

2
Rz—% = 0.2146R?

I =distance from center to start of section T
H =height of section T

Q =chord length for segment S
T + S=area of segment = R® x sin'l(ﬂ) i

2R/ "2

Example 1:Find the area of a circular section with included angle of 30° and radius of 7

cm.
. . . - L") 2 _ (&) 2 _ 2
Solution: Referring to Fig. 1b, K (360 TR 360 7 12.83 cm
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Areas K and S
L =perimeter of ¢ degrees = (%%) X 21R

180L _ 2K _ E’+4F
T O L 8F

S =area of segment = R%L - ﬂRZ;FZ

R =radius =

E =chord length = 2x JFx (2R-F) = DX sin@)

F =chord height = R—# = RX (l— cos@))

1801
T ¢

= i = LO) 2 =
K =area of section (360 X T XR

¢ =angle at center of circle =

RXL
2

Donut
R, =radius of outer circle of donut
R, =radius of inner circle of donut

U =area of segment of donut = % X TTX (Rf - Rg)

W =total area of donut = n(Ri - RS)

Example 2: Find the chord length E of a circular segment (Fig. 1b), with a depth of 2 cm
at the center, that is formed in a circle whose radius 12 cm.

Solution: The chord lengthis E = 2./F(2R-F) = 2,/2(2x12-2)
= 4./11 = 13.27 cm

Example 3:Find the area S of the circular segment from Example 2.

Solution: First determine angle ¢, then find the perimeter L of the segment, and then
solve for area S, as follows:

tan@ _ E/2 _1321/2 _ g3

= 33.56° 0 = 67.13°
R-F 12-2

NS

_ 0 _ 6713 _
L= gb2nRr) = L x 24m) = 1406 em
Area S = R;L—E(RZ‘F) = 12(1;‘-()‘5)—13-2;(10) — 84.36-66.35 = 18.01 cm®

Another way to find angle ¢ is divide one half of the chord length by the radius to obtain

sin = ¢hord - E _ 1327 _ 4559 g = 335662° ¢ = 67.13°



48 ELLIPSE

Ellipse.— The ellipse with eccentricity e, focus F and a directrix L is the set of all points P
such that the distance PF is e times the distance from P to the line L. The general equation
of anellipse is

Ax2+Cy2+Dx+Ey+F= Olucsoandazc

The ellipse has two foci separated along the major axis by a distance 2¢. The line passing
through the focus perpendicular to the major axis is called the latus rectum. The line pass-
ing through the center, perpendicular to the major axis, is called the minor axis. The dis-
tances 2a and 2b are the major distance, and the minor distance.The ellipse is the locus of
points such that the sum of the distances from the two foci to a point on the ellipse is 2a,
thus, PF; + PF,=2a

p :Minor axis
.

V2
Major axis

Vi F (k) | F2

2
c’=a’-b

e=cla

a < \
Latus rectum

Ellipse

Latus rectum X

K’ _

> 1

2
If (h, k) are the center, the general equation of an ellipse is (x _zh) + =
a b
2_,2
The eccentricity of the ellipse, e = X<
a

, isalways less than 1.

The distance between the two fociis 2¢ = 2 a2 - b2 .

The aspect ratio of the ellipse is a/b.
2 2
The equation of an ellipse centered at (0, 0) with foci at (x¢, 0) is x_2 + 3—2 = 1,andthe
a b

ellipse is symmetric about both coordinate axes. Its x-intercepts are (xa, 0) and y-intercepts
are (0, £b). The line joining (0, b) and (0, —b) is called the minor axis.The vertices of the
ellipse are (£a, 0), and the line joining vertices is the major axis of the ellipse.

Example: Determine the values of i, k, a, b, ¢, and e of the ellipse
3x2 +5y2 125 +30y+42 = 0

Solution: Rearrange the ellipse equation into the general form as follows:

3x%+5y2 —12x + 30y + 42 = 3x° = 12x + 5y + 30y + 42

1
o

3(x2—4x+22)+5(y2+6y+32) 15
2 2 2 2
3:-2)° ,5+3)° _ =2, 0*3° _

15 15 B (B
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-n’, -k’
Comparing to the general form, (x > ) =k - 1, and solving for ¢ and e gives:
a b

h =2 k = -3 aZﬁ b:ﬁ c:ﬁ e:f

Additional Formulas: An ellipse is the locus of points the sum of whose distances from
two fixed points, called focus, is a constant. An ellipse can be represented parametrically
by the equations x = acos and y = bsin®, where x and y are the rectangular coordinates of
any point on the ellipse, and the parameter 6 is the angle at the center measured from the x-
axis anticlockwise.

R, =radius of director circle = JA? + B A =major radius = B + P
R, =radius of equivalent circle = J/AB B =minor radius = JA” - P°
2
P =center to focus distance = yA” - B distance, origin to latus rectum = 2B

A
J =any point (X,Y) on curve where X = Asin® = Acos¢ and Y= Bcos® = Bsino

® =angle with major axis = sin'l(g) = cos_l(%() 6 =angle with minor axis = 90° - ¢
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2
L =total perimeter (approximate) = A[l.z(f) + 1.1@) + 4}

L =perimeter (sections) = (&) X 20JAB

Avrea Calculations
N =total surface area of ellipse = nAB

W =sectional area between outer and inner ellipse = n(A,B, - A,B,)

M =area of complement section = AB - ’%3

. X
S =area of section = AB x cos 1(Xl) -X,Y,
: . -1 X3
T+S = combined area of sections 7+ S = AB x cos (Z) -X,Y,
V =area of section = Ri X sin’lGD -XY

K =area of section = AB x cos_lcﬂ

Example 4:Find area of section K, and complement area M, given the major radius of
ellipse is 10 cm, minor radius of ellipse is 7 cm, dimension X = 8.2266 cm.

Solution: The sectional area K

X _
Area K = AB X C0S 1(21) = 10x 7 x cos 1(%) = 70x0.6047 = 42.33 cm2
Solution: Complement area M
Area M = AB—’# = le?—W = 15.0221 cm?

Example 5:Find the area of elliptical section S, T + S, provided that major radius of
ellipse is 10 cm, minor radius of ellipse is 7 cm, dimension X; = 8.2266 cm, dimension Y; =

4.4717 cm, and dimension X, = 6.0041 cm.

Solution: The sectional area S

X .
S = ABxcos I(Xl) ~X,¥, = 10x 7 xc0s 1(%} - 8.2266 x 4.4717 = 55437 cm’

Solution: Sectional area 7+ S

<
1

X
cos I(XZ) = 53.1007° Y, = Bsing = 7sin(53.1007°) = 5.5978

_1( Xy
AB x C0S (—) XY, = 10x 7 x 0.9268  (6.0041 x 5.5978)

+
T+S 2

= 64.876 — 33.6097 = 31.266 cm’

Example 6: Find the area of elliptical section V;, if the major radius of ellipse is 4 inches,
minor radius of ellipse is 3 inches, dimension X = 2.3688 inches, dimension Y = 2.4231
inches.
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Solution: Sectional area V

R, = JAB R, =AB=3x4=12

14

R5x sin‘l@ XY = 12x sin‘l(%m) _ (2.3688 x 2.4231)

7.6048 —5.7398 = 1.865 in’

Four-Arc Oval that Approximates an Ellipse*.—The method of constructing an
approximate ellipse by circular arcs, described on page 64, fails when the ratio of the major
to minor diameter equals four or greater. Additionally, it is reported that the method always
draws a somewhat larger minor axes than intended. The method described below presents
an alternative.

Anoval that approximates an ellipse, illustrated in Fig. 2, can be constructed from the fol-

lowing equations:
B2/ A\038
"= 213 @

where A and B are dimensions of the major and minor axis, respectively, and r is the radius
of the curve at the long ends.

The radius R and its location are found from Equations (2) and (3):

A2 B2
I—AI”'I'BV—I RZE'I'X (3)
X= B-2r @ °
I‘ A >|
. |
I |
| 7
I I
| | '
+ + ¥
B A
N \ )
R
I I
I I X I
< |\__ _____= -
Y

Fig. 2. Four Arc Oval Ellipse

To make an oval thinner or fatter than that given, select a smaller or larger radius r than
calculated by Equation (1) and then find X and R using Equations (2) and (3).

Spheres.—The standard form for the equation of a sphere with radius R and centered at
point (h, k, [) can be expressed by the equation;
(x=m)*+ (-0’ + (=D = R

The general form for the equation of a sphere can be written as follows, where A cannot
be zero.

2

Ax2+Ay2+Az2+Bx+Cy+Dz+E =0
The general and standard forms of the sphere equations are related as follows:
* Four-Arc Oval material contributed by Manfred K. Brueckner
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D R:A/B2+C2+D2_§
44° A

R =radius of sphere D =diameter of sphere
N, =total surface area of sphere N, =total volume of sphere
R, =radius of outer sphere R, =radius of inner sphere
G,K,S,T,U,W,Z, = sectional surface areas
G,K,S,T,U,W,Z, = sectional volumes

Vi Vi v oW v =y

Formulas for Spherical Areas and Volumes

To Find Formula To Find Formula
Radius of 3N Radius of — o R
sphere from | R, = ?F oction | Ry = \/(P -0 —4H) P
volume N, 4n ection 8H 2
Section Area \Volume
Entire _ 2 T3 _4n .3
Sphere N, = 4nR Volume N, = gxD 3 <R
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Formulas for Spherical Areas and Volumes (Continued)

53

To Find Formula To Find Formula

- G, = 4nR: +4nR} _ AR p3_ 3

Section G a 1 2 Volume G, = F(R-Ry)
2
Section K K, = 2nR2(1—cos%) Volume K, = Z’T%v
Section S S, =mx (Fz + 5-2) Volume S = IXFx (‘f + F_Z)
o 4 v 8 6

. T, = 2nRH 2 2
Section T “ Volume T, = Hx E(HZ + 3_4Q_ + ?%)

. _ 2 2 Q _ 3 3 Q
Section U Uy = 2m(Ry + Ry)(1-cos7) || Volume U, = 2n(Ry - Ry)|1- cos
Section W W, = 4n’x R, xR, Volume W, = 21° X Ry X R)
Section Z z, = (4n2lexR2)% Volume z, = (anleng)%

Example 7:Find the inside and outside surface area G, and volume G, of wall G, pro-
vided that R, is12.5cmand R, is 10.0 cm.

Solution: Sectional area G, and sectional volume G,

a

G

v

%"(Rf—Ri) = 4?"(12.53—103) - 399244 cm

ATR? +4TR5 = 4m(12.5)° +4n10° = 3220.13 cm’

3

Example 8: Find the surface area K, and volume K, of section K of a sphere of radius 15.0
cm, if included angle ¢ = 90° and depth F =5.0 cm.

Solution: Sectional area K, and sectional volume K,

K, = 2nR2(1—cosg)= ansz(l— cosgg
2nR°F _ 2115°5 3
K, = SRR F - 2R29 9 - 935619 cm

o

—) = 41407 cm?

Example 9:Find the outside surface area S, and sectional volume S, of section S of a
sphereif E=20.0cmand F=5.0cm.

Solution: Sectional area S, and sectional volume S,

%]
1

2
nx(F2+%) = nx(52+

S

vV

20°

4

—) = 39270 cm?

anx(%2+%%) = nx5x(%°2+%z) = 850.85 cm®

Example 10:Find the outside and inside surface area U, and volume U, of section U of a
sphere, if R, =5.00 inches, R, = 4.0 inches, and included angle ¢ = 30°.

Solution: Sectional area U, and sectional volume U,
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U, = 2n(R§+R§)(1-cos§) - 2nx(52+42)(1-cos3—2—°) = 8.78 in?
_ 3 .3 o) _ 3 3 30°) _ .3
U, = 2n(R1—R2)(1—cosz) =2nx (5" -4 )(1—cos 2) = 13.06 in

Example 11:Find the total surface area W, and volume W, of ring W, if R; = 5.00 inches
and R,= 4.0 inches.

Solution: Sectional area W, and sectional volume W,

W, = 4n° xRy xR, = 4w’ x5x4 = 789.56 in’

a

W, = 2’ xRy xR, = 2n°x5x4° = 1579.13 in®

v

Parabola.— A parabolais the set of all points P in the plane that are equidistant from focus
F and a line called the directrix. A parabola is symmetric with respect to its parabolic axis.
The line perpendicular to the parabolic axis which passing through the focus is known as
latus rectum.

The general equation of a parabola is given by (y — k)2 = 4p(x—h) , where the vertex
is located at point (4, k), the focus F is located at point (i + p, k), the directrix is located at x
= h—p, and the latus rectum is located at x =/ + p.

Example: Determine the focus, directrix, axis, vertex, and latus rectum of the parabola
4y’ -8x—-12y+1 =0
Solution: Format the equation into the general form of a parabolic equation

Y Directrixx=h—p
4y? —8x—12y+1 = 0 4 /
2 _ (v =K’ =4p(x =)
4y -12y = 8x-1 % Vertex (h, k)
y2_3y - 2x—l v /_Focus(h+p,k)
4 F Parabolic axis
2 .3 @2 1,9 ’X
— -+ | - = — =4 = X =
y 2y2 2x i Q X
2 \
-9 =2

Lectus rectum x=h+p
Parabola
Thus, k=%, h=-1and p=%. Focus F'is located at point (2 + p, k) = (%, %); the directrix
is located at x = h —p = -1 — % = —%; the parabolic axis is the horizontal line y =%; the
vertex V(h,k) is located at point (-1, %); and the latus rectum is located at x =h + p = —%.

Hyperbola.—The hyperbola with eccentricity e, focus F and a directrix L is the set of all
points P such that the distance PF is e times the distance from P to the line L.The general
equation of an hyperbola is

2 2 _
AX +Cy +Dx+Ey+F=0{,._oaqacx0

The hyperbola has two foci separated along the transverse axis by a distance 2¢. Lines
perpendicular to the transverse axis passing through the foci are the conjugate axis. The
distance between two vertices is 2a. The distance along a conjugate axis between two
points on the hyperbola is 2b.The hyperbola is the locus of points such that the difference
of the distances from the two foci is 2a, thus, PF,— PF; = 2a
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-n’ (=k?
If point (h,k) is the center, the general equation of an ellipse is (x > ) _ U > ) - 1
a b

Y Conjugate axis g Asymptote

\ / y—k=(b/a)x—h)
c?=a?+ b?
e=cla

V, (h— a, k) /— Vi(h+a, k)

2b
F,(h—c, k¥ ) NI I?n]i\;erse axis
/ \d
f&—2a —)
/ 2c
—— Asymptote

y—k=—(b/a)x—h) X

Hyperbola

/\/Clz + b2

a

The eccentricity of hyperbola, e = is always less than 1.

The distance between the two fociis 2¢ = 2 az + b2 .

2 2
The equation of a hyperbola with center at (0, 0) and focus at (¢, 0) is )—C—Z - y—z =1
a b
Example: Determine the values of 1, k, a, b, ¢, and e of the hyperbola
9x”—4y* - 36x+8y—4 = 0
Solution: Convert the hyperbola equation into the general form
9x%—4y* —36x+8y—4 = (9x°—36x) - (4y° —8y)—4 = 0
9(x2—4x+4)—4(y2—2y+ 1) = 36
2
o=2° 4p-1° _ -2 -1 _,
36 36 0?2 32
-n’ (=k°
Comparing the results above with the general form (x > ) _(=k) - 1 and calcu-
a b
24 b2 2, .2
lating the eccentricity from ¢ = %< andcfrom ¢ = JJa” +b" gives
a

=

1
N
=

1
[EEN
Q

1
N
S

1
w
o

1
5
w
Q

1

ol
w
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GEOMETRICAL PROPOSITIONS

Geometrical Propositions

The sum of the three angles in a triangle always equals 180
degrees. Hence, if two angles are known, the third angle can
always be found.

A+B+C = 180° A = 180°— (B + ()
B = 180°— (A + () C = 180°—(A + B)

If one side and two angles in one triangle are equal to one side
and similarly located angles in another triangle, then the remaining
two sides and angle also are equal.

If a =a;, A=A, and B = By, then the two other sides and the
remaining angle also are equal.

Y W
VAW

fe—a—> |f—a;—>

If two sides and the angle between them in one triangle are equal
to two sides and a similarly located angle in another triangle, then
the remaining side and angles also are equal.

If a =ay, b=by, and A = A4, then the remaining side and angles
also are equal.

V7

If the three sides in one triangle are equal to the three sides of
another triangle, then the angles in the two triangles also are equal.

Ifa=a,b=b,andc=
tive sides also are equal.

¢y, then the angles between the respec-

N
\/”x/ )

—a—>|  —d—]

If the three sides of one triangle are proportional to correspond-
ing sides in another triangle, then the triangles are called similar,
and the angles in the one are equal to the angles in the other.

If a:b:c=d:e:f, thenA=D,B=E, and C=F.

T S,

\
1|, o7
aivg

If the angles in one triangle are equal to the angles in another tri-
angle, then the triangles are similar and their corresponding sides
are proportional.

If A=D,B=E,andC=F, thena:b:c=d:e:f.

If the three sides in a triangle are equal—that is, if the triangle is
equilateral—then the three angles also are equal.

Each of the three equal angles in an equilateral triangle is 60
degrees.

If the three angles in a triangle are equal, then the three sides also
are equal.
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Geometrical Propositions

30 | 30
90
12a B

A line in an equilateral triangle that bisects or divides any of the
angles into two equal parts also bisects the side opposite the angle
and is at right angles to it.

If line AB divides angle CAD into two equal parts, it also divides
line CD into two equal parts and is at right angles to it.

If two sides in a triangle are equal—that is, if the triangle is an
isosceles triangle—then the angles opposite these sides also are
equal.

If side a equals side b, then angle A equals angle B.

If two angles in a triangle are equal, the sides opposite these
angles also are equal.

If angles A and B are equal, then side a equals side b.

/b
N N
le—1/2 h—>t+<—1/2h—>
[ b |

In an isosceles triangle, if a straight line is drawn from the point
where the two equal sides meet, so that it bisects the third side or
base of the triangle, then it also bisects the angle between the equal
sides and is perpendicular to the base.

In every triangle, that angle is greater that is opposite a longer
side. In every triangle, that side is greater which is opposite a
greater angle.

If a is longer than b, then angle A is greater than B. If angle A is
greater than B, then side « is longer than b.

In every triangle, the sum of the lengths of two sides is always
greater than the length of the third.

Side a + side b is always greater than side c.

NS

fe——b——

In a right-angle triangle, the square of the hypotenuse or the side
opposite the right angle is equal to the sum of the squares on the
two sides that form the right angle.

a? = b2+ 2
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Geometrical Propositions

If one side of a triangle is produced, then the exterior angle is
equal to the sum of the two interior opposite angles.

Angle D = angle A +angle B

D If two lines intersect, then the opposite angles formed by the
intersecting lines are equal.
A B Angle A= angle B
C AngleC = angle D
MA If a line intersects two parallel lines, then the corresponding
a b |angles formed by the intersecting line and the parallel lines are
A B equal.
B_»pA
¢ d Lines ab and cd are parallel. Then all the angles designated A are
A A equal, and all those designated B are equal.
¢ In any figure having four sides, the sum of the interior angles
A equals 360 degrees.
B D A+ B+ C+ D = 360 degrees

The sides that are opposite each other in a parallelogram are
equal; the angles that are opposite each other are equal; the diago-
nal divides it into two equal parts. If two diagonals are drawn, they
bisect each other.

The areas of two parallelograms that have equal base and equal
height are equal.

If a=a, and h = hy, then
Area A = area A,

The areas of triangles having equal base and equal height are
equal.

If a =a;and h = hy, then
Area A = area A,

1/2c>l<l/2¢
]

If a diameter of a circle is at right angles to a chord, then it
bisects or divides the chord into two equal parts.
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Geometrical Propositions

T

If a line is tangent to a circle, then it is also at right angles to a
line drawn from the center of the circle to the point of tangency—
that is, to a radial line through the point of tangency.

Point of Tangency

If two circles are tangent to each other, then the straight line that
passes through the centers of the two circles must also pass through
the point of tangency.

If from a point outside a circle, tangents are drawn to a circle, the
two tangents are equal and make equal angles with the chord join-
ing the points of tangency.

The angle between a tangent and a chord drawn from the point of
tangency equals one-half the angle at the center subtended by the
chord.

Angle B = % angle A

The angle between a tangent and a chord drawn from the point of
tangency equals the angle at the periphery subtended by the chord.

Angle B, between tangent ab and chord cd, equals angle A sub-
tended at the periphery by chord cd.

All angles having their vertex at the periphery of a circle and sub-
tended by the same chord are equal.

Angles A, B, and C, all subtended by chord cd, are equal.

If an angle at the circumference of a circle, between two chords,
is subtended by the same arc as the angle at the center, between two
radii, then the angle at the circumference is equal to one-half of the
angle at the center.

Angle A = % angle B
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Geometrical Propositions
A = Less B = More
than 90 than 90 An angle subtended by a chord in a circular segment larger than

Vo

o C

one-half the circle is an acute angle—an angle less than 90 degrees.
An angle subtended by a chord in a circular segment less than one-
half the circle is an obtuse angle—an angle greater than 90 degrees.

b
a W/

If two chords intersect each other in a circle, then the rectangle of
the segments of the one equals the rectangle of the segments of the
other.

axb = cxd

If from a point outside a circle two lines are drawn, one of which
intersects the circle and the other is tangent to it, then the rectangle
contained by the total length of the intersecting line, and that part
of it that is between the outside point and the periphery, equals the
square of the tangent.

a2 = bxc

If a triangle is inscribed in a semicircle, the angle opposite the
diameter is a right (90-degree) angle.

All angles at the periphery of a circle, subtended by the diameter,
are right (90-degree) angles.

The lengths of circular arcs of the same circle are proportional to
the corresponding angles at the center.

A:B=a:b

i

The lengths of circular arcs having the same center angle are pro-
portional to the lengths of the radii.

IfA=B,thena:b=r:R.

Clrcumf =c {Clrcumf =C
Area=a rea =

The circumferences of two circles are proportional to their radii.

The areas of two circles are proportional to the squares of their
radii.




GEOMETRICAL CONSTRUCTIONS

61

Geometrical Constructions

To divide a line AB into two equal parts:

With the ends A and B as centers and a radius greater than one-
half the line, draw circular arcs. Through the intersections C and D,
draw line CD. This line divides AB into two equal parts and is also
perpendicular to AB.

A
B

4
1

C

D
D

A

To draw a perpendicular to a straight line from a point A on that
line:

With A as a center and with any radius, draw circular arcs inter-
secting the given line at B and C. Then, with B and C as centers and
a radius longer than AB, draw circular arcs intersecting at D. Line
DA is perpendicular to BC at A.

a

>
!
=

To draw a perpendicular line from a point A at the end of a line
AB:

With any point D, outside of the line AB, as a center, and with AD
as a radius, draw a circular arc intersecting AB at E. Draw a line
through E and D intersecting the arc at C; then join AC. This line is
the required perpendicular.

A

ct

\ /_p

E F
D

To draw a perpendicular to a line AB from a point C at a distance
from it:

With C as a center, draw a circular arc intersecting the given line
at £ and F. With E and F as centers, draw circular arcs with a
radius longer than one-half the distance between E and F. These
arcs intersect at D. Line CD is the required perpendicular.

To divide a straight line AB into a number of equal parts:

Let it be required to divide AB into five equal parts. Draw line AC
at an angle with AB. Set off on AC five equal parts of any conve-
nient length. Draw B-5 and then draw lines parallel with B-5
through the other division points on AC. The points where these
lines intersect AB are the required division points.
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Geometrical Constructions

To draw a straight line parallel to a given line AB, at a given dis-
tance from it:

With any points C and D on AB as centers, draw circular arcs
with the given distance as radius. Line EF, drawn to touch the cir-
cular arcs, is the required parallel line.

To bisect or divide an angle BAC into two equal parts:

With A as a center and any radius, draw arc DE. With D and E as
centers and a radius greater than one-half DE, draw circular arcs
intersecting at F. Line AF divides the angle into two equal parts.

To draw an angle upon a line AB, equal to a given angle FGH:

With point G as a center and with any radius, draw arc KL. With
A as a center and with the same radius, draw arc DE. Make arc DE
equal to KL and draw AC through E. Angle BAC then equals angle
FGH.

To lay out a 60-degree angle:

With A as a center and any radius, draw an arc BC. With point B
as a center and AB as a radius, draw an arc intersecting at E the arc
just drawn. EAB is a 60-degree angle.

A 30-degree angle may be obtained either by dividing a 60-
degree angle into two equal parts or by drawing a line EG perpen-
dicular to AB. Angle AEG is then 30 degrees.

To draw a 45-degree angle:

From point A on line AB, set off a distance AC. Draw the perpen-
dicular DC and set off a distance CE equal to AC. Draw AE. Angle
EAC is a 45-degree angle.

To draw an equilateral triangle, the length of the sides of which
equals AB:

With A and B as centers and AB as radius, draw circular arcs
intersecting at C. Draw AC and BC. Then ABC is an equilateral tri-
angle.
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Geometrical Constructions

AN

To draw a circular arc with a given radius through two given
points A and B:

With A and B as centers, and the given radius as radius, draw cir-
cular arcs intersecting at C. With C as a center, and the same
radius, draw a circular arc through A and B.

To find the center of a circle or of an arc of a circle:

Select three points on the periphery of the circle, as A, B, and C.
With each of these points as a center and the same radius, describe
arcs intersecting each other. Through the points of intersection,
draw lines DE and FG. Point H, where these lines intersect, is the
center of the circle.

&

To draw a tangent to a circle from a given point on the circumfer-
ence:

Through the point of tangency A, draw a radial line BC. At point
A, draw a line EF at right angles to BC. This line is the required
tangent.

B
F
B

To divide a circular arc AB into two equal parts:

With A and B as centers, and a radius larger than half the distance
between A and B, draw circular arcs intersecting at C and D. Line
CD divides arc AB into two equal parts at E.

@

To describe a circle about a triangle:

Divide the sides AB and AC into two equal parts, and from the
division points E and F, draw lines at right angles to the sides.
These lines intersect at G. With G as a center and GA as a radius,
draw circle ABC.

C
D
B
Z@F\

A
A

C
C
B
D
G

To inscribe a circle in a triangle:

Bisect two of the angles, A and B, by lines intersecting at D.
From D, draw a line DE perpendicular to one of the sides, and with
DE as a radius, draw circle EFG.
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Geometrical Constructions

To describe a circle about a square and to inscribe a circle in a
square:

F The centers of both the circumscribed and inscribed circles are
E located at the point E, where the two diagonals of the square inter-
sect. The radius of the circumscribed circle is AE, and of the

C D inscribed circle, EF.

To inscribe a hexagon in a circle:

Draw a diameter AB. With A and B as centers and with the radius
C of the circle as radius, describe circular arcs intersecting the given

circleat D, E, F, and G. Draw lines AD, DE, etc., forming the
required hexagon.

To describe a hexagon about a circle:

Draw a diameter AB, and with A as a center and the radius of the

F circle as radius, cut the circumference of the given circle at D. Join

AD and bisect it with radius CE. Through E, draw FG parallel to

AD and intersecting line AB at F. With C as a center and CF as

E radius, draw a circle. Within this circle, inscribe the hexagon as in
D the preceding problem.

To describe an ellipse with the given axes AB and CD:

Describe circles with O as a center and AB and CD as diameters.
From a number of points, E, F, G, etc., on the outer circle, draw
radii intersecting the inner circle at ¢, f, and g. From E, F, and G,
draw lines perpendicular to AB, and from e, f, and g, draw lines
parallel to AB. The intersections of these perpendicular and parallel
lines are points on the curve of the ellipse.

To construct an approximate ellipse by circular arcs:

Let AC be the major axis and BN the minor. Draw half circle
ADC with O as a center. Divide BD into three equal parts and set
off BE equal to one of these parts. With A and C as centers and OF
as radius, describe circular arcs KLM and FGH;, with G and L as
centers, and the same radius, describe arcs FCH and KAM.
Through F and G, drawn line FP, and with P as a center, draw the
arc FBK. Arc HNM is drawn in the same manner.
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Geometrical Constructions
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To construct a parabola:

Divide line AB into a number of equal parts and divide BC into
the same number of parts. From the division points on AB, draw
horizontal lines. From the division points on BC, draw lines to
point A. The points of intersection between lines drawn from points
numbered alike are points on the parabola.

To construct a hyperbola:

From focus F, lay off a distance FD equal to the transverse axis,
or the distance AB between the two branches of the curve. With F
as a center and any distance FE greater than FB as a radius,
describe a circular arc. Then with F; as a center and DE as a radius,
describe arcs intersecting at C and G the arc just described. C and
G are points on the hyperbola. Any number of points can be found
in a similar manner.

To construct an involute:

Divide the circumference of the base circle ABC into a number of
equal parts. Through the division points 1, 2, 3, etc., draw tangents
to the circle and make the lengths D-1, E-2, F-3, etc., of these tan-
gents equal to the actual length of the arcs A-1, A-2, A-3, etc.

f=<1/2 Lead >}

S= WA N

To construct a helix:

Divide half the circumference of the cylinder, on the surface of
which the helix is to be described, into a number of equal parts.
Divide half the lead of the helix into the same number of equal
parts. From the division points on the circle representing the cylin-
der, draw vertical lines, and from the division points on the lead,
draw horizontal lines as shown. The intersections between lines
numbered alike are points on the helix.
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Areas and Volumes

The Prismoidal Formula.— The prismoidal formula is a general formula by which the
volume of any prism, pyramid, or frustum of a pyramid may be found.

A, =areaat one end of the body

A, =areaat the other end

A,, =area of middle section between the two end surfaces
h =height of body

Then, volume V of the body is V = f—sl(A1 +4A, +A,)

Pappus or Guldinus Rules.— By means of these rules the area of any surface of revolu-
tion and the volume of any solid of revolution may be found. The area of the surface swept
out by the revolution of a line ABC (see illustration) about the axis DE equals the length of
the line multiplied by the length of the path of its center of gravity, P. If the line is of such a
shape that it is difficult to determine its center of gravity, then the line may be divided into
anumber of short sections, each of which may be considered as a straight line, and the areas
swept out by these different sections, as computed by the rule given, may be added to find
the total area. The line must lie wholly on one side of the axis of revolution and must be in
the same plane.
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The volume of a solid body formed by the revolution of a surface FGHJ about axis KL
equals the area of the surface multiplied by the length of the path of its center of gravity.
The surface must lie wholly on one side of the axis of revolution and in the same plane.

Example: By means of these rules, the area and volume of a cylindrical ring or torus may
be found. The torus is formed by a circle AB being rotated about axis CD. The center of
gravity of the circle is at its center. Hence, with the dimensions given in the illustration, the
length of the path of the center of gravity of the circle is 3.1416 x 10 = 31.416 inches. Mul-
tiplying by the length of the circumference of the circle, which is 3.1416 x 3 = 9.4248

inches, gives 31.416 x 9.4248 = 296.089 square inches which is the area of the torus.

The volume equals the area of the circle, which is 0.7854 x 9 = 7.0686 square inches,
multiplied by the path of the center of gravity, which is 31.416, as before; hence,

Volume = 7.0686 x 31.416 = 222.067 cubic inches
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Approximate Method for Finding the Area of a Surface of Revolution.—The accom-
panying illustration is shown in order to give an example of the approximate method based
on Guldinus' rule, that can be used for finding the area of a symmetrical body. In the illus-
tration, the dimensions in common fractions are the known dimensions; those in decimals
are found by actual measurements on a figure drawn to scale.

The method for finding the area is
as follows: First, separate such
areas as are cylindrical, conical, or
spherical, as these can be found by
exact formulas. In the illustration
ABCD is a cylinder, the area of the
surface of which can be easily
found. The top area EF is simply a
circular area, and can thus be com-
puted separately. The remainder of
the surface generated by rotating
line AF about the axis GH is found
by the approximate method
explained in the previous section.
From point A, set off equal dis-
tances on line AF. In the illustra-
tion, each division indicated is %
inch long. From the central or mid-
dle point of each of these parts draw a line at right angles to the axis of rotation GH, mea-
sure the length of these lines or diameters (the length of each is given in decimals), add all
these lengths together and multiply the sum by the length of one division set off on line AF
(inthis case, %inch), and multiply this product by = to find the approximate area of the sur-
face of revolution.

In setting off divisions % inch long along line AF, the last division does not reach exactly
to point F, butonly toa point 0.03 inch below it. The part 0.03 inch high at the top of the cup
can be considered as a cylinder of % inch diameter and 0.03 inch height, the area of the
cylindrical surface of which is easily computed. By adding the various surfaces together,
the total surface of the cup is found as follows:

Cylinder, 1%inch diameter, 0.41 inch high 2.093 square inches

Circle, % inch diameter 0.196 square inch

Cylinder, % inch diameter, 0.03 inch high 0.047 square inch

Irregular surface 3.868 square inches
Total 6.204 square inches

Area of Plane Surfaces of Irregular Outline.—One of the most useful and accurate
methods for determining the approximate area of a plane figure or irregular outline is
known as Simpson's Rule. In applying Simpson's Rule to find an area the work is done in
four steps:

1) Divide the area into an even number, N, of parallel strips of equal width W; for exam-
ple, in the accompanying diagram, the area has been divided into 8 strips of equal width.

2) Label the sides of the strips V,, V;, Vs, etc., up to V.

3) Measure the heights V,, V, V,,..., V,, 0f the sides of the strips.

4) Substitute the heights V;, v, etc., in the following formula to find the area A of the fig-
ure:
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A= %[(Vo*' V) +4(Vy+ Vgt o+ Vy )+ 2(Vy+ Vit 4V )]

Example: The area of the accompanying figure was divided into 8 strips on a full-size
drawing and the following data obtained. Calculate the area using Simpson's Rule.

W=1cm
V,=0 cm
V; =191 cm
V,=3.18 cm
V;=3.81 cm
V,=4.13 cm
Vs=5.27 cm
Vs=6.35 cm
V,=4.45cm
Vg=1.27 cm

Substituting the given data in the Simpson’s formula,

A= %[(0 +1.27)+4(191+3.81+527+4.45)+2(3.18+4.13 +6.35)]

= %[1.27+4(15.44)+2(13.66)] = 3012 cm?

In applying Simpson's Rule, it should be noted that the larger the number of strips into
which the area is divided the more accurate the results obtained.

Areas Enclosed by Cycloidal Curves.— The area between a cycloid and the straight line
upon which the generating circle rolls, equals three times the area of the generating circle
(see diagram, page 73). The areas between epicycloidal and hypocycloidal curves and the
“fixed circle” upon which the generating circle is rolled, may be determined by the follow-
ing formulas, in which a = radius of the fixed circle upon which the generating circle rolls;
b =radius of the generating circle; A = the area for the epicycloidal curve; and A, =the area
for the hypocycloidal curve.

4 = 3.141652(3a + 2b) A = 3.141652(3a - 2b)
- a 17 a

Find the Contents of Cylindrical Tanks at Different Levels.—In conjunction with the
table Segments of Circles for Radius = 1 starting on page 78, the following relations can

give a close approximation of the liquid contents, at any level, in a cylindrical tank.
Measuring stick | L |

MORE THAN HALF-FILLED

N7

LESS THAN MORE THAN
HALF-FILLED HALF-FILLED

A long measuring rule calibrated in length units or simply a plain stick can be used for
measuring contents at a particular level. In turn, the rule or stick can be graduated to serve
asavolume gauge for the tank in question. The only requirements are that the cross-section
of the tank is circular; the tank's dimensions are known; the gauge rod is inserted vertically
through the top center of the tank so that it rests on the exact bottom of the tank; and that
consistent metric or English units are used throughout the calculations.
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K = Cr2L = Tank Constant (remains the same for any given tank) Q
V,=nK, for atank that is completely full (2)
V,=KA (3)
V =V, when tank is less than half full 4)
V=V, -V,=V,— KA, when tank is more than half full (5)

where C =liquid volume conversion factor, the exact value of which depends on the
length and liquid volume units being used during measurement: 0.00433 U.S.
gal/in3; 7.48 U.S. gal/ft3; 0.00360 U.K. gal/in3; 6.23 U.K. gal/ft3; 0.001
liter/cm?3; or 1000 liters/m3
V. =total volume of liquid tank can hold
V, =volume formed by segment of circle having depth = x in given tank (see dia-
gram)
V =volume of liquid at particular level in tank
d =diameter of tank; L = length of tank; r = radius of tank (=% diameter)

A =segment area of a corresponding unit circle taken from the table starting on
page 78

y =actual depth of contents in tank as shown on a gauge rod or stick

x =depth of the segment of a circle to be considered in given tank. As can be seen
in above diagram, x is the actual depth of contents (y) when the tank is less than
half full, and is the depth of the void (d — y) above the contents when the tank is
more than half full. From pages 78 and 81 it can also be seen that 4, the height
of a segment of a corresponding unit circle, is x/r

Example: A tank is 20 feet long and 6 feet in diameter. Convert a long inch-stick into a
gauge that is graduated at 1000 and 3000 U.S. gallons.

L = 20x 12 = 240in. r = %x12 = 36in.
From Formula (1): K = 0.00433(36)%(240) = 1346.80
From Formula (2): V;-= 3.1416 x 1347 = 4231.1 US gal.

The 72-inch mark from the bottom on the inch-stick can be graduated for the rounded full
volume “4230”; and the halfway point 36” for 4230/2 or “2115.” It can be seen that the
1000-gal mark would be below the halfway mark. From Formulas (3) and (4):

1000 = %%% = 0.7424 from the table starting on page 78, & can be interpolated as

0.5724;and x = y = 36 x 0.5724 = 20.61. If the desired level of accuracy permits,
interpolation can be omitted by choosing % directly from the table on page 78 for the value
of A nearest that calculated above.

Therefore, the 1000-gal mark is graduated 20%” from bottom of rod.

It can be seen that the 3000 mark would be above the halfway mark. Therefore, the circu-
lar segment considered is the cross-section of the void space at the top of the tank. From
Formulas (3) and (5):

A _ 4230 —3000
3000 = T 1347

Therefore, the 3000-gal mark is 72.00 — 23.93 = 48.07, or at the 48 %" mark from the
bottom.

= 0.9131; h= 0.6648; x = 36 x 0.6648 = 23.93”
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Areas and Dimensions of Plane Figures

In the following tables are given formulas for the areas of plane figures, together with
other formulas relating to their dimensions and properties; the surfaces of solids; and the
volumes of solids. The notation used in the formulas is, as far as possible, given in the illus-
tration accompanying them; where this has not been possible, it is given at the beginning of
each set of formulas.

Examples are given with each entry, some in English and some in metric units, showing
the use of the preceding formula.

Square:
\ T Area = A = 52 = Y%d2
3 i s = 07071d = JA
L d = 14145 = 1.414./A
O

Example: Assume that the side s of a square is 15 inches. Find the area and the length of the diagonal.
Area = A = s2 = 152 = 225 square inches
Diagonal = d = 1.4145 = 1.414x 15 = 21.21 inches
Example: The area of a square is 625 cm2. Find the length of the side s and the diagonal d.
s = JA = /625 = 25 cm
d = 1414.JA = 1.414x 25 = 3535 cm

Rectangle:
Area = A = ab = and* —a® = byd* - b*
d = Ja?+b?
a = Jd?-b2=A+b
; b ¥ b= Jd?-a? = A+a

Example: The side a of a rectangle is 12 centimeters, and the area 70.5 square centimeters. Find the
length of the side b, and the diagonal d.

b =A+a = 705+12 = 5.875 centimeters
d = Ja2+b? = J122+58752 = /178516 = 13.361 centimeters

Example: The sides of a rectangle are 30.5 and 11 centimeters long. Find the area.
Area = A = axb = 30.5x11 = 3355 square centimeters

Parallelogram:
T Area = A = ab
a a=A+b
l b=A+a
| h—+] Note: The dimension a is measured at right angles to line b.

Example: The base b of a parallelogram is 16 feet. The height a is 5.5 feet. Find the area.
Area = A = axb = 55x16 = 88 square feet

Example: The area of a parallelogram is 12 square inches. The height is 1.5 inches. Find the length of
the base b.

b=A+a=12+15 = 8 inches
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Right-Angled Triangle:

)

/v\ Area = A ?b
I < L‘:m
1 \ a = JEZ_p?
= b - b= Je2—a?

Example: The sides a and b in aright-angled triangle are 6 and 8 inches. Find side ¢ and the area A:

c = NJa2+b% = J62+82 = /36+64 = /100 = 10 inches

N

Example: 1f ¢ =10 and a = 6 had been known, but not b, the latter would have been found as follows:

b= Je?—a? = J102-62 = J100-36 = ./64 = 8 inches

Acute-Angled Triangle:

/M\ Y PR
¢ ; < Area = A > " o a ( b

/ \ IfS = Y%(a+b+c), then

[ b |

A = JS(S-a)(S-b)(S-c¢)

Example: 1fa=10, b =9, and ¢ = 8 centimeters, what is the area of the triangle?

_b z_(mf_@ 2_(%2)2_ _(gz
A‘zJ“ 2b =310 2x9 =45 /100-{7g

= 45,100 -42.25 = 45,/57.75 = 4.5x 7.60 = 34.20 square centimeters

Obtuse-Angled Triangle:

/ Ty P
c ﬂ,: Area = A > "2 a ( b

¢
/ i If S = Y%(a+b+c), then

NS(S—a)(S-b)(S-c)
—— a c

>
1

Example: The side a =5, side b =4, and side ¢ = 8 inches. Find the area.
S=%a+b+c) = %(5+4+8) = %x17 = 85

A= JS(S—a)(S—b)(S—c) = J/85(85-5)(85-4)(85-8)
= /85x35x45x05 = ./66.937 = 8.18 square inches

Trapezoid:

Area = A = (@t D)l
2

Note: In Britain, this figure is called a trapezium and the one
below it is known as a trapezoid, the terms being reversed.

h
L Example: Side a = 23 meters, side b = 32 meters, and height 2 =
o

|<—a~—>

12 meters. Find the area.

b A = latb)h _ (23+32)12 _ 55x12
2 2 2

= 330 square meters
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Trapezium:

Area = A = H+h a;—bh+cH

% A trapezium can also be divided into two triangles as indicated
7 % by the dashed line. The area of each of these triangles is computed,
b a e ] and the results added to find the area of the trapezium.

Example: Leta=10,b=2,¢=3,h=8,and H =12 inches. Find the area.

A = Hthat+bh+cH _ (12+8)10+2x8+3x12
2 2

= 20x10+16 + 36 ; 16+36 _ % =126 square inches

Regular Hexagon:
A =2.59852=2.598R? = 3.464r2
R = s=radius of circumscribed circle = 1.155r
r=radius of inscribed circle = 0.866s = 0.866R
s=R=1.155r
Example: The side s of aregular hexagon is 40 millimeters. Find
the area and the radius r of the inscribed circle.

2.59852 = 2,598 x 402 = 2.598 x 1600 = 4156.8 square millimeters
0.8665 = 0.866 x40 = 34.64 millimeters

Example: What is the length of the side of a hexagon that is drawn around a circle of 50 millimeters
radius? — Here r=50. Hence, s = 1.155r = 1.155x 50 = 57.75 millimeters

B S
1

~
1

Regular Octagon:
A=area=4.828s2=2.828R2=3.314r2

R =radius of circumscribed circle =1.307s = 1.082r
r=radius of inscribed circle = 1.207s = 0.924R
s =0.765R = 0.828r
Example: Find the area and the length of the side of an octagon
that is inscribed in a circle of 12 inches diameter.
Diameter of circumscribed circle = 12 inches; hence, R=6

inches.
A = 2.828R? = 2.828 x 62 = 2.828 x 36 = 101.81 square inches

s = 0.765R = 0.765x 6 = 4.590 inches

n = number of sides

o = 360°+n B =180°-a

Example: Find the area of a polygon having 12 sides, inscribed in a circle of 8 centimeters radius. The
length of the side s is 4.141 centimeters.

) 2 2
A=l /Rz_sZ - 12*;-141 82—4'1;11 = 24.846/59.713

24.846 x 7.727 = 191.98 square centimeters
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Circle:

= /2 = 3.1416,2 = 0.785442
= 2nr = 6.2832r = 3.1416d
= C+6.2832 = JA+3.1416 = 0.564./A
d = C+3.1416 = JA+0.7854 = 1.128./A

Length of arc for center angle of 1° =0.0087274
Length of arc for center angle of n° = 0.008727nd

1
S

Area
Circumference

1l
Q

~

Example: Find the area A and circumference C of a circle with a diameter of 2, inches.
A = 0.785442 = 0.7854 x 2.752 = 0.7854 x 2.75x 2.75 = 5.9396 square inches
C = 3.1416d = 3.1416 x 2.75 = 8.6394 inches
Example: The area of a circle is 16.8 square inches. Find its diameter.
d = 1.128./A = 1.128./16.8 = 1.128 x 4.099 = 4.624 inches

Circular Sector:

] = e s =

Length of arc rxox31416 _ 51745, = 24
.

180
Area = A = Y%rl = 0.0087270.r2
Angle, in degrees = o = 2/:296 1 ;= 2_;4_ - 57.296 [
r o

Example: The radius of a circle is 35 millimeters, and angle o of a sector of the circle is 60 degrees.
Find the area of the sector and the length of arc 1.
0.008727 .2 = 0.008727 x 60 x 352 = 641.41mm?2 = 6.41cm?

A =
[ = 0.01745r00 = 0.01745x 35 x 60 = 36.645 millimeters
Circular Segment:
A = area [ = length of arc o = angle, in degrees
¢ = 2Jh(2r=h) A = %lrl-c(r-h)]
2 2
p= 24k I = 0.01745r0;
8h
h=r-Y%Jar2—c2 = r[1-cos(0/2)] o = 202961

-
See also, Circular Segments starting on page 77.
Example: The radius r is 60 inches and the height 4 is 8 inches. Find the length of the chord c.
¢ = 2Jh(2r—h) = 2./8x(2x60-8) = 2./896 = 2x29.93 = 59.86 inches
Example: If ¢ =16, and h = 6 inches, what is the radius of the circle of which the segment is a part?
_ c2+4h? _ 162+4x62 _ 256 + 144 _ 400 _ 8% inches

8h 8x6 48 48

Cycloid:
A = 3nr? = 9.4248r2 = 2.3562d?
= 3 x area of generating circle
Length of cycloid = [ = 8r = 4d

See also, Areas Enclosed by Cycloidal Curves on page 68.

Example: The diameter of the generating circle of a cycloid is 6 inches. Find the length [ of the cycloi-
dal curve, and the area enclosed between the curve and the base line.
[ = 4d = 4x6 = 24 inches A = 2.3562d% = 2.3562 x 62 = 84.82 square inches

Area
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Circular Ring:

Area = A = w(R%2-r2) = 3.1416(R? - r?)
= 3.1416(R+r)(R-7)
= 0.7854(D2 - d?) = 0.7854(D + d)(D - d)

Example: Letthe outside diameter D = 12 centimeters and the inside diameter d = 8 centimeters. Find
the area of the ring.

A = 0.7854(D? - d?) = 0.7854(122-82) = 0.7854(144 - 64) = 0.7854 x 80
= 62.83 square centimeters
By the alternative formula:
A = 0.7854(D + d)(D—d) = 0.7854(12 + 8)(12-8) = 0.7854 x 20 x 4
= 62.83 square centimeters

Circular Ring Sector:

A = area o = angle, in degrees
= O po_ 2y = 2_,2
A 360(R r?) = 0.008730.(R? - r?)
OoLTT

- 2% 2 _ g2y = 2_ 2
T 355D~ d?) = 0.002180/(D? - d?)

Example: Find the area, if the outside radius R =5 inches, the inside radius r = 2 inches, and o. = 72
degrees.

A = 0.008730(R%-r2) = 0.00873 x 72(52 - 22)
= 0.6286(25-4) = 0.6286 x 21 = 13.2 square inches

Spandrel or Fillet:

T 2
¢ Area = A = rZ—T‘T’ = 0.215/2 = 0.1075¢2

e

Example: Find the area of a spandrel, the radius of which is 0.7 inch.
A = 0.215r2 = 0.215x0.72 = 0.105 square inch
Example: If chord ¢ were given as 2.2 inches, what would be the area?
A = 0.1075¢2 = 0.1075 x 2.22 = 0.520 square inch

Parabola:

Area = A = %xy
(The areais equal to two-thirds of a rectangle which has x for its
base and y for its height.)

Example: Let x inthe illustration be 15 centimeters, and y, 9 cen-
timeters. Find the area of the shaded portion of the parabola.

A = %xxy = %x15x9 = 10x 9 = 90 square centimeters
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Parabola:

I = length of arc = g[mJ, |n(E+M)}

When x is small in proportion to y, the following is a close

—- J/ x—»f approximation: 2 )

N e
Example: If x =2 and y = 24 feet, what is the approximate length / of the parabolic curve?
(30 30T = 21+ 3E) -5

2,1 2 1
T3 124 5%20,736

l

24[1 } = 24 % 1.0046 = 24.11 feet

Segment of Parabola:

Area BFC = A = % area of parallelogram BCDE

If FG is the height of the segment, measured at right angles to
BC, then:

Area of segment BFC = %BC x FG

Example: The length of the chord BC = 19.5 inches. The distance between lines BC and DE, mea-
sured at right angles to BC, is 2.25 inches. This is the height of the segment. Find the area.

Area = A = %BC xFG = %x19.5x2.25 = 29.25 square inches

Hyperbola:

AreaBCD = A = ﬂ_‘i’|n(£+x)
2 2 a b

Example: The half-axes a and b are 3and 2 inches, respectively.
Find the area shown shaded in the illustration for x=8 and y =5.
Inserting the known values in the formula:

8><5_3><2><|n(§+§> = 20-3x In5.167
2 2 3 2

20— 3 x1.6423 = 20 — 4.927 = 15.073 square inches

A =

Area = A = mab = 3.1416ab
An approximate formula for the perimeter is

Perimeter = P = 3.1416/2(a? + b?)

T [ —b)2?
A closer approximationis P = 3.1416 {2(a? + b?) - %L

Example: The larger or major axis is 200 millimeters. The smaller or minor axis is 150 millimeters.
Find the area and the approximate circumference. Here, then, « =100, and b = 75.
A = 3.1416ab = 3.1416 x 100 x 75 = 23,562 square millimeters = 235.62 square centimeters

3.1416./2(a? + b?) = 3.1416./2(1002 + 752) = 3.1416./2 x 15,625
3.1416 /31,250 = 3.1416 x 176.78 = 555.37 millimeters = (55.537 centimeters)

P
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Formulas and Table for Regular Polygons.—The following formulas and table can be
used to calculate the area, length of side, and radii of the inscribed and circumscribed cir-
cles of regular polygons (equal sided).

A = NS2cota+4 = NR2sino.coso. = Nr2tano
Rcoso = (Scoto) +2 = (A x cotar) = N
S+ (2sino) = r+coso. = /A + (Nsino.coso)

2Rsino = 2rtana = 2J/(A x tana)) = N

where N = number of sides; S = length of side; R = radius of circumscribed circle; r =

r

S

radius of inscribed circle; A = area of polygon; awvd, oo = 180° + N = one-half center angle
of one side. See also Regular Polygon on page 72.

Area, Length of Side, and Inscribed and Circumscribed Radii of Regular Polygons

Nla A AR R | S| s | r |
Sides 52 R? r2 S r R r R S

3 0.4330 | 1.2990 | 5.1962 | 0.5774 | 2.0000 | 1.7321 | 3.4641 | 0.5000 | 0.2887
4 1.0000 | 2.0000 | 4.0000 | 0.7071| 1.4142 | 1.4142 | 2.0000 | 0.7071 | 0.5000
5 1.7205 | 2.3776 | 3.6327 | 0.8507 | 1.2361 | 1.1756 | 1.4531 | 0.8090 | 0.6882
6 2.5981 | 2.5981 | 3.4641 | 1.0000 | 1.1547 | 1.0000 | 1.1547 | 0.8660 | 0.8660
7 3.6339 | 2.7364 | 3.3710 | 1.1524| 1.1099 | 0.8678 | 0.9631 | 0.9010 | 1.0383
8 4.8284 | 2.8284 | 3.3137 | 1.3066 | 1.0824 | 0.7654 | 0.8284 | 0.9239 | 1.2071
9 6.1818 | 2.8925 | 3.2757 | 1.4619| 1.0642 | 0.6840 | 0.7279 | 0.9397 | 1.3737
10 7.6942 | 2.9389 | 3.2492 | 1.6180| 1.0515 | 0.6180 | 0.6498 | 0.9511 | 1.5388
12 11.196 3.0000 | 3.2154 | 1.9319| 1.0353 | 0.5176 | 0.5359 | 0.9659 | 1.8660
16 20.109 3.0615 | 3.1826 | 2.5629| 1.0196 | 0.3902 | 0.3978 | 0.9808 | 2.5137
20 31.569 3.0902 | 3.1677 | 3.1962 | 1.0125 | 0.3129 | 0.3168 | 0.9877 | 3.1569
24 45.575 3.1058 | 3.1597 | 3.8306| 1.0086 | 0.2611 | 0.2633 | 0.9914 | 3.7979
32 81.225 3.1214 | 3.1517 | 5.1011| 1.0048 | 0.1960 | 0.1970 | 0.9952 | 5.0766
48 | 183.08 3.1326 | 3.1461 | 7.6449| 1.0021 | 0.1308 | 0.1311 | 0.9979 | 7.6285
64 | 325.69 3.1365 | 3.1441 | 10.190 | 1.0012 | 0.0981 | 0.0983 | 0.9988 | 10.178

Example 1: A regular hexagon is inscribed in a circle of 6 inches diameter. Find the area
and the radius of an inscribed circle. Here R = 3. From the table, area A = 2.5981R? = 2.5981
x 9 = 23.3829 square inches. Radius of inscribed circle, r = 0.866R = 0.866 x 3 = 2.598
inches.

Example 2: An octagon is inscribed in a circle of 100 millimeters diameter. Thus R = 50.
Find the area and radius of an inscribed circle. A = 2.8284R2 = 2.8284 x 2500 = 7071 mm?
=70.7 cm?2. Radius of inscribed circle, = 0.9239R = 09239 x 50 = 46.195 mm.

Example 3: Thirty-two bolts are to be equally spaced on the periphery of a bolt-circle, 16
inches in diameter. Find the chordal distance between the bolts. Chordal distance equals
the side S of a polygon with 32 sides. R = 8. Hence, § =0.196R =0.196 x 8 =1.568 inch.

Example 4: Sixteen bolts are to be equally spaced on the periphery of a bolt-circle, 250
millimeters diameter. Find the chordal distance between the bolts. Chordal distance equals
the side S of a polygon with 16 sides. R = 125. Thus, § =0.3902R =0.3902 x 125 = 48.775
millimeters.
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Circular Segments.—The table that follows gives the principle formulas for dimensions
of circular segments. The dimensions are illustrated in the figures on pages 73 and 78.
When two of the dimensions found together in the first column are known, the other
dimensions are found by using the formulas in the corresponding row. For example, if
radius »and chord c are known, solve for angle a using Equation (13), then use Equations
(14) and (15) to solve for i and [, respectively. In these formulas, the value of o is in
degrees between 0 and 180°.

Formulas for Circular Segments

Given Formulas
= 2rsin% 1) | h = (1—cosg) 2) | 1 =& 3
or | ¢ rsing (1) r > 2 180 (3)
c TCco
r= @) _ C. O [ = —— (6)
o ¢ 2sin% h= —2tan4 ®) 360sin<
2 2
r:—h- @) C:Z_h 8) l:nh—a 9)
o h 1-cos tan 180(1 — cos 9)
2 4 2
180 3607sin% 1801(1 — cos 9‘)
ol | r=—-— (10) _ 2
T o c = —- 1) | h= —m7m 8 ————— 12
104 TOL,
_ 2 [l2_2 T . (c
re | o= acos[l—é) (3) | 4 = r_% 4 | I = gdrasm(z) (15)
rh | o= 2acos(1—@) (16) =2/h2r=h) an | I = lracos(l—}—l) (18)
’ r ¢ = 2Jh(2r=h) @7 90 r
rl | o= 1801 (19) | ¢ = 2rsin@! (20) | K = r(l—cosw) (21)
T r TR Tr
_ 2h _Eran’ __(2+an?  2h
¢, h | oo = 4atan - 22) | r = T 23) | I = n( 360hz)atan? (24)
Given Formula To Find Given Formula To Find
sin= 1-cos=
) 2 h, 1 2
“ Solve Equation (25) for o by iteration?,|| Solve Equation (26) for o, by iterations,
then then
r=Equation (10) r=Equation (10)
h =Equation (5) ¢ =Equation (11)

@Equations (25) and (26) can not be easily solved by ordinary means. To solve these equations, test
various values of o until the left side of the equation equals the right side. For example, if given ¢ =4
and /=5, the left side of Equation (25) equals 143.24, and by testing various values of o it will be found
that the right side equals 143.24 when o = 129.62°.

Angle aisin degrees, 0 < o < 180

Formulas for Circular Segments contributed by Manfred Brueckner
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Segments of Circles for Radius = 1.—Formulas for segments of circles are given on
pages 73 and 777. When the central angle o and radius r are known, the following table can
be used to find the length of arc /, height of segment &, chord length ¢, and segment area A.
Column 4 is the ratio of segment area A to the area of a circle with radius » = 1, in percent.

height & and chord length ¢ are known, ratio //c can be

used to find o, /, and A by linear interpolation. Radius r

is found by the formula on page 73 or 77. The value of /

is then multiplied by the radius r and the area A by 2.
Angle o can be found thus with an accuracy of about e

0.001 degree; arc length I with an error of about 0.02 per

cent; and area A with an error ranging from about 0.02

per cent for the highest entry value of A/c to about 1 per cent for values of A/c of about

0.050. For lower values of i/c, and where greater accuracy is required, area A should be

found by the formula on page 73.

Example: A 3-foot diameter cylindrical tank, mounted horizontally, contains fuel. What
is the fuel depth, in inches, when the tank is 20% full? Locate 20% in table column A/n%.
The depth equals 2 multiplied by the radius: 4 x r=0.50758 x 1.5 x 12 =9.14 inches

Segments of Circles for Radius =1 (English or metric units)

When angle c.and radius rare not known, but segment / 1

a, KA a, KA
Deg. 1 h c AreaA| % hlc Deg. 1 h c AreaA| % hlc

1 0.01745 | 0.00004 | 0.01745 | 0.0000 | 0.0 | 0.00218 || 41 | 0.71558 | 0.06333 | 0.70041 | 0.0298 | 0.9 | 0.09041
2 0.03491 | 0.00015 | 0.03490 | 0.0000 | 0.0 | 0.00436 || 42 | 0.73304 | 0.06642 | 0.71674 | 0.0320 | 1.0 | 0.09267
3 | 0.05236 | 0.00034 | 0.05235 | 0.0000 | 0.0 | 0.00655 || 43 | 0.75049 | 0.06958 | 0.73300 | 0.0342 | 1.1 | 0.09493
4 10.06981 | 0.00061 | 0.06980 | 0.0000 | 0.0 | 0.00873 || 44 | 0.76794 | 0.07282 | 0.74921 | 0.0366 | 1.2 | 0.09719
5 |0.08727 | 0.00095 | 0.08724 | 0.0001 | 0.0 | 0.01091 || 45 | 0.78540 | 0.07612 | 0.76537 | 0.0391 | 1.2 | 0.09946
6 | 0.10472 | 0.00137 | 0.10467 | 0.0001 | 0.0 | 0.01309 || 46 | 0.80285 | 0.07950 | 0.78146 | 0.0418 | 1.3 | 0.10173
7 0.12217 | 0.00187 | 0.12210 | 0.0002 | 0.0 | 0.01528 || 47 | 0.82030 | 0.08294 | 0.79750 | 0.0445 | 1.4 | 0.10400
8 0.13963 | 0.00244 | 0.13951 | 0.0002 | 0.0 | 0.01746 || 48 | 0.83776 | 0.08645 | 0.81347 | 0.0473 | 1.5 | 0.10628

9 | 0.15708 | 0.00308 | 0.15692 | 0.0003 | 0.0 | 0.01965|| 49 | 0.85521 | 0.09004 | 0.82939 | 0.0503 | 1.6 | 0.10856
10 | 0.17453 | 0.00381 | 0.17431 | 0.0004 | 0.0 | 0.02183 | 50 | 0.87266 | 0.09369 | 0.84524 | 0.0533 | 1.7 | 0.11085
11 | 0.19199 | 0.00460 | 0.19169 | 0.0006 | 0.0 | 0.02402 | 51 | 0.89012 | 0.09741 | 0.86102 | 0.0565 | 1.8 | 0.11314
12 | 0.20944 | 0.00548 | 0.20906 | 0.0008 | 0.0 | 0.02620 || 52 | 0.90757 | 0.10121 | 0.87674 | 0.0598 | 1.9 | 0.11543
13 | 0.22689 | 0.00643 | 0.22641 | 0.0010 | 0.0 | 0.02839 || 53 | 0.92502 | 0.10507 | 0.89240 | 0.0632 | 2.0 | 0.11773
14 | 0.24435 | 0.00745 | 0.24374 | 0.0012 | 0.0 | 0.03058 || 54 | 0.94248 | 0.10899 | 0.90798 | 0.0667 | 2.1 | 0.12004
15 | 0.26180 | 0.00856 | 0.26105 | 0.0015 | 0.0 | 0.03277 || 55 | 0.95993 | 0.11299 | 0.92350 | 0.0704 | 2.2 | 0.12235
16 | 0.27925 | 0.00973 | 0.27835 | 0.0018 | 0.1 | 0.03496 || 56 | 0.97738 | 0.11705 | 0.93894 | 0.0742 | 2.4 | 0.12466
17 | 0.29671 | 0.01098 | 0.29562 | 0.0022 | 0.1 | 0.03716 || 57 | 0.99484 | 0.12118 | 0.95432 | 0.0781 | 2.5 | 0.12698
18 | 0.31416 | 0.01231 | 0.31287 | 0.0026 | 0.1 | 0.03935| 58 | 1.01229 | 0.12538 | 0.96962 | 0.0821 | 2.6 | 0.12931
19 | 0.33161 | 0.01371 | 0.33010 | 0.0030 | 0.1 | 0.04155| 59 | 1.02974 | 0.12964 | 0.98485 | 0.0863 | 2.7 | 0.13164
20 | 0.34907 | 0.01519 | 0.34730 | 0.0035 | 0.1 | 0.04374| 60 | 1.04720 | 0.13397 | 1.00000 | 0.0906 | 2.9 | 0.13397
21 | 0.36652 | 0.01675 | 0.36447 | 0.0041 | 0.1 | 0.04594 || 61 | 1.06465 | 0.13837 | 1.01508 | 0.0950 | 3.0 | 0.13632
22 | 0.38397 | 0.01837 | 0.38162 | 0.0047 | 0.1 | 0.04814 | 62 | 1.08210 | 0.14283 | 1.03008 | 0.0996 | 3.2 | 0.13866
23 | 0.40143 | 0.02008 | 0.39874 | 0.0053 | 0.2 | 0.05035| 63 | 1.09956 | 0.14736 | 1.04500 | 0.1043 | 3.3 | 0.14101
24 | 0.41888 | 0.02185 | 0.41582 | 0.0061 | 0.2 | 0.05255| 64 | 1.11701 | 0.15195 | 1.05984 | 0.1091 | 3.5 | 0.14337
25 | 0.43633 | 0.02370 | 0.43288 | 0.0069 | 0.2 | 0.05476 || 65 | 1.13446 | 0.15661 | 1.07460 | 0.1141 | 3.6 | 0.14574
26 | 0.45379 | 0.02563 | 0.44990 | 0.0077 | 0.2 | 0.05697 || 66 | 1.15192 | 0.16133 | 1.08928 | 0.1192 | 3.8 | 0.14811
27 | 0.47124 | 0.02763 | 0.46689 | 0.0086 | 0.3 | 0.05918 || 67 | 1.16937 | 0.16611 | 1.10387 | 0.1244 | 4.0 | 0.15048
28 | 0.48869 | 0.02970 | 0.48384 | 0.0096 | 0.3 | 0.06139 || 68 | 1.18682 | 0.17096 | 1.11839 | 0.1298 | 4.1 | 0.15287
29 | 0.50615 | 0.03185 | 0.50076 | 0.0107 | 0.3 | 0.06361 | 69 | 1.20428 | 0.17587 | 1.13281 | 0.1353 | 4.3 | 0.15525
30 | 0.52360 | 0.03407 | 0.51764 | 0.0118 | 0.4 | 0.06583 | 70 | 1.22173 | 0.18085 | 1.14715 | 0.1410 | 4.5 | 0.15765
31 | 0.54105 | 0.03637 | 0.53448 | 0.0130 | 0.4 | 0.06805| 71 | 1.23918 | 0.18588 | 1.16141 | 0.1468 | 4.7 | 0.16005
32 | 0.55851 | 0.03874 | 0.55127 | 0.0143 | 0.5 | 0.07027 || 72 | 1.25664 | 0.19098 | 1.17557 | 0.1528 | 4.9 | 0.16246
33 | 0.57596 | 0.04118 | 0.56803 | 0.0157 | 0.5 | 0.07250 || 73 | 1.27409 | 0.19614 | 1.18965 | 0.1589 | 5.1 | 0.16488
34 | 0.59341 | 0.04370 | 0.58474 | 0.0171 | 0.5 | 0.07473| 74 | 1.29154 | 0.20136 | 1.20363 | 0.1651 | 5.3 | 0.16730
35 | 0.61087 | 0.04628 | 0.60141 | 0.0186 | 0.6 | 0.07696 || 75 | 1.30900 | 0.20665 | 1.21752 | 0.1715 | 5.5 | 0.16973
36 | 0.62832 | 0.04894 | 0.61803 | 0.0203 | 0.6 | 0.07919 | 76 | 1.32645 | 0.21199 | 1.23132 | 0.1781 | 5.7 | 0.17216
37 | 0.64577 | 0.05168 | 0.63461 | 0.0220 | 0.7 | 0.08143 | 77 | 1.34390 | 0.21739 | 1.24503 | 0.1848 | 5.9 | 0.17461
38 | 0.66323 | 0.05448 | 0.65114 | 0.0238 | 0.8 | 0.08367 || 78 | 1.36136 | 0.22285 | 1.25864 | 0.1916 | 6.1 | 0.17706
39 | 0.68068 | 0.05736 | 0.66761 | 0.0257 | 0.8 | 0.08592 || 79 | 1.37881 | 0.22838 | 1.27216 | 0.1986 | 6.3 | 0.17952
40 | 0.69813 | 0.06031 | 0.68404 | 0.0277 | 0.9 | 0.08816 || 80 | 1.39626 | 0.23396 | 1.28558 | 0.2057 | 6.5 | 0.18199
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Deg.

1

h

c

Area A

/y

fd

%

hlc

o

Deg.

1

h

c

Area A

A/

fd

%

hlc

81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

1.41372
1.43117
1.44862
1.46608
1.48353
1.50098
1.51844
1.53589
1.55334
1.57080
1.58825
1.60570
1.62316
1.64061
1.65806
1.67552
1.69297
1.71042
1.72788
1.74533
1.76278
1.78024
1.79769
1.81514
1.83260
1.85005
1.86750
1.88496
1.90241
1.91986
1.93732
1.95477
1.97222
1.98968
2.00713
2.02458
2.04204
2.05949
2.07694
2.09440
2.11185
2.12930
2.14675
2.16421
2.18166
2.19911
2.21657
2.23402
2.25147
2.26893

0.23959
0.24529
0.25104
0.25686
0.26272
0.26865
0.27463
0.28066
0.28675
0.29289
0.29909
0.30534
0.31165
0.31800
0.32441
0.33087
0.33738
0.34394
0.35055
0.35721
0.36392
0.37068
0.37749
0.38434
0.39124
0.39818
0.40518
0.41221
0.41930
0.42642
0.43359
0.44081
0.44806
0.45536
0.46270
0.47008
0.47750
0.48496
0.49246
0.50000
0.50758
0.51519
0.52284
0.53053
0.53825
0.54601
0.55380
0.56163
0.56949
0.57738

1.29890
1.31212
1.32524
1.33826
1.35118
1.36400
1.37671
1.38932
1.40182
1.41421
1.42650
1.43868
1.45075
1.46271
1.47455
1.48629
1.49791
1.50942
1.52081
1.53209
1.54325
1.55429
1.56522
1.57602
1.58671
1.59727
1.60771
1.61803
1.62823
1.63830
1.64825
1.65808
1.66777
1.67734
1.68678
1.69610
1.70528
1.71433
1.72326
1.73205
1.74071
1.74924
1.75763
1.76590
1.77402
1.78201
1.78987
1.79759
1.80517
1.81262

0.2130
0.2205
0.2280
0.2358
0.2437
0.2517
0.2599
0.2682
0.2767
0.2854
0.2942
0.3032
0.3123
0.3215
0.3309
0.3405
0.3502
0.3601
0.3701
0.3803
0.3906
0.4010
0.4117
0.4224
0.4333
0.4444
0.4556
0.4669
0.4784
0.4901
0.5019
0.5138
0.5259
0.5381
0.5504
0.5629
0.5755
0.5883
0.6012
0.6142
0.6273
0.6406
0.6540
0.6676
0.6813
0.6950
0.7090
0.7230
0.7372
0.7514

6.8
7.0
7.3
75
7.8
8.0
8.3
8.5
8.8
9.1
9.4
9.7
9.9
10.2
10.5
10.8
111
115
11.8
121
124
12.8
131
134
13.8
14.1
145
14.9
15.2
15.6
16.0
16.4
16.7
17.1
175
17.9
18.3
18.7
19.1
19.6
20.0
20.4
20.8
213
217
221
22.6
23.0
235
23.9

0.18446
0.18694
0.18943
0.19193
0.19444
0.19696
0.19948
0.20201
0.20456
0.20711
0.20967
0.21224
0.21482
0.21741
0.22001
0.22261
0.22523
0.22786
0.23050
0.23315
0.23582
0.23849
0.24117
0.24387
0.24657
0.24929
0.25202
0.25476
0.25752
0.26028
0.26306
0.26585
0.26866
0.27148
0.27431
0.27715
0.28001
0.28289
0.28577
0.28868
0.29159
0.29452
0.29747
0.30043
0.30341
0.30640
0.30941
0.31243
0.31548
0.31854

131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180

2.28638
2.30383
2.32129
2.33874
2.35619
2.37365
2.39110
2.40855
2.42601
2.44346
2.46091
2.47837
2.49582
2.51327
2.53073
2.54818
2.56563
2.58309
2.60054
2.61799
2.63545
2.65290
2.67035
2.68781
2.70526
2.72271
2.74017
2.75762
2.77507
2.79253
2.80998
2.82743
2.84489
2.86234
2.87979
2.89725
2.91470
2.93215
2.94961
2.96706
2.98451
3.00197
3.01942
3.03687
3.05433
3.07178
3.08923
3.10669
3.12414
3.14159

0.58531
0.59326
0.60125
0.60927
0.61732
0.62539
0.63350
0.64163
0.64979
0.65798
0.66619
0.67443
0.68270
0.69098
0.69929
0.70763
0.71598
0.72436
0.73276
0.74118
0.74962
0.75808
0.76655
0.77505
0.78356
0.79209
0.80063
0.80919
0.81776
0.82635
0.83495
0.84357
0.85219
0.86083
0.86947
0.87813
0.88680
0.89547
0.90415
0.91284
0.92154
0.93024
0.93895
0.94766
0.95638
0.96510
0.97382
0.98255
0.99127
1.00000

1.81992
1.82709
1.83412
1.84101
1.84776
1.85437
1.86084
1.86716
1.87334
1.87939
1.88528
1.89104
1.89665
1.90211
1.90743
1.91261
1.91764
1.92252
1.92726
1.93185
1.93630
1.94059
1.94474
1.94874
1.95259
1.95630
1.95985
1.96325
1.96651
1.96962
1.97257
1.97538
1.97803
1.98054
1.98289
1.98509
1.98714
1.98904
1.99079
1.99239
1.99383
1.99513
1.99627
1.99726
1.99810
1.99878
1.99931
1.99970
1.99992
2.00000

0.7658
0.7803
0.7950
0.8097
0.8245
0.8395
0.8546
0.8697
0.8850
0.9003
0.9158
0.9314
0.9470
0.9627
0.9786
0.9945
1.0105
1.0266
1.0428
1.0590
1.0753
1.0917
1.1082
1.1247
1.1413
1.1580
1.1747
1.1915
1.2084
1.2253
1.2422
1.2592
1.2763
1.2934
1.3105
1.3277
1.3449
1.3621
1.3794
1.3967
1.4140
1.4314
1.4488
1.4662
1.4836
1.5010
1.5184
1.5359
1.5533
1.5708

244
248
253
25.8
26.2
26.7
27.2
27.7
28.2
28.7
29.2
29.6
30.1
30.6
311
31.7
32.2
32.7
33.2
33.7
34.2
34.7
35.3
35.8
36.3
36.9
37.4
37.9
385
39.0
39.5
40.1
40.6
4.2
417
423
428
434
43.9
445
45.0
456
46.1
46.7
47.2
478
483
48.9
494
50.0

0.32161
0.32470
0.32781
0.33094
0.33409
0.33725
0.34044
0.34364
0.34686
0.35010
0.35337
0.35665
0.35995
0.36327
0.36662
0.36998
0.37337
0.37678
0.38021
0.38366
0.38714
0.39064
0.39417
0.39772
0.40129
0.40489
0.40852
0.41217
0.41585
0.41955
0.42328
0.42704
0.43083
0.43464
0.43849
0.44236
0.44627
0.45020
0.45417
0.45817
0.46220
0.46626
0.47035
0.47448
0.47865
0.48284
0.48708
0.49135
0.49566
0.50000
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Diameters of Circles and Sides of Squares of Equal Area (English or metric units)

\ The table below will be found useful for determining the diameter of a
circle of an area equal to that of a square, the side of which is known, or
for determining the side of a square which has an area equal to that of a
circle, the area or diameter of which is known. For example, if the diam-
eter of a circle is 17% inches, it is found from the table that the side of a
N square of the same area is 15.51 inches.

Dia. of Side of | Areaof Circle Dia. of Side of | Area of Circle Dia. of Side of | Areaof Circle
Circle, D | Square, S or Square Circle, D | Square, S or Square Circle, D | Square, S or Square
% 0.44 0.196 20% 18.17 330.06 40% 35.89 1288.25
1 0.89 0.785 21 18.61 346.36 41 36.34 1320.25
1% 1.33 1.767 21% 19.05 363.05 41% 36.78 1352.65
2 1.77 3.142 22 19.50 380.13 42 37.22 1385.44
2% 2.22 4.909 22% 19.94 397.61 42% 37.66 1418.63
3 2.66 7.069 23 20.38 415.48 43 38.11 1452.20
3% 3.10 9.621 23% 20.83 433.74 43% 38.55 1486.17
4 3.54 12.566 24 21.27 452.39 44 38.99 1520.53
4% 3.99 15.904 24% 21.71 471.44 44%, 39.44 1555.28
5 4.43 19.635 25 22.16 490.87 45 39.88 1590.43
5% 4.87 23.758 25Y% 22.60 510.71 45% 40.32 1625.97
6 5.32 28.274 26 23.04 530.93 46 40.77 1661.90
6% 5.76 33.183 26% 23.49 551.55 46% 41.21 1698.23
7 6.20 38.485 27 23.93 572.56 47 41.65 1734.94
A 6.65 44.179 27% 24.37 593.96 47% 42.10 1772.05
8 7.09 50.265 28 24.81 615.75 48 42.54 1809.56
8% 7.53 56.745 28% 25.26 637.94 48Y% 42.98 1847.45
9 7.98 63.617 29 25.70 660.52 49 43.43 1885.74
9% 8.42 70.882 29% 26.14 683.49 49Y% 43.87 1924.42
10 8.86 78.540 30 26.59 706.86 50 4431 1963.50
10% 9.31 86.590 30% 27.03 730.62 50% 44.75 2002.96
11 9.75 95.033 31 27.47 754.77 51 45.20 2042.82
11% 10.19 103.87 31% 27.92 779.31 51% 45.64 2083.07
12 10.63 113.10 32 28.36 804.25 52 46.08 2123.72
12% 11.08 122.72 32% 28.80 829.58 52% 46.53 2164.75
13 11.52 132.73 33 29.25 855.30 53 46.97 2206.18
13% 11.96 143.14 33% 29.69 881.41 53% 47.41 2248.01
14 1241 153.94 34 30.13 907.92 54 47.86 2290.22
14% 12.85 165.13 34% 30.57 934.82 54% 48.30 2332.83
15 13.29 176.71 35 31.02 962.11 55 48.74 2375.83
15% 13.74 188.69 35% 31.46 989.80 55% 49.19 2419.22
16 14.18 201.06 36 31.90 1017.88 56 49.63 2463.01
16% 14.62 213.82 36% 32.35 1046.35 56% 50.07 2507.19
17 15.07 226.98 37 32.79 1075.21 57 50.51 2551.76
17% 15.51 240.53 37% 33.23 1104.47 57% 50.96 2596.72
18 15.95 254.47 38 33.68 1134.11 58 51.40 2642.08
18% 16.40 268.80 38% 34.12 1164.16 58% 51.84 2687.83
19 16.84 283.53 39 34.56 1194.59 59 52.29 2733.97
19% 17.28 298.65 39% 35.01 1225.42 59% 52.73 2780.51
20 17.72 314.16 40 35.45 1256.64 60 53.17 2827.43
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Distance Across Corners of Squares and Hexagons.— The table below gives values of
dimensions D and E described in the figures and equations that follow.

</D I

E

4

D = %d = 1.154701d

3
E = dJ2 = 14142144

A desired value not given directly in the table can be obtained directly from the equations
above, or by the simple addition of two or more values taken directly from the table. Fur-

ther values can be obtained by shifting the decimal point.

Example 1: Find D when d = 2 % inches. From the table, for d = 2, D = 2.3094, and for d
=% D =0.3608. Therefore, D =2.3094 + 0.3608 = 2.6702 inches.

Example 2: Find E when d = 20.25 millimeters. From the table, for d = 20, E = 28.2843;
ford=0.2, E=0.2828; and d =0.05, E=0.0707 (obtained by shifting the decimal point one
place to the leftat d = 0.5). Thus, E =28.2843 + 0.2828 + 0.0707 = 28.6378 millimeters.

Distance Across Corners of Squares and Hexagons (English or metric units)

d D E d D E d D E d D E
Y%, | 00361 | 0.0442 || 09 1.0392 1.2728 32 | 36.9504 | 452548 || 67 | 77.3650 | 94.7523
Y | 0.0722 | 0.0884 | 2 1.0464 1.2816 || 33 | 38.1051 | 46.6691 || 68 | 785197 | 96.1666
% | 01083 | 0.1326 || 1.0825 1.3258 || 34 | 39.2598 | 48.0833 || 69 | 79.6744 | 97.5808
01 | 01155 | 0.1414 || 3 1.1186 1.3700 || 35 | 40.4145 | 49.4975 || 70 | 80.8291 | 98.9950
% | 01443 | 01768 || 1.0 1.1547 1.4142 36 | 415692 | 50.9117 || 71 | 81.9838 | 100.409
% | 01804 | 0.2210 || 2.0 2.3094 2.8284 || 37 | 427239 | 52.3259 || 72 | 83.1385 | 101.823
% | 0.2165 | 0.2652 || 3.0 3.4641 42426 || 38 | 438786 | 53.7401 || 73 | 84.2932 | 103.238
0.2 | 02309 | 0.2828 || 4.0 46188 5.6569 || 39 | 45.0333 | 55.1543 || 74 | 85.4479 | 104.652
% | 02526 | 03094 || 5.0 5.7735 7.0711 || 40 | 46.1880 | 56.5686 || 75 | 86.6026 | 106.066
% | 0.2887 | 0.3536 || 6.0 6.9282 8.4853 || 41 | 47.3427 | 57.9828 || 76 | 87.7573 | 107.480
% | 03248 | 03977 || 7.0 8.0829 9.8995 || 42 | 484974 | 59.3970 || 77 | 88.9120 | 108.894
0.3 | 03464 | 0.4243 || 8.0 9.2376 11.3137 || 43 | 49.6521 | 60.8112 || 78 | 90.0667 | 110.309
5%, | 0.3608 | 0.4419 || 9.0 | 10.3923 | 127279 || 44 | 50.8068 | 62.2254 | 79 | 912214 | 111.723
4., | 03969 | 04861 || 10 | 11.5470 | 14.1421 || 45 | 51.9615 | 63.6396 | 80 | 923761 | 113.137
% | 04330 | 05303 || 11 | 127017 | 155564 || 46 | 53.1162 | 65.0538 || 81 | 93.5308 | 114.551
0.4 | 04619 | 05657 || 12 | 13.8564 | 16.9706 | 47 | 54.2709 | 66.4681 || 82 | 94.6855 | 115.966
B, | 04691 | 05745 || 13 | 150111 | 18.3848 | 48 | 554256 | 67.8823 || 83 | 95.8402 | 117.380
%s | 05052 | 0.6187 || 14 | 16.1658 | 19.7990 || 49 | 56.5803 | 69.2965 | 84 | 96.9949 | 118.794
B, | 05413 | 0.6629 || 15 | 17.3205 | 21.2132 || 50 | 57.7351 | 70.7107 || 85 | 98.1496 | 120.208
05 | 05774 | 07071 || 16 | 184752 | 22.6274 || 51 | 58.8898 | 72.1249 || 86 | 99.3043 | 121.622
7, | 06134 | 07513 || 17 | 19.6299 | 24.0416 || 52 | 60.0445 | 735391 || 87 | 100459 | 123.037
% | 06495 | 07955 || 18 | 20.7846 | 254559 || 53 | 61.1992 | 74.9533 | 88 | 101.614 | 124.451
B, | 06856 | 0.8397 | 19 | 21.9393 | 26.8701 | 54 | 62.3539 | 76.3676 || 89 | 102.768 | 125.865
0.6 | 06928 | 0.8485 || 20 | 23.0940 | 28.2843 || 55 | 63.5086 | 77.7818 || 90 | 103.923 | 127.279
% | 07217 | 0.8839 || 21 | 24.2487 | 29.6985 || 56 | 64.6633 | 79.1960 || 91 | 105.078 | 128.693
24, | 07578 | 0.9281 || 22 | 25.4034 | 31.1127 | 57 | 65.8180 | 80.6102 || 92 | 106.232 | 130.108
ue | 07939 | 09723 || 23 | 265581 | 325269 || 58 | 66.9727 | 820244 || 93 | 107.387 | 131.522
0.7 | 0.8083 | 0.9899 || 24 | 27.7128 | 339411 | 59 | 68.1274 | 83.4386 || 94 | 108.542 | 132.936
%, | 0.8299 | 1.0165 || 25 | 28.8675 | 353554 || 60 | 69.2821 | 84.8528 | 95 | 109.697 | 134.350
% | 08660 | 1.0607 || 26 | 30.0222 | 36.7696 || 61 | 70.4368 | 86.2671 || 96 | 110.851 | 135.765
%, | 0.9021 | 11049 || 27 | 311769 | 381838 || 62 | 715915 | 87.6813 | 97 | 112.006 | 137.179
0.8 | 09238 | 1.1314 || 28 | 323316 | 39.5980 || 63 | 72.7462 | 89.0955 || 98 | 113.161 | 138.593
| 09382 | 11490 || 29 | 334863 | 41.0122 || 64 | 73.9009 | 90.5097 | 99 | 114.315 | 140.007
2y, | 09743 | 11932 || 30 | 34.6410 | 42.4264 || 65 | 75.0556 | 91.9239 | 100 | 115470 | 141.421
% 1.0104 | 1.2374 || 31 | 357957 | 43.8406 || 66 | 76.2103 | 93.3381
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Volumes of Solids

Cube:

d=sﬁ

2
D= %’—’- = 5.3 = 1.7325

Diagonal of cube face

Diagonal of cube

Volume = V = 3
s =3y

Example: The side of a cube equals 9.5 centimeters. Find its volume.
Volume = V = s3 = 953 = 95x9.5x9.5 = 857.375 cubic centimeters
Example: The volume of a cube is 231 cubic centimeters. What is the length of the side?

s = 3/v = 3/231 = 6.136 centimeters

Square Prism:
¥ Volume = V = abc
b _v _v _v
¥ a=— = — c=—
o bc ac ab

fe———— (§ ———

Example: Inasquare prism, a =6, b =5, ¢ = 4. Find the volume.
V=axbxc = 6x5x4 = 120 cubic inches

Example: How high should a box be made to contain 25 cubic feet, if it is 4 feet long and 2% feet wide?
Here,a=4,c=2.5,and V=25. Then,

b-depth——-m-E—ZSfeet
Prism:
V =volume
A =area of end surface
V=hxA
The area A of the end surface is found by the formulas for areas
- of plane figures on the preceding pages. Height 2 must be mea-

sured perpendicular to the end surface.
Example: A prism, having for its base a regular hexagon with a side s of 7.5 centimeters, is 25 centi-
meters high. Find the volume.

Area of hexagon = A = 259852 = 2.598 x 56.25 = 146.14 square centimeters
Volume of prism = hx A = 25x146.14 = 3653.5 cubic centimeters

Pyramid:

Volume = V = %h x area of base

If the base is a regular polygon with n sides, and s = length of
side, r=radius of inscribed circle, and R = radius of circumscribed
circle, then:

V= nsrh _ nsh /RZ_S_Z
BASE AREA 6 6 4

Example: A pyramid, having a height of 9 feet, has a base formed by a rectangle, the sides of which
are 2 and 3 feet, respectively. Find the volume.

Area of base = 2x 3 = 6 square feet; h = 9 feet
Volume = V = %h xareaof base = %x9x6 = 18 cubic feet
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Frustum of Pyramid:

AREA OF TOP, 4 |

f_

_y_h
Volume = V = §(A1+A2+ JA; X Ay)
AREA OF BASE, 4,

Example: The pyramid in the previous example is cut off 4% feet from the base, the upper part being
removed. The sides of the rectangle forming the top surface of the frustum are, then, 1 and 1% feet long,
respectively. Find the volume of the frustum.

Areaoftop = A; = 1x1% = 1% sq. ft. Areaofbase = A, = 2x3 = 6sq. ft.

V= 4?5(1.5 +6+./T5x6) = 1.5(7.5+./8) = 1.5x10.5 = 15.75 cubic feet

Volume = V = M
6

Example: Leta =4 inches, b =3 inches, and ¢ =5 inches. The
height 42 = 4.5 inches. Find the volume.

V= (2a+c)bh _ (2x4+5)x3x45 _ (8+5)x135

6 6 6
= %3 = 29.25 cubic inches
Cylinder:
Volume = V = 3.141672h = 0.7854d%h
Area of cylindrical surface = § = 6.2832rh = 3.1416dh
Total area A of cylindrical surface and end surfaces:
3 d A = 6.2832r(r+h) = 3.1416d(¥%d + h)

Example: The diameter of a cylinder is 2.5 inches. The length or height is 20 inches. Find the volume
and the area of the cylindrical surface S.

V = 0.7854d%h = 0.7854 x 2.52x 20 = 0.7854 x 6.25 x 20 = 98.17 cubic inches
S = 3.1416dh = 3.1416 x 2.5x 20 = 157.08 square inches

Portion of Cylinder:
hy— Volume = V = 1.5708r2(h, + h,)
= 0.3927d2(hy + hy)
Cylindrical surface area = § = 3.1416r(hy + hy)
hy> d = 1.5708d(h, + h,)

Example: A cylinder 125 millimeters in diameter is cut off at an angle, as shown in the illustration.
Dimension h, = 150, and i, = 100 mm. Find the volume and the area S of the cylindrical surface.

V = 0.3927d2(hy + h,) = 0.3927 x 1252 x (150 + 100)
= 0.3927 x 15,625 x 250 = 1,533,984 cubic millimeters = 1534 cm3
§ = 1.5708d(hy + h,) = 1.5708 x 125 x 250

49,087.5 square millimeters = 490.9 square centimeters
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Portion of Cylinder:

h
= = 34 —_—
Volume = V = (%a+b x area ABC)rib

Cylindrical surface area = S = (ad +b x length of arc ABC)%

Use + when base area is larger, and —when base area is less than
one-half the base circle.

Example: Find the volume of a cylinder so cut off that line AC passes through the center of the base
circle—that s, the base area is a half-circle. The diameter of the cylinder =5 inches, and the height 4 =
2inches.

Inthis case,a=2.5;b=0; areaABC =0.5x0.7854 x52=9.82; r=2.5.

_(2 3 2 _2 _ .
V= (3 x 25340 x 9_82) 55+0 " 3 %x 15.625 x 0.8 = 8.33 cubic inches
Hollow Cylinder:
Volume = V = 3.1416h(R%2-r?) = 0.7854h(D? - d?)

d = 3.1416h1(2R - 1) = 3.1416ht(D — 1)

—————————— ”b = 3.1416h1(2r + 1) = 3.1416ht(d + 1)

_________ @ = 3.1416ht(R + r) = 1.5708ht(D + d)
Example: A cylindrical shell, 28 centimeters high, is 36 centi-

h D meters in outside diameter, and 4 centimeters thick. Find its vol-
ume.

V = 3.1416ht(D—1) = 3.1416 X 28 X 4(36 —4) = 3.1416 x 28 x 4 x 32
= 11,259.5 cubic centimeters

Cone:

_ 3.1416/2h

Volume = V 3 = 1.0472r2h = 0.2618d%h
s
Conical surface area = A = 3.1416r/r2 + h2 = 3.1416rs
= 1.5708ds
h d s = ,)r2+h2: {L%2+h2

Example: Find the volume and area of the conical surface of a cone, the base of which is a circle of 6
inches diameter, and the height of which is 4 inches.

V = 0.2618d%2h = 0.2618 x 62x 4 = 0.2618 x 36 x4 = 37.7 cubic inches
A = 3141672+ h? = 3.1416 x 3 x /32 + 42 = 0.4248 x ./25

47.124 square inches

Frustum of Cone:

V = volume A = area of conical surface
V = 1.0472h(R2 + Rr+r2) = 0.2618/h(D?2 + Dd + d?)
3.1416s(R + r) = 1.5708s(D + d)

q‘ a=R-r s=A/az+hZ=A/(R—r)2+h2

v Example: Find the volume of a frustum of a cone of the follow-
ing dimensions: D = 8 centimeters; d = 4 centimeters; 2 =5 centi-
meters.

V = 0.2618 x5(82+8 x4 +42) = 0.2618 x 5(64 + 32 + 16)
= 0.2618 x 5x 112 = 146.61 cubic centimeters
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Sphere:
Volume = V = 4%’3 = 7%3 = 4.1888r3 = 0.52364°
Surface area = A = 4nr? = nd? = 12.5664r2 = 3.14164?
= 32V = 0.62043/V
4n

Example: Find the volume and the surface of a sphere 6.5 centimeters diameter.
V = 0.523643% = 0.5236 x 6.53 = 0.5236 x 6.5 x 6.5x 6.5 = 143,79 cm3
A = 3.1416d% = 3.1416 x6.52 = 3.1416 X 6.5x 6.5 = 132.73 cm?
Example: The volume of a sphere is 64 cubic centimeters. Find its radius.

r = 0.62043/64 = 0.6204 x 4 = 2.4816 centimeters

Spherical Sector:
2
v = 28R = 50044,21 = Volume
/ \ 3
{ r— A = 3.14167(2h + Y%c)
\ // = total area of conical and spherical surface
\
~__." ¢ = 2Jn(2r— 1)

Example: Find the volume of a sector of a sphere 6 inches in diameter, the height 72 of the sector being
1.5inch. Also find the length of chord c. Here r=3and 2= 1.5.

V = 2.0944r2h = 2.0944x 32x 15 = 2.0944 x 9x 1.5 = 28.27 cubic inches
¢ = 2Jh(2r—h) = 2J15(2x3-15) = 2./6.75 = 2x 2598 = 5.196 inches

Spherical Segment:

V = volume A = area of spherical surface

/ h N\ of _h) = c? h_z)
V = 3.1416h (r 3) = 3.1416h(8 + 6

/‘4————-(‘—»{\
2
\ ) A = 2nrh = 6.2832rh = 3.1416(C_ +h2)
\ / :
R
- 2 2
h "’ c=2.Jh(2r=hy; R k]

8h

Example: A segment of a sphere has the following dimensions: # = 50 millimeters; ¢ = 125 millime-
ters. Find the volume V and the radius of the sphere of which the segment is a part.

2
V = 3.1416 X 50 x (%5- + 52-2) = 157.08 X(g_a_gs__@ + ?-%’9) = 372,247 mm? = 372 cmd

. = 125244 x502 _ 15,625 +10,000 _ 25,625
850 400 400

= 64 millimeters

Ellipsoid:

Volume = V = %"abc = 4.1888abc

In an ellipsoid of revolution, or spheroid, where ¢ = b:
V = 4.1888ah?

Example: Find the volume of a spheroid in which a =5, and
b=c=15inches.
V = 4.1888 x 5 x 1.52 = 47.124 cubic inches
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Spherical Zone:

301 302
0. 5236h(_ 425
72

—
T~ Volume = V
[ N\ in

A

[F—erey

~ 2 c2_c2_4ap22
_ Jc_u(z__cl___)
\ L, 4 8h

+ h2)

2nrh = 6.2832rh = area of spherical surface

—
~
~

|

Example: Inaspherical zone, let ¢; =3; ¢, =4; and & = 1.5 inch. Find the volume.

2
v = 05236 x 15 x (3284 3X8 1 52) = 05236 x 15 (g +48.4225) = 16493 in
4 4 4
Spherical Wedge:
V = volume A = area of spherical surface
/ AN o = center angle in degrees
I/ r/\j v = 24 011600
T30 3 "
\ /
\\__// A= %XMU = 0.03490.r

Example: Find the area of the spherical surface and the volume of a wedge of a sphere. The diameter
of the sphere is 100 millimeters, and the center angle o is 45 degrees.
V = 0.0116 x 45 x 503 = 0.0116 x 45 x 125,000 = 65,250 mm3 = 65.25 cm3

A = 0.0349 x 45 x 502 = 3926.25 square millimeters = 39.26 cm?2

Hollow Sphere:

V = volume of material used
to make a hollow sphere

d D V= 4—3n(R3—r3) = 4.1888(R3 - 13)

= g(m —d3) = 0.5236(D3 - d3)

Example: Find the volume of a hollow sphere, 8 inches in outside diameter, with a thickness of mate-
rial of 1.5 inch.
HereR=4;r=4-15=25.
V = 4.1888(43-253) = 4.1888(64 — 15.625) = 4.1888 x 48.375 = 202.63 cubic inches

Paraboloid:

Volume = V = %nrzh = 0.3927d2h
r
j_ Area = A = 2“[ ( p) pﬂ

d 3p
. . d2
nwhichp = =
l in which p o

Example: Find the volume of a paraboloid in which 4 =300 millimeters and d = 125 millimeters.
V = 0.3927d%h = 0.3927 x 1252 x 300 = 1,840,781 mm3 = 1,840.8 cm3
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Paraboloidal Segment:

Volume = V = gh(R2+r2) = 1.5708h(R2 + r2)

= gh(DZ +d?) = 0.3927h(D2? + d?)

Example: Find the volume of a segment of a paraboloid in which
D =5inches, d =3 inches, and = 6 inches.

V = 0.3927h(D? + d2) = 0.3927 x 6 x (52 + 32)
= 0.3927 x 6 x 34 = 80.11 cubic inches

2m2Rr2 = 19.739Rr?

1
<
1l

Volume
2
= IDd2 = 2.4674Dd?

A = 4n2Rr = 39.478Rr
= n2Dd = 9.8696Dd

Area of surface

Example: Find the volume and area of surface of a torus in whichd = 1.5 and D = 5 inches.
V = 24674 x5x 152 = 24674 x5x2.25 = 27.76 cubic inches
A = 9.8696 x5 x 1.5 = 74.022 square inches

Barrel:

V = approximate volume.
If the sides are bent to the arc of a circle:

- T
D d
—-L If the sides are bent to the arc of a parabola:
V = 0.2094(2D? + Dd + %d?)

V= 1—121th(2D2+d2) = 0.262h(2D2 + d?)

Example: Find the approximate contents of a barrel, the inside dimensions of which are D = 60 centi-
meters, d = 50 centimeters; 2 = 120 centimeters.

V = 0.262h(2D? + d?) = 0.262 x 120 x (2 x 602 + 502)
0.262 x 120 x (7200 + 2500) = 0.262 x 120 x 9700
304,968 cubic centimeters = 0.305 cubic meter

Ratio of Volumes:

i If d = base diameter and height of a cone, a paraboloid and a cyl-
d inder, and the diameter of a sphere, then the volumes of these bod-
ies are to each other as follows:

Cone:paraboloid:sphere:cylinder = %:%:%:1

DU —

Example: Assume, as an example, that the diameter of the base of a cone, paraboloid, and cylinder is
2 inches, that the height is 2 inches, and that the diameter of a sphere is 2 inches. Then the volumes,
written in formula form, are as follows:

Cone Paraboloid Sphere Cylinder

3.1416 x 22 x 2 3.1416 X (2p)2 x 2.3.1416 x 2% 3.1416 X 22 x 2 _
12 ' 8 : 6 | 4 -

Y%l




88 CIRCLES IN A CIRCLE
Packing Circles in Circles and Rectangles

Diameter of Circle Enclosing a Given Number of Smaller Circles.—Four of many
possible compact arrangements of circles withinacircle are shownat A, B, C,and D inFig.
1. To determine the diameter of the smallest enclosing circle for a particular number of
enclosed circles all of the same size, three factors that influence the size of the enclosing
circle should be considered. These are discussed in the paragraphs that follow, which are
based on the article “How Many Wires Can Be Packed into a Circular Conduit,” by
Jacques Dutka, Machinery, October 1956.

1) Arrangement of Center or Core Circles: The four most common arrangements of cen-
ter or core circles are shown cross-sectioned in Fig. 1. It may seem, offhand, that the “A”
pattern would require the smallest enclosing circle for a given number of enclosed circles
but this is not always the case since the most compact arrangement will, in part, depend on
the number of circles to be enclosed.

Fig. 1. Arrangements of Circles within a Circle

2) Diameter of Enclosing Circle When Outer Layer of Circles Is Complete: SUCCESSiVe,
complete “layers” of circles may be placed around each of the central cores, Fig. 1, 0f 1, 2,
3, or 4 circles as the case may be. The number of circles contained in arrangements of com-
plete “layers” around a central core of circles, as well as the diameter of the enclosing cir-
cle, may be obtained using the data in Table 1. Thus, for example, the “A” pattern in Fig. 1
shows, by actual count, a total of 19 circles arranged in two complete “layers” around a
central core consisting of one circle; this agrees with the data shown in the left half of Table
1 forn=2.

To determine the diameter of the enclosing circle, the data in the right half of Table 1 is
used. Thus, for n = 2 and an “A” pattern, the diameter D is 5 times the diameter d of the
enclosed circles.

3) Diameter of Enclosing Circle When Outer Layer of Circles Is Not Complete: In most
cases, it is possible to reduce the size of the enclosing circle from that required if the outer
layer were complete. Thus, for example, the “B” pattern in Fig. 1 shows that the central
core consisting of 2 circles is surrounded by 1 complete layer of 8 circles and 1 partial,
outer layer of 4 circles, so that the total number of circles enclosed is 14. If the outer layer
were complete, then (from Table 1) the total number of enclosed circles would be 24 and
the diameter of the enclosing circle would be 6d; however, since the outer layer is com-
posed of only 4 circles out of a possible 14 for a complete second layer, a smaller diameter
of enclosing circle may be used. Table 2 shows that for a total of 14 enclosed circles
arranged in a “B” pattern with the outer layer of circles incomplete, the diameter for the
enclosing circle is 4.606d.

Table 2 can be used to determine the smallest enclosing circle for a given number of cir-
cles to be enclosed by direct comparison of the “A,” “B,” and “C” columns. For data out-
side the range of Table 2, use the formulas in Dr. Dutka's article.
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Table 1. Number of Circles Contained in Complete Layers of Circles
and Diameter of Enclosing Circle (English or metric units)

Number of Circles in Center Pattern

1 [ 2 | 3 | a4 ] 1 | 2 3 | 4
Arrangement of Circles in Center Pattern (see Fig. 1)

No. Com- = P P — T - P —
plete Layers A | B ‘ c ‘ D A | B c | D
Over Core, n Number of Circles, N, Enclosed Diameter, D, of Enclosing Circle?

0 1 2 3 4 d 2d 2.155d 2.414d
1 7 10 12 14 3d 4d 4.055d 4.386d
2 19 24 27 30 5d 6d 6.033d 6.379d
3 37 44 48 52 7d 8d 8.024d 8.375d
4 61 70 75 80 9d 10d 10.0184 10.373d
5 91 102 108 114 11d 124 12.0154 12.372d
n b b b b b b b b

aDiameter D is given in terms of d, the diameter of the enclosed circles.
bFor n complete layers over core, the number of enclosed circles N for the “A” center pattern is 3n2
+3n+1;for“B,” 3n?2+5n+2; for“C,” 3n2+6n+ 3; for “D,” 3n2+ 7n+4.The diameter D of the

enclosing circle for “A” center pattern is (2n + 1)d; for “B,” (2n + 2)d; for “C,” (1 +2.4/n2+n+%)d

and for “D,” (1 + J4n2 +5.644n +2)d .

Table 2. Factors for Determining Diameter, D, of Smallest Enclosing
Circle for Various Numbers, N, of Enclosed Circles (English or metric units)

Center Circle Pattern Center Circle Pattern Center Circle Pattern

O 0 9 O -
N Diameter Factor K N Diameter Factor K N Diameter Factor K

2 3 2 34 7.001 7.083 7.111 66 9.718 9.545 9.327
3 3 2.733 2.155 || 35 7.001 7.245 7.111 67 9.718 9.545 9.327
4 3 2.733 3.310 || 36 7.001 7.245 7.111 68 9.718 9.545 9.327
5 3 3.646 3.310 || 37 7.001 7.245 7.430 69 9.718 9.661 9.327
6 3 3.646 3.310 || 38 7.929 7.245 7.430 70 9.718 9.661 10.019
7 3 3.646 4.056 || 39 7.929 7.558 7.430 71 9.718 9.889 10.019
8 4.465 3.646 4.056 || 40 7.929 7.558 7.430 72 9.718 9.889 10.019
9 4.465 4 4,056 || 41 7.929 7.558 7.430 73 9.718 9.889 10.019
10 4.465 4 4,056 || 42 7.929 7.558 7.430 74 | 10.166 9.889 10.019
11 4.465 4.606 4.056 || 43 7.929 8.001 8.024 75 | 10.166 10 10.019
12 4.465 4.606 4.056 || 44 8.212 8.001 8.024 76 | 10.166 10 10.238
13 4.465 4.606 5.164 || 45 8.212 8.001 8.024 77 | 10.166 10.540 | 10.238
14 5 4.606 5.164 || 46 8.212 8.001 8.024 78 | 10.166 10.540 | 10.238
15 5 5.359 5.164 || 47 8.212 8.001 8.024 79 | 10.166 10.540 | 10.452
16 5 5.359 5.164 || 48 8.212 8.001 8.024 80 | 10.166 10.540 | 10.452
17 5 5.359 5.164 || 49 8.212 8.550 8.572 81 | 10.166 10.540 | 10.452
18 5 5.359 5.164 || 50 8.212 8.550 8.572 82 | 10.166 10.540 | 10.452
19 5 5.583 5.619 || 51 8.212 8.550 8.572 83 | 10.166 10.540 | 10.452
20 6.292 5.583 5.619 || 52 8.212 8.550 8.572 84 | 10.166 10.540 | 10.452
21 6.292 5.583 5.619 || 53 8.212 8.811 8.572 85 | 10.166 10.644 | 10.866
22 6.292 5.583 6.034 || 54 8.212 8.811 8.572 86 | 11 10.644 | 10.866
23 6.292 6.001 6.034 || 55 8.212 8.811 9.083 87 | 11 10.644 | 10.866
24 6.292 6.001 6.034 || 56 9.001 8.811 9.083 88 | 11 10.644 | 10.866
25 6.292 6.197 6.034 || 57 9.001 8.938 9.083 89 | 11 10.849 10.866
26 6.292 6.197 6.034 || 58 9.001 8.938 9.083 9 | 11 10.849 10.866
27 6.292 6.568 6.034 || 59 9.001 8.938 9.083 91 | 11 10.849 11.067
28 6.292 6.568 6.774 || 60 9.001 8.938 9.083 92 | 11.393 10.849 11.067
29 6.292 6.568 6.774 || 61 9.001 9.186 9.083 93 | 11.393 11.149 11.067
30 6.292 6.568 6.774 || 62 9.718 9.186 9.083 94 | 11.393 11.149 11.067
31 6.292 7.083 7.111 || 63 9.718 9.186 9.083 95 | 11.393 11.149 11.067
32 7.001 7.083 7.111 || 64 9.718 9.186 9.327 96 | 11.393 11.149 11.067
33 7.001 7.083 7.111 || 65 9.718 9.545 9.327 97 | 11.393 11.441 11.264
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Table 2. (Continued) Factors for Determining Diameter, D, of Smallest Enclosing
Circle for Various Numbers, N, of Enclosed Circles (English or metric units)

Center Circle Pattern Center Circle Pattern Center Circle Pattern
e S S S
N Diameter Factor K N Diameter Factor K N Diameter Factor K
98 | 11.584 | 11.441 | 11.264 || 153 | 14.115 14 14.013 || 208 | 16.100 16 16.144
99 | 11.584 | 11.441 11.264 | 154 | 14.115 14 14.013 || 209 | 16.100 16.133 | 16.144

100 | 11.584 | 11.441 | 11.264 || 155 | 14.115 | 14.077 | 14.013 |[ 210 | 16.100 | 16.133 | 16.144
101 | 11.584 | 11.536 | 11.264 || 156 | 14.115 | 14.077 | 14.013 | 211 | 16.100 | 16.133 | 16.144
102 | 11.584 | 11536 | 11.264 || 157 | 14.115 | 14.077 | 14317 || 212 | 16.621 | 16.133 | 16.144
103 | 11.584 | 11536 | 12.016 || 158 | 14.115 | 14.077 | 14317 || 213 | 16.621 | 16.395 | 16.144
104 | 11.584 | 11536 | 12.016 || 159 | 14.115 | 14.229 | 14.317 |/ 214 | 16.621 | 16.395 | 16.276
105 | 11.584 | 11.817 | 12.016 || 160 | 14.115 | 14.229 | 14317 |/ 215| 16.621 | 16.395 | 16.276
106 | 11.584 | 11.817 | 12.016 || 161 | 14115 | 14.229 | 14317 |/ 216 | 16.621 | 16.395 | 16.276
107 | 11.584 | 11.817 | 12.016 || 162 | 14.115 | 14.229 | 14317 |/ 217 | 16.621 | 16.525 | 16.276
108 | 11.584 | 11.817 | 12.016 || 163 | 14.115 | 14.454 | 14317 |/ 218 | 16.621 | 16.525 | 16.276
109 | 11.584 | 12 12.016 || 164 | 14.857 | 14.454 | 14317 || 219 | 16.621 | 16.525 | 16.276
110 | 12.136 | 12 12.016 || 165 | 14.857 | 14.454 | 14.317 || 220 | 16.621 | 16.525 | 16.535
111 | 12136 | 12.270 | 12.016 || 166 | 14.857 | 14.454 | 14.317 |/ 221 | 16.621 | 16.589 | 16.535
112 | 12136 | 12.270 | 12.016 || 167 | 14.857 | 14.528 | 14.317 |/ 222 | 16.621 | 16.589 | 16.535
113 | 12136 | 12.270 | 12.016 || 168 | 14.857 | 14.528 | 14.317 |/ 223 | 16.621 | 16.716 | 16.535
114 | 12136 | 12.270 | 12.016 || 169 | 14.857 | 14.528 | 14.614 | 224 | 16.875 | 16.716 | 16.535

115 | 12.136 | 12.358 | 12.373 || 170 | 15 14528 | 14.614 || 225 16.875 | 16.716 | 16.535
116 | 12.136 | 12.358 | 12373 || 171 | 15 14.748 | 14.614 || 226 | 16.875 | 16.716 | 17.042
117 | 12136 | 12.358 | 12.373 || 172 | 15 14.748 | 14.614 || 227 | 16.875 | 16.716 | 17.042
118 | 12.136 | 12.358 | 12.373 ||173 | 15 14748 | 14.614 || 228 | 16.875 | 16.716 | 17.042
119 | 12.136 | 12533 | 12.373 ||174 | 15 14748 | 14.614 || 229 | 16.875 | 16.716 | 17.042
120 | 12.136 | 12,533 | 12.373 || 175 15 14.893 | 15.048 || 230 | 16.875 | 16.716 | 17.042
121 | 12136 | 12.533 | 12.548 || 176 | 15 14.893 | 15.048 || 231 | 16.875 | 17.094 | 17.042
122 | 13 12.533 | 12,548 || 177 | 15 14.893 | 15.048 || 232 | 16.875 | 17.094 | 17.166
123 | 13 12.533 | 12,548 || 178 | 15 14.893 | 15.048 || 233 | 16.875 | 17.094 | 17.166
124 | 13 12,533 | 12.719 || 179 | 15 15.107 | 15.048 || 234 | 16.875 | 17.094 | 17.166
125 | 13 12.533 | 12.719 || 180 | 15 15.107 | 15.048 || 235 16.875 | 17.094 | 17.166
126 | 13 12.533 | 12.719 || 181 | 15 15.107 | 15.190 || 236 | 17 17.094 | 17.166
127 | 13 12.790 | 12.719 || 182 | 15 15.107 | 15.190 || 237 | 17 17.094 | 17.166
128 | 13.166 | 12.790 | 12.719 || 183 | 15 15.178 | 15.190 |/ 238 | 17 17.094 | 17.166
129 | 13.166 | 12.790 | 12.719 || 184 | 15 15.178 | 15.190 || 239 | 17 17.463 | 17.166
130 | 13.166 | 12.790 | 13.056 || 185 | 15 15.178 | 15.190 || 240 | 17 17.463 | 17.166
131 | 13.166 | 13.125 | 13.056 || 186 | 15 15.178 | 15190 |/241 | 17 17.463 | 17.290
132 | 13.166 | 13.125 | 13.056 || 187 | 15 15526 | 15.469 |[242 | 17.371 | 17.463 | 17.290

133 | 13.166 | 13.125 | 13.056 || 188 | 15.423 | 15.526 | 15.469 |/ 243 | 17.371 | 17.523 | 17.290
134 | 13.166 | 13.125 | 13.056 || 189 | 15.423 | 15.526 | 15.469 |(244 | 17.371 | 17.523 | 17.290
135 | 13.166 | 13.125 | 13.056 || 190 | 15.423 | 15.526 | 15.469 |(245| 17.371 | 17.523 | 17.290
136 | 13.166 | 13.125 | 13.221 || 191 | 15.423 | 15.731 | 15.469 |/246 | 17.371 | 17.523 | 17.290
137 | 13.166 | 13.289 | 13.221 || 192 | 15423 | 15.731 | 15.469 |/ 247 | 17.371 | 17.523 | 17.654
138 | 13.166 | 13.289 | 13.221 || 193 | 15423 | 15.731 | 15.743 || 248 | 17.371 | 17.523 | 17.654
139 | 13.166 | 13.289 | 13.221 || 194 | 15.423 | 15.731 | 15743 || 249 | 17.371 | 17.523 | 17.654
140 | 13.490 | 13.289 | 13.221 || 195 | 15.423 | 15.731 | 15.743 || 250 | 17.371 | 17.523 | 17.654
141 | 13.490 | 13.530 | 13.221 || 196 | 15.423 | 15.731 | 15.743 || 251 | 17.371 | 17.644 | 17.654
142 | 13.490 | 13.530 | 13.702 || 197 | 15.423 | 15.731 | 15.743 || 252 | 17.371 | 17.644 | 17.654
143 | 13.490 | 13.530 | 13.702 || 198 | 15.423 | 15.731 | 15743 || 253 | 17.371 | 17.644 | 17.773
144 | 13.490 | 13.530 | 13.702 || 199 | 15.423 | 15.799 | 16.012 |/ 254 | 18.089 | 17.644 | 17.773
145 | 13.490 | 13.768 | 13.859 || 200 | 16.100 | 15.799 | 16.012 |/ 255 | 18.089 | 17.704 | 17.773
146 | 13.490 | 13.768 | 13.859 || 201 | 16.100 | 15.799 | 16.012 | 256 | 18.089 | 17.704 | 17.773
147 | 13.490 | 13.768 | 13.859 |/ 202 | 16.100 | 15.799 | 16.012 |/ 257 | 18.089 | 17.704 | 17.773
148 | 13.490 | 13.768 | 13.859 || 203 | 16.100 | 15.934 | 16.012 |/ 258 | 18.089 | 17.704 | 17.773

149 | 13.490 | 14 13.859 || 204 | 16.100 | 15.934 | 16.012 || 259 | 18.089 | 17.823 | 18.010
150 | 13.490 | 14 13.859 || 205 | 16.100 | 15934 | 16.012 || 260 | 18.089 | 17.823 | 18.010
151 | 13.490 | 14 14.013 || 206 | 16.100 | 15934 | 16.012 || 261| 18.089 | 17.823 | 18.010

152 | 14115 | 14 14.013 | 207 | 16.100 | 16 16.012 || 262 | 18.089 | 17.823 | 18.010
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The diameter D of the enclosing circle is equal to the diameter factor, K, multiplied by d, the diam-
eter of the enclosed circles, or D = K x d. For example, if the number of circles to be enclosed, N, is
12, and the center circle arrangement is “C,” then for d = 1% inches, D = 4.056 x 1% =6.084 inches. If
d =50 millimeters, then D = 4.056 x 50 = 202.9 millimeters.

Approximate Formula When Number of Enclosed Circles Is Large: When a large num-
ber of circles are to be enclosed, the arrangement of the center circles has little effect on the
diameter of the enclosing circle. For numbers of circles greater than 10,000, the diameter
of the enclosing circle may be calculated within 2 per cent from the formula

D = d(1+ /N +0.907) . Inthis formula, D = diameter of the enclosing circle; d = diam-
eter of the enclosed circles; and N is the number of enclosed circles.

An alternative approach relates the area of each of the same-sized circles to be enclosed
to the area of the enclosing circle (or container), as shown in Figs. 1 through 27. The table
shows efficient ways for packing various numbers of circles N, from 2 up to 97.

In the table, D = the diameter of each circle to be enclosed, d = the diameter of the enclos-
ing circle or container, and ® = Nd?/D? = ratio of the area of the N circles to the area of the
enclosing circle or container, which is the packing efficiency. Cross-hatching in the dia-
grams indicates loose circles that may need packing constraints.

Data for Numbers of Circles in Circles

N Dld ) Fig. N DId ) Fig.
2 2.0000 0.500 1 17 4.7920 0.740 15
3 2.1547 0.646 2 18 4.8637 0.761 16
4 2.4142 0.686 3 19 4.8637 0.803 16
5 2.7013 0.685 4 20 5.1223 0.762 17
6 3.0000 0.667 5 21 5.2523 0.761 18
7 3.0000 0.778 5 22 5.4397 0.743 19
8 3.3048 0.733 6 23 5.5452 9.748 20
9 3.6131 0.689 7 24 5.6517 0.751 21
10 3.8130 0.688 8 25 5.7608 0.753 22
11 3.9238 0.714 9 31 6.2915 0.783 23
12 4.0296 0.739 10 37 6.7588 0.810 24
13 4.2361 0.724 11 55 8.2111 0.816 25
14 4.3284 0.747 12 61 8.6613 0.813 26
15 4.5214 0.734 13 97 11.1587 0.779 27
16 4.6154 0.751 14

Packing of large numbers of circles, such as the 97 in Fig. 27, may be approached by
drawing a triangular pattern of circles, as shown in Fig. 28, which represents three circles
near the center of the array. The point of acompass is then placed at A, B, or C, or anywhere
within triangle ABC, and the radius of the compass is gradually enlarged until it encom-
passes the number of circles to be enclosed. As a first approximation of the diameter,

D = 1.14d./N may be tried.

0 @D R

Fig.1.N=2 Fig.2.N=3 Fig.3.N=4 Fig.4.N=5
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Fig.5.N=7 Fig.8.N=10
Fig.9.N=11 Fig. 10. N=12 Fig.11. N=13 Fig.12. N=14
Fig. 13. N=15 Fig. 14. N=16 Fig. 15. N=17

Fig.19. N =22

Fig.21. N=24 Fig.23. N=31
I~
o
-
S
-
M
Fig. 25. N =55 Fig. 26. N =61 Fig.27. N=97
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Circles within Rectangles.—For small numbers N of circles, packing (for instance, of
cans) is less vital than for larger numbers and the number will usually govern the decision
whether to use a rectangular or a triangular pattern, examples of which are seen in Figs. 29
and 3o0.

Fig. 30. Triangular Pattern (r=3,¢=7)

Fig. 29. Rectangular Pattern (r =4, ¢ =5)

If D isthe can diameter and H its height, the arrangement in Fig. 29 will hold 20 circles or
cans inavolume of 5D x 4D x H = 20D? H. The arrangement in Fig. 30 will pack the same
20 cans into avolume of 7D x 2.732D x H =19.124D?H, a reduction of 4.4 per cent. When
the ratio of H/D is less than 1.196:1, the rectangular pattern requires less surface area
(therefore less material) for the six sides of the box, but for greater ratios, the triangular pat-
ternis better. Some numbers, such as 19, can be accommodated only in atriangular pattern.

The following table shows possible patterns for 3 to 25 cans, where N = number of cir-
cles, P = pattern (R rectangular or T triangular), and r and ¢ = numbers of rows and col-
umns, respectively. The final table column shows the most economical application, where
V=bhest volume, S = best surface area (sometimes followed by a condition on H/D). For the
rectangular pattern, the area of the container is rD x ¢D, and for the triangular pattern, the

areais cDx [1+ (r—1)./3/2]1D ,orcD?[1+0.866(r— 1)].

Numbers of Circles in Rectangular Arrangements

N|P|r|c Application N|P | r|c Application
R |3 |5 (S, H/D > 0.038)
3| 7122 V,S 15
T |2 |8 V, (S, H/D < 0.038)
4 |R|2|2 V,S 16| R | 4| 4 V,S
5|7]3|2 V.S 17| T | 3 | 6 V,S
6| R|2|3 V,S 8| 17T |5 | 4 V,S
7|T|2|4 V,S 19| 17| 2|10 V,S
g R|4 ]2 V, (S, H/ID <0.732) 20 R | 4|5 (S, HID > 1.196)
T|3|3 (S, HID > 0.732) T |3 |7 V, (S, HID < 1.196)
9|R|3|3 V,S R |3 (S, 0.165 < H/D < 0.479)
10 R|5]|2 V, (S, HID > 1.976) 21| T | 6 | 4 (S, HID > 0.479)
T|4]|3 (S, HID > 1.976) T |2 |11 V, (S, H/D < 0.165)
11|73 |4 V,S 22| T | 416 V,S
12| R |3 | 4 V.S 23 T |55 (S, H/D > 0.366)
13 T|5|3 (S, HID > 0.236) T |3 |8 V, (S, HID < 0.366)
T|2\|7 V, (S, H/D < 0.236) 24 | R | 4| 6 V.S
T| 4|4 (S, HID > 5.464) R|5]|5 (S, H/ID > 1.10)
14| T7T|3|5 V, (S, HID < 5.464) 25| T | 7| 4 (S,0.113 < H/D < 1.10)
T | 2|13 V, (S, H/D < 0.133)
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Rollers on a Shaft*.—The following formulas illustrate the geometry of rollers on a
shaft. In Fig. 31, D is the diameter of the center line of the roller circle, d is the diameter of
aroller, D¢ = D—disthe shaft diameter, and C'is the clearance between two rollers, as indi-
cated below. In the equations that follow, N is the number of rollers, and N> 3.

Equation (1a) applies when the clearance C=0
d

D= ——— la
o0 -
N
Equation (1b) applies when clearance C >0 then
C = Dsin(180°—(N—l)asin(%D -d (1b)
~

Fig. 31.

Example: Forty bearings are to be placed around a 3-inch diameter shaft with no clear-
ance. What diameter bearings are needed?

Solution: Rearrange Equation (1a), and substitute in the value of N. Use the result to
eliminate d, using Dy = D —d . Finally, solve for D and d.

= Dsi L&Q) - Dai (LS_Q) _
d = Dsm( ~) Dsin 20) - 0.078459D
D = Dg+d = 3+0.078459D
_ 3 _
D = = 3.2554
0.92154

d = D-Dg = 0.2554

*Rollers on a Shaft contributed by Manfred K. Brueckner.
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SOLUTION OF TRIANGLES

Any figure bounded by three straight lines is called a triangle. Any one of the three lines
may be called the base, and the line drawn from the angle opposite the base at right angles
to itis called the height or altitude of the triangle.

If all three sides of a triangle are of equal length, the triangle is called equilateral. Each of
the three angles in an equilateral triangle equals 60 degrees. If two sides are of equal length,
the triangle is an isosceles triangle. If one angle is a right or 90-degree angle, the triangle is
aright or right-angled triangle. The side opposite the right angle is called the hypotenuse.

If all the angles are less than 90 degrees, the triangle is called an acute or acute-angled
triangle. If one of the angles is larger than 90 degrees, the triangle is called an obtuse-
angled triangle. Both acute and obtuse-angled triangles are known under the common
name of oblique-angled triangles. The sum of the three angles in every triangle is 180
degrees.

The sides and angles of any triangle that are not known can be found when: 1) all the
three sides; 2) two sides and one angle; and 3) one side and two angles are given.

In other words, if atriangle is considered as consisting of six parts, three angles and three
sides, the unknown parts can be determined when any three parts are given, provided at
least one of the given parts is a side.

Functions of Angles

For every right triangle, a set of six ratios is defined; each is the length of one side of the
triangle divided by the length of another side. The six ratios are the trigonometric (trig)
functions sine, cosine, tangent, cosecant, secant, and cotangent (abbreviated sin, cos, tan,
csc, sec, and cot). Trig functions are usually expressed in terms of an angle in degree or
radian measure, as in cos 60° = 0.5. “Arc” in front of a trig function name, as in arcsin or
arccos, means find the angle whose function value is given. For example, arcsin 0.5 = 30°
means that 30° is the angle whose sin is equal to 0.5. Electronic calculators frequently use
sin~1, cos™1, and tan~1 to represent the arc functions.

Example:tan 53.1° = 1.332; arctan 1.332 =tan"1 1.332 =53.1°=53°6"
The sine of an angle equals the opposite side divided by the hypotenuse. Hence, sin B=5b
+c,andsinA=a-+c.

The cosine of an angle equals the adjacent side
divided by the hypotenuse. Hence, cos B=a + ¢, and
COSA=b-+c.

The tangent of an angle equals the opposite side
divided by the adjacent side. Hence, tan B=5 +a, and
tanA=a~+b.

The cotangent of an angle equals the adjacent side
divided by the opposite side. Hence, cot B=a+ b, and

!
1

. b

CotA=b~+a.

The secant of an angle equals the hypotenuse divided by the adjacent side. Hence, sec B
=c+a,andsecA=c~+b.

The cosecant of an angle equals the hypotenuse divided by the opposite side. Hence, csc
B=c+b,andcsCA=c+a.

It should be noted that the functions of the angles can be found in this manner only when
the triangle is right-angled.

If in a right-angled triangle (see preceding illustration), the lengths of the three sides are
represented by a, b, and ¢, and the angles opposite each of these sides by A, B, and C, then
the side ¢ opposite the right angle is the hypotenuse; side b is called the side adjacent to
angle A and is also the side opposite to angle B; side a is the side adjacent to angle B and the
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side opposite to angle A. The meanings of the various functions of angles can be explained
with the aid of a right-angled triangle. Note that the cosecant, secant, and cotangent are the
reciprocals of, respectively, the sine, cosine, and tangent.

The following relation exists between the angular functions of the two acute angles ina
right-angled triangle: The sine of angle B equals the cosine of angle A; the tangent of angle
B equals the cotangent of angle A, and vice versa. The sum of the two acute angles in a
right-angled triangle always equals 90 degrees; hence, when one angle is known, the other
can easily be found. When any two angles together make 90 degrees, one is called the com-
plement of the other, and the sine of the one angle equals the cosine of the other, and the
tangent of the one equals the cotangent of the other.

The Law of Sines.—In any triangle, any side is to the sine of the angle opposite that side
asany other side is to the sine of the angle opposite that side. If a, b, and ¢ are the sides, and
A, B, and C their opposite angles, respectively, then:

4 = .b = £ , SO that:
SINA sSinB sinC

q = bs_lnA or q = cs_lnA
sinB sinC
p = 4sinB or p = ¢sinB
SinA sinC
- as_lnC or ¢ = bs_lnC
SINA sinB

The Law of Cosines.—In any triangle, the square of any side is equal to the sum of the
squares of the other two sides minus twice their product times the cosine of the included
angle; or if a, b and c are the sides and A, B, and C are the opposite angles, respectively,
then:

a? = b2+ ¢2-2bccosA
b2 = a2+ c¢2-2accosB
c2 = a2+ b%2-2abcosC

These two laws, together with the proposition that the sum of the three angles equals 180
degrees, are the basis of all formulas relating to the solution of triangles.

Formulas for the solution of right-angled and oblique-angled triangles, arranged in tabu-
lar form, are given on the following pages.

Signs of Trigonometric Functions.— The diagram, Fig. 1 on page 105, shows the proper
sign (+ or —) for the trigonometric functions of angles in each of the four quadrants, 0 to 90,
9010 180, 180to 270, and 270 to 360 degrees. Thus, the cosine of an angle between 90 and
180 degrees is negative; the sine of the same angle is positive.

Trigonometric Identities.— Trigonometric identities are formulas that show the relation-
ship between different trigonometric functions. They may be used to change the form of
some trigonometric expressions to simplify calculations. For example, if a formula has a
term, 2sinAcosA, the equivalent but simpler term sin2A may be substituted. The identities
that follow may themselves be combined or rearranged in various ways to form new iden-
tities.
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Basic

tanAzM:L secA:L cscA:.L
COSA CotA COSA SINA

Negative Angle

sin(-A) = —=sinA  cos(-A) = cosA  tan(-A) = —tanA
Pythagorean
Sin?A + cos?A = 1 1+tan?A = sec2A 1+ cot?A = csc?A

Sum and Difference of Angles

tan(A +B) = AT N o, 4 p) - tand - tanB
1-tanAtanB 1+ tanAtanB
cot(A+B) = cotAcotB -1 COt(A-B) = cotAcotB +1
CotB + cotA COtB — COtA

sin(A + B) = sinAcosB + cosAsinB Sin(A-B) = sinAcosB — CoSASIiNB
cos(A + B) = COSAcosB — sinAsinB cos(A —B) = C0sAcosB + sinAsinB
Double-Angle

C0S2A = C0S?A —sin?A = 2c0s?A -1 = 1-2sin?A

' _ 2tanA 2
- tan2A = =
Sin2A = 2sinAcosA 1—tan2A  COtA — tanA

Half-Angle

sin%A = J%(1-cosA)  cos%A = J¥%(1+ cosA)

Product-to-Sum

sinAcosB = %[sin(A + B) + sin(A - B)]
COSACOSB = %[c0oS(A + B) + c0S(A — B)]
sinAsinB = %[ cos(A - B) — cos(A + B)]

_ fanA + tanB
COtA + cotB

tanAtanB

Sum and Difference of Functions

SinA + sinB = 2[sin%(A + B)cos%(A - B)]
SinA —sinB = 2[sin%(A - B)cos%(A + B)]
COSA + cosB = 2[cos¥%(A + B)cos¥%(A — B)]
COSA — cosB = -2[sin%(A + B)sin%(A - B)]

tanA +tang = SNA+B) A _tang = SINA=B)

COSA cosB COSA cosB

COtA + cotB = SNB+A) 4 cotp = SIN(B-4)

sinAsinB sinAsinB
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Solution of Right-Angled Triangles

As shown in the illustration, the sides of the right-
angled triangle are designated « and b and the hypote-
o nuse, c. The angles opposite each of these sides are des-
a ignated A and B, respectively.
L Angle C, opposite the hypotenuse c is the right angle,
| " I and is therefore always one of the known quantities.
| 1
Sides and Angles Known Formulas for Sides and Angles to be Found
ide a* si = a2+ p2 tanA = ¢ =90° -
Side a; side b c = Ja2+b 5 B=90°-A
Side a; hypotenuse ¢ b= Je2—a? sinA = LEI B=90°-A
Side b; hypotenuse ¢ a = Je2=p2 sinB = Ig A=90°-B
Hypotenuse c; angle B b=cxsinB a=cXCosB A=90°-B
Hypotenuse ¢; angle A b=cxcosA a=cXxsinA B=90°-A
Side b; angle B c = —Q— a=bxcotB A=90°-B
sinB
Side b; angle A c = L a=bxtan A B=90°-A
COSA
_ _a _ —00° _
Side a; angle B c = 0SB b=axtan B A=90°-B
Side a; angle A c = —£- b=axcotA B=90°-A
sinA
Trig Functions Values for Common Angles
sin0° = 0 cos0° =1 tan0° = 0

T

sin30° = siné =05 0.57735027

c0s30° = cos%t = 0.8660254 tan30° = tan%t

sind5° = sink = 0.70710678  cos45° = cosZ = 0.70710678  tan45° = tanZ = 1

4 4 4
sin60° = sin’—; = 0.8660254 c0s60° = cosg =05 tan60° = tang = 1.7320508
sin90° = sinZ = 1 c0s90° = cosk = 0 tan90° = tanl =
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Examples of the Solution of Right-Angled Triangles (English or metric units)

c=22inches; B=41° 36".

a = ¢X COSB = 22 x c0s41°36” = 22 x0.74780
= 16.4516 inches
b = cxsinB = 22 xsin41°36” = 22 x 0.66393

= 14.6065 inches
A =90°-B = 90°-41°36" = 48°24’

Hypotenuse and One Angle
Known

¢ = 25 centimeters; a = 20 centimeters.
/'\/\ b= Je?-a? = J252-202 = /625400

= /225 = 15 centimeters

y ) [
L——CZZS ¢

Hypotenuse and One Side Known | Hence, A = 53°8
90°—A = 900_5308’ - 360521

a=36 mm; b=15mm.

b =15+
¢ = Ja?2+b2 = /362 +152 = /1296 + 225
= /1521 = 39 mm
tand = ¢ =38 -4
15
= 67°23’

90°-A = 90°-67°23" = 22°37’

Two Sides Known

a =12 meters; A = 65°.

c= 4 =12 _ 12 _ 135405 meters
SinA sin65° 0.90631

1 b = axCcotA = 12X cot65° = 12 x 0.46631
N = 5.5957 meters
<

B=90"-A = 90°—65° = 25°

One Side and One Angle Known
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Chart For The Rapid Solution of Right-Angle and Oblique-Angle Triangles
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Solution of Oblique-Angled Triangles
One Side and Two Angles Known (Law of Sines):

Call the known side a, the angle opposite it A, and the
other known angle B. Then, C=180°— (A + B). Ifangles
Band Care given, butnot A, then A=180°- (B + ().

C = 180°— (A + B)

~
p = 4XSinB o = axsinC
sinA sinA
o

axbxsinC
2

fe- a
(KNOWN) Area =
One Side and Two Angles Known

a =5 centimeters; A =80°; B=62°

C = 180°-(80°+62°) = 180°-142° = 38°
/ \ p = 4xsinB _ 5x5sin62° _ 5x0.88295

sinA sin80° 0.98481
4.483 centimeters
axsinC _ 5xsin38° _ 5x0.61566

c = = =

sinA sin80° 0.98481
3.126 centimeters

Side and Angles Known

Two Sides and the Angle Between Them Known:

Call the known sides a and b, and the known angle
between them C. Then,

tanA = —axsinC
b—-(axcosC)
B=180°-(A+C) ¢ = 4XSC
SInA

Side ¢ may also be found directly as below:
¢ = Ja?+b2—(2ab x cosC)

(KNOWN)
Two Sides and the Angle _axbxsinC
Between Them Known Area = —

a=9inches; b =8 inches; C = 35°.
tand = —axsinC___ _ 9xsin35°
/ X b—(axcosC) 8-(9xcos35°)
9 5 L _ _9x057358 _ 5.16222 _ 8.22468
8-(9x0.81915) 0.62765
/ = A k Hence, A = 83°4’
[ b=8 i 180° - (A + C) = 180°-118°4" = 61°56’

Sides and Angle Known ¢ = axsinC _ 9x0.57358 _ 52 inches

sinA 0.99269

P

A\

' |
=
I
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Two Sides and the Angle Opposite One of the Sides Known:

(KNOWN)

Two Sides and the Angle Opposite

One of the Sides Known

Call the known angle A, the side opposite it a, and the
other known side b. Then,

SinB = b x sinA C = 180°-(A+B)
a
¢ = ax.sinC Area = axbxsinC
SIinA 2

If, in the above, angle B > angle A but <90°, then a sec-
ond solution B ,, C ,, c , exists for which: B, = 180° — B;
C,=180°-(A+B,);c,=(axsinC,)+sinA;area=(a
X bxsin C,)+ 2. Ifa>b, then the first solution only
exists. If a <b xsin A, then no solution exists.

Sides and Angle Known

a =20 centimeters; b = 17 centimeters; A = 61°.

b x sinA _ 17x sin61°
a 20

= ——-——-—-1”%37462 = 0.74343

Hence, B = 48°1’
180° - (A + B) = 180°-109°1" = 70°59’
_ axsinC _ 20xsin70°59" _ 20 x 0.94542
SinA sin61° 0.87462
21.62 centimeters

sinB =

a
I

All Three Sides are Known:

(KNOWN)
All Three Sides Known

Call the sides a, b, and ¢, and the angles opposite them,
A, B,and C. Then,

24 02_,2 .
cosA = botct-af sing = bxsinA
2bc a
C =180°-(A+B)  Area = c%smc

v .

< C
{ \S

fe—aq =8—+

Sides and Angle Known

a=28inches; b=9inches; ¢ =10 inches.
_ b2+ c?2-a% _ 92+102-82

A =
cos 2be 2% 9% 10
_81+100-64 _ 117 _ 065000
180 180
Hence, A = 49°27’
sinB = bxsinA _ 9x0.75984 _ 085482
a 8
Hence, B = 58°44’

C = 180°-(A+B) = 180°-108°11" = 71°49’
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Conversion Tables of Angular Measure.— The accompanying tables of degrees, min-
utes, and seconds into radians; radians into degrees, minutes, and seconds; radians into
degrees and decimals of a degree; and minutes and seconds into decimals of a degree and
vice versa facilitate the conversion of measurements.

Example 1: The Degrees, Minutes, and Seconds into Radians table is used to find the
number of radians in 324 degrees, 25 minutes, 13 seconds as follows:

300 degrees = 5.235988 radians
20 degrees = 0.349066 radian
4 degrees = 0.069813 radian
25 minutes = 0.007272 radian
13seconds = 0.000063 radian
324°25'13” = 5.662202 radians

Example 2: The Radians into Degrees and Decimals of a Degree, and Radians into
Degrees, Minutes and Seconds tables are used to find the number of decimal degrees or
degrees, minutes and seconds in 0.734 radian as follows:

0.7

0.004 radian

radian

40.1070 degrees 0.7
0.03 radian = 1.7189degrees 0.03 radian
0.2292 degree
0.734 radian = 42.0551 degrees 0.734 radian

radian

0.004 radian

= 40°625”

= 1°43'8”

0°13’45”

= 41°6278” or 42°318”

Degrees, Minutes, and Seconds into Radians (Based on 180 degrees = &t radians)

Degrees into Radians

Deg. Rad. Deg. Rad. Deg. Rad. Deg. Rad. Deg. Rad. Deg. Rad.
1000  17.453293 100 1.745329 10 0174533 | 1 0.017453 0.1 0.001745 |0.01 0.000175
2000  34.906585 200  3.490659 20  0.349066 | 2 0.034907 0.2 0.003491 |0.02 0.000349
3000 52.359878 300 5.235988 30 0523599 | 3 0.052360 0.3 0.005236 | 0.03 0.000524
4000  69.813170 400 6.981317 40 0.698132 | 4 0.069813 0.4 0.006981 |0.04 0.000698
5000  87.266463 500 8.726646 50 0.872665 | 5 0.087266 0.5 0.008727 |0.05 0.000873
6000 104.719755 600 10.471976 60 1.047198 | 6 0.104720 0.6 0.010472 |0.06 0.001047
7000 122.173048 700 12.217305 70 1221730 | 7 0.122173 0.7 0.012217 |0.07 0.001222
8000 139.626340 800 13.962634 80 1.396263 | 8 0.139626 0.8 0.013963 | 0.08 0.001396
9000 157.079633 900 15.707963 90 1.570796 | 9 0.157080 0.9 0.015708 |0.09 0.001571
10000 174.532925 | 1000 17.453293 | 100  1.745329 | 10 0.174533 1.0 0.017453 |0.10 0.001745

Minutes into Radians

Min. Rad. Min. Rad. Min. Rad. Min. Rad. Min. Rad. Min. Rad.
1 0.000291 11 0.003200 21 0.006109 | 31 0.009018 41 0.011926 51 0.014835
2 0.000582 12 0.003491 22 0.006400 | 32 0.009308 42 0.012217 52 0.015126
3 0.000873 13 0.003782 23 0.006690 | 33 0.009599 43 0.012508 53 0.015417
4 0.001164 14 0.004072 24 0.006981 | 34 0.009890 44 0.012799 54 0.015708
5 0.001454 15 0.004363 25 0.007272| 35 0.010181 45 0.013090 55 0.015999
6 0.001745 16 0.004654 26 0.007563 | 36 0.010472 46 0.013381 56 0.016290
7 0.002036 17 0.004945 27 0.007854 | 37 0.010763 47 0.013672 57 0.016581
8 0.002327 18 0.005236 28 0.008145| 38 0.011054 48 0.013963 58 0.016872
9 0.002618 19 0.005527 29 0.008436 | 39 0.011345 49 0.014254 59 0.017162
10 0.002909 20 0.005818 30 0.008727 | 40 0.011636 50 0.014544 60 0.017453

Seconds into Radians

Sec. Rad. Sec. Rad. Sec. Rad. Sec. Rad. Sec. Rad. Sec. Rad.
1 0.000005 11 0.000053 21 0.000102 | 31 0.000150 41 0.000199 51 0.000247
2 0.000010 12 0.000058 22 0.000107 | 32 0.000155 42 0.000204 52 0.000252
3 0.000015 13 0.000063 23 0.000112| 33 0.000160 43 0.000208 53 0.000257
4 0.000019 14 0.000068 24 0.000116 | 34 0.000165 44 0.000213 54 0.000262
5 0.000024 15 0.000073 25 0.000121| 35 0.000170 45 0.000218 55 0.000267
6 0.000029 16 0.000078 26 0.000126 | 36 0.000175 46 0.000223 56 0.000271
7 0.000034 17 0.000082 27 0.000131| 37 0.000179 47 0.000228 57 0.000276
8 0.000039 18 0.000087 28 0.000136 | 38 0.000184 48 0.000233 58 0.000281
9 0.000044 19 0.000092 29 0.000141| 39 0.000189 49 0.000238 59 0.000286
10 0.000048 20 0.000097 30 0.000145 | 40 0.000194 50 0.000242 60 0.000291
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Radians into Degrees and Decimals of a Degree
(Based on 7t radians = 180 degrees)

Rad. Deg. Rad. Deg. Rad. Deg. Rad.  Deg. Rad. Deg. Rad. Deg.
10 572.9578 1 57.2958 || 0.1 57296 || 0.01 0.5730 || 0.001 0.0573 || 0.0001 0.0057
20 11459156 2 1145916 || 0.2  11.4592 || 0.02 1.1459||0.002 0.1146 || 0.0002 0.0115
30  1718.8734 3 171.8873 || 0.3  17.1887 || 0.03 1.7189(/0.003 0.1719 || 0.0003 0.0172
40 2291.8312 4 2291831 || 0.4  22.9183 || 0.04 22918 | 0.004 0.2292 || 0.0004 0.0229
50  2864.7890 5 286.4789 || 0.5 28.6479 || 0.05 2.8648 | 0.005 0.2865 || 0.0005 0.0286
60  3437.7468 6 3437747 || 0.6  34.3775 || 0.06 3.4377 | 0.006 0.3438 || 0.0006 0.0344
70 4010.7046 7 401.0705 || 0.7  40.1070 || 0.07 4.0107 || 0.007 0.4011 || 0.0007 0.0401
80  4583.6624 8 458.3662 || 0.8  45.8366 || 0.08 4.5837 || 0.008 0.4584 || 0.0008 0.0458
90  5156.6202 9 5156620 || 0.9 515662 || 0.09 5.1566 | 0.009 0.5157 || 0.0009 0.0516

100 57295780 || 10 5729578 || 1.0  57.2958 || 0.10 5.7296 || 0.010 0.5730 || 0.0010 0.0573

Radians into Degrees, Minutes, and Seconds
(Based on 7t radians = 180 degrees)

Rad. Angle Rad. Angle Rad. Angle Rad. Angle Rad. Angle Rad. Angle
10 572°57°28" 1 57°17'45" 0.1 5°43746” || 0.01 0°34’23” || 0.001 0°3'26” || 0.0001 0°0°21”
20 1145°54'56” 2 114°3530” || 0.2 11°27’33” || 0.02 1°8745” || 0.002 0°6’53” || 0.0002 0°0"41”
30 1718°52°24” 3 171°5314” || 0.3 17°11°19” || 0.03 1°43’8” || 0.003 0°10°19” || 0.0003 0°1’2”
40 2291°49°52” 4 229°10°59” || 0.4 22°55’6” || 0.04 2°17/31” || 0.004 0°13’45” || 0.0004 0°1°23”
50  2864°47°20” 5 286°28'44” || 05 28°38'52” || 0.05 2°51’53” || 0.005 0°17°11” || 0.0005 0°1°43”
60  3437°44748" 6 343°46'29” || 0.6 34°22'39” || 0.06 3°26716” || 0.006 0°2038” || 0.0006 0°2 4”
70 4010°42°16” 7 401°4'14” 07 40°6'25” || 0.07 4°0’39” || 0.007 0°24’4” || 0.0007 0°2°24”
80  4583°39°44” 8  458°21'58” || 0.8 45°50°12” || 0.08 4°35’1” || 0.008 0°27'30” || 0.0008 0°2°45”
90 5156°37°13” 9  515°39'43” || 0.9 51°33'58” || 0.09 5°9'24” || 0.009 0°30’56” || 0.0009 0°3’6”
100 5729°34’41” || 10  572°57°28” || 1.0 57°1745” || 0.10 5°43746” || 0.010 0°34’23” || 0.0010 0°3°26”

Minutes and Seconds into Decimal of a Degree and Vice Versa
(Based on 1 second = 0.00027778 degree)
Minutes into Decimals of a Degree Seconds into Decimals of a Degree

Min. Deg. Min. Deg. Min. Deg. Sec. Deg. Sec. Deg. Sec. Deg.
1 00167 || 21 03500 | 41 0.6833 | 1 0.0003 || 21  0.0058 || 41  0.0114
2 00333 || 22 03667 | 42 0.7000 | 2 0.0006 || 22  0.0061 | 42  0.0117
3 00500 | 23  0.3833 | 43 0.7167 | 3 0.0008 || 23  0.0064 | 43  0.0119
4 00667 | 24 04000 || 44 0.7333 | 4 0.0011 || 24  0.0067 || 44  0.0122
5 00833 | 25 04167 || 45 0.7500 | 5 0.0014 || 25  0.0069 || 45  0.0125
6 01000 | 26 04333 | 46 0.7667 | 6 0.0017 || 26  0.0072 || 46  0.0128
7 01167 || 27 04500 | 47 07833 | 7 0.0019 || 27  0.0075 | 47  0.0131
8 01333 || 28 04667 | 48 0.8000 | 8 0.0022 || 28  0.0078 || 48  0.0133
9 01500 | 29 04833 | 49 0.8167 | 9 0.0025 || 29  0.0081 || 49  0.0136
10 01667 || 30  0.5000 || 50 0.8333 | 10 0.0028 || 30  0.0083 | 50  0.0139
11 01833 || 31 05167 | 51 0.8500 | 11 0.0031 || 31  0.008 | 51  0.0142
12 02000 || 32 05333 | 52 0.8667 | 12 0.0033 || 32  0.0089 || 52  0.0144
13 02167 || 33 05500 | 53 0.8833 | 13 0.0036 || 33  0.0092 || 53  0.0147
14 02333 || 34 05667 | 54 0.9000 | 14 0.0039 || 34  0.0094 | 54  0.0150
15 02500 || 35  0.5833 || 55 0.9167 | 15 0.0042 || 35  0.0097 | 55  0.0153
16 02667 || 36  0.6000 || 56 0.9333 | 16 0.0044 || 36  0.0100 || 56  0.0156
17 02833 || 37 06167 | 57 0.9500 | 17 0.0047 || 37 0.0103 || 57  0.0158
18  0.3000 || 38  0.6333 || 58 0.9667 | 18 0.0050 || 38  0.0106 | 58  0.0161
19 03167 || 39  0.6500 || 59 0.9833 | 19 0.0053 || 39  0.0108 | 59  0.0164
20 0.3333 || 40  0.6667 || 60 1.0000 | 20 0.0056 || 40  0.0111 | 60  0.0167

Example 3: Convert 11°37” to decimals of a degree. From the left table, 11’ = 0.1833 degree. From the
right table, 37”7 =0.0103 degree. Adding, 11°37”=0.1833 + 0.0103 = 0.1936 degree.

Example 4: Convert 0.1234 degree to minutes and seconds. From the left table, 0.1167 degree = 7.
Subtracting 0.1167 from 0.1234 gives 0.0067. From the right table, 0.0067 = 24” so that 0.1234 = 724",
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Fig. 1. Signs of Trigonometric Functions, Fractions of i, and Degree-Radian Conversion

Graphic Illustrations of the Functions of Angles.—Fig. 1 shows the sign (+ or —) and
the limits between which the numerical values of trigonometric functions vary for angles
in each of the four quadrants, 0 to 90, 90 to 180, 180 to 270, and 270 to 360 degrees. The
chart indicates, for example, that all the functions are positive for angles between 0 and 90
degrees. In the same way, the cotangent of an angle between 180 and 270 degrees is posi-
tive and has a value between infinity and O; in other words, the cotangent for 180 degrees is
infinitely large and then the cotangent gradually decreases for increasing angles, so that the
cotangent for 270 degrees equals 0. The cosine, tangent and cotangent for angles between
90 and 180 degrees are negative, although they have the same numerical values as for
angles from 0 to 90 degrees. Negative values should be preceded by a minus sign; thus, tan
123°20"=-1.5204. The chart also illustrates the relationship between degrees, radian, and
fractions of pi ().

In Fig. 2, illustrating the functions of angles, it is assumed that all distances measured in
the horizontal direction to the right of line AB are positive. Those measured horizontally to
the left of AB are negative. All distances measured vertically, are positive above line CD
and negative below it. It can then be readily seen that the sine is positive for all angles less
than 180 degrees. For angles larger than 180 degrees, the sine would be measured below
CD, and is negative. The cosine is positive up to 90 degrees, but for angles larger than 90
and less than 270 degrees, the cosine is measured to the left of line AB and is negative.
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Fig. 2. Graphic Illustration of the Functions of Angles

Tables of Trigonometric Functions.— The trigonometric (trig) tables on the following
pages give numerical values for sine, cosine, tangent, and cotangent functions of angles
from 0 to 90 degrees. Function values for all other angles can be obtained from the tables
by applying the rules for signs of trigonometric functions and the useful relationships
among angles given in the following. Secant and cosecant functions can be found from sec
A=1/cosAandcsc A =1/sin A.

The trig tables are divided by a double line. The body of each half table consists of four
labeled columns of data between columns listing angles. The angles listed to the left of the
data increase moving down the table, and angles listed to the right of the data increase mov-
ing up the table. Labels above the data identify the trig functions corresponding to angles
listed in the left column of each half table. Labels below the data correspond to angles
listed in the right column of each half table. To find the value of a function for a particular
angle, first locate the angle in the table, then find the appropriate function label across the
top or bottom row of the table, and find the function value at the intersection of the angle
row and label column. Angles opposite each other are complementary angles (i.e., their
sum equals 90°) and related. For example, sin 10° = cos 80° and cos 10° = sin 80°.
Expanded trig tables are also available on Machinery’s Handbook CD.

All trig functions of angles between 0° and 90° have positive values. For other angles,
consult Fig. 1 to find the sign of the function in the quadrant where the angle is located. To
determine trig functions of angles greater than 90° subtract 90, 180, 270, or 360 from the
angle to get an angle less than 90° and use Table 1, Useful Relationships Among Angles, to
find the equivalent first-quadrant function and angle to look up in the trig tables.

Table 1. Useful Relationships Among Angles

Angle Function 0 -0 90° £ 6 180°+ 6 270° £ 6 360° £ 6
sin sin © —sin 6 +cos 6 Fsino —Ccos 0 +sin 6
cos cos 6 +cos 0 +sin 6 —Cos 6 +sin 6 +C0s 0
tan tan 6 —tan © Fcot 6 +tan 0 +cot 0 +tan 0
cot cot 0 —cot 0 +tan 6 +cot 0 +tan 6 +cot 0
sec sec © +sec 0 Fcsco —sec O +csc 6 +sec 0
csc csc O —Ccsc O +sec 0 +csc o —sec O +csc O

Examples: cos (270° — 6) = —sin 6; tan (90° + 6) = —cot 6.

Example: Find the cosine of 336°40°. The diagram Fig. 1 shows that the cosine of every
angle in Quadrant IV (270° to 360°) is positive. To find the angle and trig function to use
when entering the trig table, subtract 270 from 336 to get cos 336°40” = cos (270° + 66°40")
and then find the intersection of the cos row and the 270 + 6 columnin Table 1. Because cos
(2701 0) in the fourth quadrant is equal to + sin 6 in the first quadrant, find sin 66°40” in the
trig table. Therefore, cos 336°40” = sin 66°40” =0.918216.
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Trigonometric Functions of Angles from 0° to 15° and 75° to 90°
Angle sin cos tan cot Angle sin cos tan cot
0° 0’ | 0.000000 | 1.000000 | 0.000000 — 90° 0’| 7°30" | 0.130526 | 0.991445 | 0.131652 | 7.595754 | 82° 30"
10 | 0.002909 | 0.999996 | 0.002909 | 343.7737 50 40| 0.133410 | 0.991061 | 0.134613 | 7.428706 20
20| 0.005818 | 0.999983 | 0.005818 | 171.8854 40 50 | 0.136292 | 0.990669 | 0.137576 | 7.268725 10
30| 0.008727 | 0.999962 | 0.008727 | 114.5887 30|| 8°07|0.139173 | 0.990268 | 0.140541 | 7.115370 | 82°0’
40 | 0.011635 | 0.999932 | 0.011636 | 85.93979 20 10 | 0.142053 | 0.989859 | 0.143508 | 6.968234 50
50| 0.014544 | 0.999894 | 0.014545 | 68.75009 10 20| 0.144932 | 0.989442 | 0.146478 | 6.826944 40
1° 0’| 0.017452 | 0.999848 | 0.017455 | 57.28996 | 89° 0’ 30 | 0.147809 | 0.989016 | 0.149451 | 6.691156 30
10 | 0.020361 | 0.999793 | 0.020365 | 49.10388 50 40 | 0.150686 | 0.988582 | 0.152426 | 6.560554 20
20 | 0.023269 | 0.999729 | 0.023275 | 42.96408 40 50 | 0.153561 | 0.988139 | 0.155404 | 6.434843 10
30 | 0.026177 | 0.999657 | 0.026186 | 38.18846 30|| 9°0’| 0.156434 | 0.987688 | 0.158384 | 6.313752 | 81° 0’
40 | 0.029085 | 0.999577 | 0.029097 | 34.36777 20 10 | 0.159307 | 0.987229 | 0.161368 | 6.197028 50
50 | 0.031992 | 0.999488 | 0.032009 | 31.24158 10 20| 0.162178 | 0.986762 | 0.164354 | 6.084438 40
2°0’ | 0.034899 | 0.999391 | 0.034921 | 28.63625 | 88° 0" 30 | 0.165048 | 0.986286 | 0.167343 | 5.975764 30
10 | 0.037806 | 0.999285 | 0.037834 | 26.43160 50 40| 0.167916 | 0.985801 | 0.170334 | 5.870804 20
20| 0.040713 | 0.999171 | 0.040747 | 24.54176 40 50| 0.170783 | 0.985309 | 0.173329 | 5.769369 10
30| 0.043619 | 0.999048 | 0.043661 | 22.90377 30|[ 10°0” | 0.173648 | 0.984808 | 0.176327 | 5.671282 | 80° 0"
40 | 0.046525 | 0.998917 | 0.046576 | 21.47040 20 10| 0.176512 | 0.984298 | 0.179328 | 5.576379 50
50| 0.049431 | 0.998778 | 0.049491 | 20.20555 10 20 | 0.179375 | 0.983781 | 0.182332 | 5.484505 40
3°0’| 0.052336 | 0.998630 | 0.052408 | 19.08114 | 87°0" 30| 0.182236 | 0.983255 | 0.185339 | 5.395517 30
10 | 0.055241 | 0.998473 | 0.055325 | 18.07498 50 40 | 0.185095 | 0.982721 | 0.188349 | 5.309279 20
20 | 0.058145 | 0.998308 | 0.058243 | 17.16934 40 50 | 0.187953 | 0.982178 | 0.191363 | 5.225665 10
30| 0.061049 | 0.998135 | 0.061163 | 16.34986 30| 11° 0" | 0.190809 | 0.981627 | 0.194380 | 5.144554 | 79° 0’
40| 0.063952 | 0.997953 | 0.064083 | 15.60478 20 10 | 0.193664 | 0.981068 | 0.197401 | 5.065835 50
50 | 0.066854 | 0.997763 | 0.067004 | 14.92442 10 20| 0.196517 | 0.980500 | 0.200425 | 4.989403 40
4°0’ | 0.069756 | 0.997564 | 0.069927 | 14.30067 | 86°0" 30| 0.199368 | 0.979925 | 0.203452 | 4.915157 30
10 | 0.072658 | 0.997357 | 0.072851 | 13.72674 50 40| 0.202218 | 0.979341 | 0.206483 | 4.843005 20
20 | 0.075559 | 0.997141 | 0.075775 | 13.19688 40 50 | 0.205065 | 0.978748 | 0.209518 | 4.772857 10
30| 0.078459 | 0.996917 | 0.078702 | 12.70621 30| 12°0”| 0.207912 | 0.978148 | 0.212557 | 4.704630 | 78°0"
40 | 0.081359 | 0.996685 | 0.081629 | 12.25051 20 10| 0.210756 | 0.977539 | 0.215599 | 4.638246 50
50| 0.084258 | 0.996444 | 0.084558 | 11.82617 10 20 | 0.213599 | 0.976921 | 0.218645 | 4.573629 40
5°0’ | 0.087156 | 0.996195 | 0.087489 | 11.43005 | 85°0" 30 | 0.216440 | 0.976296 | 0.221695 | 4.510709 30
10 | 0.090053 | 0.995937 | 0.090421 | 11.05943 50 40 | 0.219279 | 0.975662 | 0.224748 | 4.449418 20
20 | 0.092950 | 0.995671 | 0.093354 | 10.71191 40 50 | 0.222116 | 0.975020 | 0.227806 | 4.389694 10
30| 0.095846 | 0.995396 | 0.096289 | 10.38540 30| 13° 0" | 0.224951 | 0.974370 | 0.230868 | 4.331476 | 77° 0’
40| 0.098741 | 0.995113 | 0.099226 | 10.07803 20 10 | 0.227784 | 0.973712 | 0.233934 | 4.274707 50
50 | 0.101635 | 0.994822 | 0.102164 | 9.788173 10 20| 0.230616 | 0.973045 | 0.237004 | 4.219332 40
6° 0’| 0.104528 | 0.994522 | 0.105104 | 9.514364 | 84° 0’ 30| 0.233445 | 0.972370 | 0.240079 | 4.165300 30
10 | 0.107421 | 0.994214 | 0.108046 | 9.255304 50 40 | 0.236273 | 0.971687 | 0.243157 | 4.112561 20
20| 0.110313 | 0.993897 | 0.110990 | 9.009826 40 50| 0.239098 | 0.970995 | 0.246241 | 4.061070 10
30| 0.113203 | 0.993572 | 0.113936 | 8.776887 30| 14° 0" | 0.241922 | 0.970296 | 0.249328 | 4.010781 | 76° 0’
40 | 0.116093 | 0.993238 | 0.116883 | 8.555547 20 10 | 0.244743 | 0.969588 | 0.252420 | 3.961652 50
50 | 0.118982 | 0.992896 | 0.119833 | 8.344956 10 20 | 0.247563 | 0.968872 | 0.255516 | 3.913642 40
7°0’ | 0.121869 | 0.992546 | 0.122785 | 8.144346 | 83° 0’ 30| 0.250380 | 0.968148 | 0.258618 | 3.866713 30
10 | 0.124756 | 0.992187 | 0.125738 | 7.953022 50 40 | 0.253195 | 0.967415 | 0.261723 | 3.820828 20
20| 0.127642 | 0.991820 | 0.128694 | 7.770351 40 50 | 0.256008 | 0.966675 | 0.264834 | 3.775952 10
7°30” | 0.130526 | 0.991445 | 0.131652 | 7.595754 | 82°30|| 15°0”| 0.258819 | 0.965926 | 0.267949 | 3.732051 | 75° 0"
cos sin cot tan Angle cos sin cot tan Angle

Forangles 0° to 15° 0” (angles found in a column to the left of the data), use the column labels at the
top of the table; for angles 75° to 90° 0” (angles found in a column to the right of the data), use the
column labels at the bottom of the table.
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Trigonometric Functions of Angles from 15° to 30° and 60° to 75°

Angle sin cos tan cot Angle sin cos tan cot
15°07 | 0.258819 | 0.965926 | 0.267949 | 3.732051 | 75° 0" || 22° 30" | 0.382683 | 0.923880 | 0.414214 | 2.414214 | 67° 30
10 | 0.261628 | 0.965169 | 0.271069 | 3.689093 50 40| 0.385369 | 0.922762 | 0.417626 | 2.394489 20
20 | 0.264434 | 0.964404 | 0.274194 | 3.647047 40 50 | 0.388052 | 0.921638 | 0.421046 | 2.375037 10
30| 0.267238 | 0.963630 | 0.277325 | 3.605884 30(| 23°0’|0.390731 | 0.920505 | 0.424475 | 2.355852 | 67°0’
40 | 0.270040 | 0.962849 | 0.280460 | 3.565575 20 10 | 0.393407 | 0.919364 | 0.427912 | 2.336929 50
50 | 0.272840 | 0.962059 | 0.283600 | 3.526094 10 20| 0.396080 | 0.918216 | 0.431358 | 2.318261 40
16° 0’ | 0.275637 | 0.961262 | 0.286745 | 3.487414 | 74° 0’ 30| 0.398749 | 0.917060 | 0.434812 | 2.299843 30
10 | 0.278432 | 0.960456 | 0.289896 | 3.449512 50 40| 0.401415 | 0.915896 | 0.438276 | 2.281669 20
20| 0.281225 | 0.959642 | 0.293052 | 3.412363 40 50 | 0.404078 | 0.914725 | 0.441748 | 2.263736 10
30 | 0.284015 | 0.958820 | 0.296213 | 3.375943 30|| 24°0’| 0.406737 | 0.913545 | 0.445229 | 2.246037 | 66° 0"
40 | 0.286803 | 0.957990 | 0.299380 | 3.340233 20 10 | 0.409392 | 0.912358 | 0.448719 | 2.228568 50
50| 0.289589 | 0.957151 | 0.302553 | 3.305209 10 20| 0.412045 | 0.911164 | 0.452218 | 2.211323 40
17° 07| 0.292372 | 0.956305 | 0.305731 | 3.270853 | 73° 0’ 30| 0.414693 | 0.909961 | 0.455726 | 2.194300 30
10 | 0.295152 | 0.955450 | 0.308914 | 3.237144 50 40| 0.417338 | 0.908751 | 0.459244 | 2.177492 20
20 | 0.297930 | 0.954588 | 0.312104 | 3.204064 40 50 | 0.419980 | 0.907533 | 0.462771 | 2.160896 10
30| 0.300706 | 0.953717 | 0.315299 | 3.171595 30| 25°0’| 0.422618 | 0.906308 | 0.466308 | 2.144507 | 65°0’
40 | 0.303479 | 0.952838 | 0.318500 | 3.139719 20 10 | 0.425253 | 0.905075 | 0.469854 | 2.128321 50
50 | 0.306249 | 0.951951 | 0.321707 | 3.108421 10 20 | 0.427884 | 0.903834 | 0.473410 | 2.112335 40
18° 07| 0.309017 | 0.951057 | 0.324920 | 3.077684 | 72°0’ 30| 0.430511 | 0.902585 | 0.476976 | 2.096544 30
10 | 0.311782 | 0.950154 | 0.328139 | 3.047492 50 40| 0.433135 | 0.901329 | 0.480551 | 2.080944 20
20| 0.314545 | 0.949243 | 0.331364 | 3.017830 40 50 | 0.435755 | 0.900065 | 0.484137 | 2.065532 10
30 | 0.317305 | 0.948324 | 0.334595 | 2.988685 30|| 26°0’|0.438371 | 0.898794 | 0.487733 | 2.050304 | 64° 0"
40 | 0.320062 | 0.947397 | 0.337833 | 2.960042 20 10 | 0.440984 | 0.897515 | 0.491339 | 2.035256 50
50| 0.322816 | 0.946462 | 0.341077 | 2.931888 10 20 | 0.443593 | 0.896229 | 0.494955 | 2.020386 40
19° 07| 0.325568 | 0.945519 | 0.344328 | 2.904211 | 71°0’ 30| 0.446198 | 0.894934 | 0.498582 | 2.005690 30
10 | 0.328317 | 0.944568 | 0.347585 | 2.876997 50 40| 0.448799 | 0.893633 | 0.502219 | 1.991164 20
20 | 0.331063 | 0.943609 | 0.350848 | 2.850235 40 50 | 0.451397 | 0.892323 | 0.505867 | 1.976805 10
30| 0.333807 | 0.942641 | 0.354119 | 2.823913 30(| 27°0’| 0.453990 | 0.891007 | 0.509525 | 1.962611 | 63°0’
40 | 0.336547 | 0.941666 | 0.357396 | 2.798020 20 10 | 0.456580 | 0.889682 | 0.513195 | 1.948577 50
50| 0.339285 | 0.940684 | 0.360679 | 2.772545 10 20| 0.459166 | 0.888350 | 0.516875 | 1.934702 40
20° 0’| 0.342020 | 0.939693 | 0.363970 | 2.747477 | 70° 0’ 30| 0.461749 | 0.887011 | 0.520567 | 1.920982 30
10 | 0.344752 | 0.938694 | 0.367268 | 2.722808 50 40 | 0.464327 | 0.885664 | 0.524270 | 1.907415 20
20| 0.347481 | 0.937687 | 0.370573 | 2.698525 40 50| 0.466901 | 0.884309 | 0.527984 | 1.893997 10
30 | 0.350207 | 0.936672 | 0.373885 | 2.674621 30|| 28°0’ | 0.469472 | 0.882948 | 0.531709 | 1.880726 | 62° 0"
40 | 0.352931 | 0.935650 | 0.377204 | 2.651087 20 10 | 0.472038 | 0.881578 | 0.535446 | 1.867600 50
50 | 0.355651 | 0.934619 | 0.380530 | 2.627912 10 20 | 0.474600 | 0.880201 | 0.539195 | 1.854616 40
21°0’ | 0.358368 | 0.933580 | 0.383864 | 2.605089 | 69° 0’ 30| 0.477159 | 0.878817 | 0.542956 | 1.841771 30
10 | 0.361082 | 0.932534 | 0.387205 | 2.582609 50 40| 0.479713 | 0.877425 | 0.546728 | 1.829063 20
20| 0.363793 | 0.931480 | 0.390554 | 2.560465 40 50| 0.482263 | 0.876026 | 0.550513 | 1.816489 10
30| 0.366501 | 0.930418 | 0.393910 | 2.538648 30| 29°0’| 0.484810 | 0.874620 | 0.554309 | 1.804048 | 61°0’
40 | 0.369206 | 0.929348 | 0.397275 | 2.517151 20 10 | 0.487352 | 0.873206 | 0.558118 | 1.791736 50
50| 0.371908 | 0.928270 | 0.400646 | 2.495966 10 20| 0.489890 | 0.871784 | 0.561939 | 1.779552 40
22° 0’| 0.374607 | 0.927184 | 0.404026 | 2.475087 | 68° 0" 30| 0.492424 | 0.870356 | 0.565773 | 1.767494 30
10 | 0.377302 | 0.926090 | 0.407414 | 2.454506 50 40 | 0.494953 | 0.868920 | 0.569619 | 1.755559 20
20| 0.379994 | 0.924989 | 0.410810 | 2.434217 40 50| 0.497479 | 0.867476 | 0.573478 | 1.743745 10
22° 30 | 0.382683 | 0.923880 | 0.414214 | 2.414214 | 67° 30| 30° 0’ | 0.500000 | 0.866025 | 0.577350 | 1.732051 | 60° 0’
cos sin cot tan Angle cos sin cot tan Angle

For angles 15° to 30° 0’ (angles found in a column to the left of the data), use the column labels at
the top of the table; for angles 60° to 75° 0’ (angles found in a column to the right of the data), use the
column labels at the bottom of the table.
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Trigonometric Functions of Angles from 30° to 60°

Angle sin cos tan cot Angle sin cos tan cot
30° 0’ | 0.500000 | 0.866025 | 0.577350 | 1.732051 | 60° 0”|| 37° 30" | 0.608761 | 0.793353 | 0.767327 | 1.303225 | 52° 30"
10 | 0.502517 | 0.864567 | 0.581235 | 1.720474 50 40 | 0.611067 | 0.791579 | 0.771959 | 1.295406 20
20 | 0.505030 | 0.863102 | 0.585134 | 1.709012 40 50| 0.613367 | 0.789798 | 0.776612 | 1.287645 10
30| 0.507538 | 0.861629 | 0.589045 | 1.697663 30| 38°0"|0.615661 | 0.788011 | 0.781286 | 1.279942 | 52°0’
40 | 0.510043 | 0.860149 | 0.592970 | 1.686426 20 10| 0.617951 | 0.786217 | 0.785981 | 1.272296 50
50 | 0.512543 | 0.858662 | 0.596908 | 1.675299 10 20 | 0.620235 | 0.784416 | 0.790697 | 1.264706 40
31°0’ | 0.515038 | 0.857167 | 0.600861 | 1.664279 | 59° 0’ 30 | 0.622515 | 0.782608 | 0.795436 | 1.257172 30
10 | 0.517529 | 0.855665 | 0.604827 | 1.653366 50 40 | 0.624789 | 0.780794 | 0.800196 | 1.249693 20
20 | 0.520016 | 0.854156 | 0.608807 | 1.642558 40 50| 0.627057 | 0.778973 | 0.804979 | 1.242268 10
30 | 0.522499 | 0.852640 | 0.612801 | 1.631852 30|| 39°0’|0.629320 | 0.777146 | 0.809784 | 1.234897 | 51°0’
40 | 0.524977 | 0.851117 | 0.616809 | 1.621247 20 10 | 0.631578 | 0.775312 | 0.814612 | 1.227579 50
50 | 0.527450 | 0.849586 | 0.620832 | 1.610742 10 20 | 0.633831 | 0.773472 | 0.819463 | 1.220312 40
32°0’| 0.529919 | 0.848048 | 0.624869 | 1.600335 | 58° 0" 30 | 0.636078 | 0.771625 | 0.824336 | 1.213097 30
10 | 0.532384 | 0.846503 | 0.628921 | 1.590024 50 40 | 0.638320 | 0.769771 | 0.829234 | 1.205933 20
20 | 0.534844 | 0.844951 | 0.632988 | 1.579808 40 50 | 0.640557 | 0.767911 | 0.834155 | 1.198818 10
30| 0.537300 | 0.843391 | 0.637070 | 1.569686 30|| 40°0’ | 0.642788 | 0.766044 | 0.839100 | 1.191754 | 50° 0"
40 | 0.539751 | 0.841825 | 0.641167 | 1.559655 20 10| 0.645013 | 0.764171 | 0.844069 | 1.184738 50
50 | 0.542197 | 0.840251 | 0.645280 | 1.549715 10 20 | 0.647233 | 0.762292 | 0.849062 | 1.177770 40
33°0’ | 0.544639 | 0.838671 | 0.649408 | 1.539865 | 57°0’ 30 | 0.649448 | 0.760406 | 0.854081 | 1.170850 30
10 | 0.547076 | 0.837083 | 0.653551 | 1.530102 50 40 | 0.651657 | 0.758514 | 0.859124 | 1.163976 20
20 | 0.549509 | 0.835488 | 0.657710 | 1.520426 40 50 | 0.653861 | 0.756615 | 0.864193 | 1.157149 10
30 | 0.551937 | 0.833886 | 0.661886 | 1.510835 30|| 41°0’| 0.656059 | 0.754710 | 0.869287 | 1.150368 | 49° 0"
40 | 0.554360 | 0.832277 | 0.666077 | 1.501328 20 10 | 0.658252 | 0.752798 | 0.874407 | 1.143633 50
50 | 0.556779 | 0.830661 | 0.670284 | 1.491904 10 20 | 0.660439 | 0.750880 | 0.879553 | 1.136941 40
34° 0’| 0.559193 | 0.829038 | 0.674509 | 1.482561 | 56° 0" 30 | 0.662620 | 0.748956 | 0.884725 | 1.130294 30
10 | 0.561602 | 0.827407 | 0.678749 | 1.473298 50 40 | 0.664796 | 0.747025 | 0.889924 | 1.123691 20
20 | 0.564007 | 0.825770 | 0.683007 | 1.464115 40 50 | 0.666966 | 0.745088 | 0.895151 | 1.117130 10
30| 0.566406 | 0.824126 | 0.687281 | 1.455009 30| 42°0’|0.669131 | 0.743145 | 0.900404 | 1.110613 | 48°0”
40 | 0.568801 | 0.822475 | 0.691572 | 1.445980 20 10| 0.671289 | 0.741195 | 0.905685 | 1.104137 50
50 | 0.571191 | 0.820817 | 0.695881 | 1.437027 10 20 | 0.673443 | 0.739239 | 0.910994 | 1.097702 40
35°0’| 0.573576 | 0.819152 | 0.700208 | 1.428148 | 55° 0’ 30 | 0.675590 | 0.737277 | 0.916331 | 1.091309 30
10 | 0.575957 | 0.817480 | 0.704551 | 1.419343 50 40 | 0.677732 | 0.735309 | 0.921697 | 1.084955 20
20| 0.578332 | 0.815801 | 0.708913 | 1.410610 40 50| 0.679868 | 0.733334 | 0.927091 | 1.078642 10
30 | 0.580703 | 0.814116 | 0.713293 | 1.401948 30|| 43°0’|0.681998 | 0.731354 | 0.932515 | 1.072369 | 47° 0"
40 | 0.583069 | 0.812423 | 0.717691 | 1.393357 20 10 | 0.684123 | 0.729367 | 0.937968 | 1.066134 50
50 | 0.585429 | 0.810723 | 0.722108 | 1.384835 10 20| 0.686242 | 0.727374 | 0.943451 | 1.059938 40
36° 0’| 0.587785 | 0.809017 | 0.726543 | 1.376382 | 54° 0" 30 | 0.688355 | 0.725374 | 0.948965 | 1.053780 30
10 | 0.590136 | 0.807304 | 0.730996 | 1.367996 50 40 | 0.690462 | 0.723369 | 0.954508 | 1.047660 20
20 | 0.592482 | 0.805584 | 0.735469 | 1.359676 40 50 | 0.692563 | 0.721357 | 0.960083 | 1.041577 10
30| 0.594823 | 0.803857 | 0.739961 | 1.351422 30|| 44°0’ | 0.694658 | 0.719340 | 0.965689 | 1.035530 | 46° 0"
40 | 0.597159 | 0.802123 | 0.744472 | 1.343233 20 10| 0.696748 | 0.717316 | 0.971326 | 1.029520 50
50 | 0.599489 | 0.800383 | 0.749003 | 1.335108 10 20| 0.698832 | 0.715286 | 0.976996 | 1.023546 40
37°0’ | 0.601815 | 0.798636 | 0.753554 | 1.327045 | 53° 0’ 30 | 0.700909 | 0.713250 | 0.982697 | 1.017607 30
10 | 0.604136 | 0.796882 | 0.758125 | 1.319044 50 40 | 0.702981 | 0.711209 | 0.988432 | 1.011704 20
20 | 0.606451 | 0.795121 | 0.762716 | 1.311105 40 50 | 0.705047 | 0.709161 | 0.994199 | 1.005835 10
37° 30 | 0.608761 | 0.793353 | 0.767327 | 1.303225 | 52° 30| 45°0’| 0.707107 | 0.707107 | 1.000000 | 1.000000 | 45°0"

cos sin cot tan Angle cos sin cot tan Angle

For angles 30° to 45° 0’ (angles found in a column to the left of the data), use the column labels at
the top of the table; for angles 45° to 60° 0’ (angles found in a column to the right of the data), use the
column labels at the bottom of the table.
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Using a Calculator to Find Trig Functions.—A scientific calculator is quicker and
more accurate than tables for finding trig functions and angles corresponding to trig func-
tions. On scientific calculators, the keys labeled sin, cos, and tan are used to find the com-
mon trig functions. The other functions can be found by using the same keys and the 1/x
key, noting thatcsc A = 1/sin A, sec A =1/cos A, and cot A = 1/tan A. The specific keystrokes
used will vary slightly from one calculator to another. To find the angle corresponding to a
given trig function use the keys labeled sin~1, cos™1, and tan~1. On some other calculators,
the sin, cos, and tan are used in combination with the INV, or inverse, key to find the num-
ber corresponding to a given trig function.

If ascientific calculator or computer is not available, tables are the easiest way to find trig
values. However, trig function values can be calculated very accurately without a scientific
calculator by using the following formulas:

. A3 A5 A7 A2 A4 AS
= - — —_—— = —_— —_ ...
SinA A 30 + = 7 + COSA 1 o1 + a0 Tha
. 1 A3 1 3 A5 A3 A5 AT
SiNTIA = SX ==+ ZxSXx—+ Sl = AR AT Sy
2% 3 72%3% 5 A = A= -g

where the angle A is expressed in radians (convert degrees to radians by multiplying
degrees by /180 = 0.0174533). The three dots at the ends of the formulas indicate that the
expression continues with more terms following the sequence established by the first few
terms. Generally, calculating just three or four terms of the expression is sufficient for
accuracy. In these formulas, a number followed by the symbol ! is called a factorial (for
example, 3! is three factorial). Except for 0!, which is defined as 1, a factorial is found by
multiplying together all the integers greater than zero and less than or equal to the factorial
number wanted. For example: 31 =1x2x3=6;41=1x2x3x4=24;71=1x2x3Xx4X
5x 6 x 7 =5040; etc.

Versed Sine and Versed Cosine.—These functions are sometimes used in formulas for
segments of a circle and may be obtained using the relationships:

versed sin® = 1 - cos0; versed cos® = 1-sin®.

Sevolute Functions.—Sevolute functions are used in calculating the form diameter of
involute splines. They are computed by subtracting the involute function of an angle from
the secant of the angle (1/cosine = secant). Thus, sevolute of 20 degrees = secant of 20
degrees — involute function of 20 degrees = 1.064178 —0.014904 = 1.049274.

Involute Functions.—Involute functions are used in certain formulas relating to the
design and measurement of gear teeth as well as measurement of threads over wires. See,
for example, pages 1997 through 2000, 2207, and 2271.

The tables on the following pages provide values of involute functions for angles from 14
to 51 degrees in increments of 1 minute. These involute functions were calculated from the
following formulas: Involute of 6 =tan 6 — 0, for 6 in radians, and involute of 6 =tan 6 — &t
X 6/180, for 6 in degrees.

Example: Foranangle of 14 degrees and 10 minutes, the involute function is found as fol-
lows: 10 minutes = 10/60 = 0.166666 degrees, 14 + 0.166666 = 14.166666 degree, so that
the involute of 14.166666 degrees = tan 14.166666 — 1 x 14.166666,/180 = 0.252420 —
0.247255 = 0.005165. This value is the same as that in the table Involute Functions for
Angles from 14 to 23 Degrees for 14 degrees and 10 minutes. The same result would be
obtained from using the conversion tables beginning on page 103 to convert 14 degrees
and 10 minutes to radians and then applying the first of the formulas given above.



INVOLUTE FUNCTIONS 111
Involute Functions for Angles from 14 to 23 Degrees
Degrees
14 | 15 16 7 [ 18 ] 19 20 21 22
Minutes Involute Functions

0 0.004982 | 0.006150 | 0.007493 | 0.009025 | 0.010760 | 0.012715 | 0.014904 | 0.017345 | 0.020054

1 0.005000 | 0.006171 | 0.007517 | 0.009052 | 0.010791 | 0.012750 | 0.014943 | 0.017388 | 0.020101

2 0.005018 | 0.006192 | 0.007541 | 0.009079 | 0.010822 | 0.012784 | 0.014982 | 0.017431 | 0.020149

3 0.005036 | 0.006213 | 0.007565 | 0.009107 | 0.010853 | 0.012819 | 0.015020 | 0.017474 | 0.020197

4 0.005055 | 0.006234 | 0.007589 | 0.009134 | 0.010884 | 0.012854 | 0.015059 | 0.017517 | 0.020244

5 0.005073 | 0.006255 | 0.007613 | 0.009161 | 0.010915 | 0.012888 | 0.015098 | 0.017560 | 0.020292

6 0.005091 | 0.006276 | 0.007637 | 0.009189 | 0.010946 | 0.012923 | 0.015137 | 0.017603 | 0.020340

7 0.005110 | 0.006297 | 0.007661 | 0.009216 | 0.010977 | 0.012958 | 0.015176 | 0.017647 | 0.020388

8 0.005128 | 0.006318 | 0.007686 | 0.009244 | 0.011008 | 0.012993 | 0.015215 | 0.017690 | 0.020436

9 0.005146 | 0.006340 | 0.007710 | 0.009272 | 0.011039 | 0.013028 | 0.015254 | 0.017734 | 0.020484
10 0.005165 | 0.006361 | 0.007735 | 0.009299 | 0.011071 | 0.013063 | 0.015293 | 0.017777 | 0.020533
11 0.005184 | 0.006382 | 0.007759 | 0.009327 | 0.011102 | 0.013098 | 0.015333 | 0.017821 | 0.020581
12 0.005202 | 0.006404 | 0.007784 | 0.009355 | 0.011133 | 0.013134 | 0.015372 | 0.017865 | 0.020629
13 0.005221 | 0.006425 | 0.007808 | 0.009383 | 0.011165 | 0.013169 | 0.015411 | 0.017908 | 0.020678
14 0.005239 | 0.006447 | 0.007833 | 0.009411 | 0.011196 | 0.013204 | 0.015451 | 0.017952 | 0.020726
15 0.005258 | 0.006469 | 0.007857 | 0.009439 | 0.011228 | 0.013240 | 0.015490 | 0.017996 | 0.020775
16 0.005277 | 0.006490 | 0.007882 | 0.009467 | 0.011260 | 0.013275 | 0.015530 | 0.018040 | 0.020824
17 0.005296 | 0.006512 | 0.007907 | 0.009495 | 0.011291 | 0.013311 | 0.015570 | 0.018084 | 0.020873
18 0.005315 | 0.006534 | 0.007932 | 0.009523 | 0.011323 | 0.013346 | 0.015609 | 0.018129 | 0.020921
19 0.005334 | 0.006555 | 0.007957 | 0.009552 | 0.011355 | 0.013382 | 0.015649 | 0.018173 | 0.020970
20 0.005353 | 0.006577 | 0.007982 | 0.009580 | 0.011387 | 0.013418 | 0.015689 | 0.018217 | 0.021019
21 0.005372 | 0.006599 | 0.008007 | 0.009608 | 0.011419 | 0.013454 | 0.015729 | 0.018262 | 0.021069
22 0.005391 | 0.006621 | 0.008032 | 0.009637 | 0.011451 | 0.013490 | 0.015769 | 0.018306 | 0.021118
23 0.005410 | 0.006643 | 0.008057 | 0.009665 | 0.011483 | 0.013526 | 0.015809 | 0.018351 | 0.021167
24 0.005429 | 0.006665 | 0.008082 | 0.009694 | 0.011515 | 0.013562 | 0.015850 | 0.018395 | 0.021217
25 0.005448 | 0.006687 | 0.008107 | 0.009722 | 0.011547 | 0.013598 | 0.015890 | 0.018440 | 0.021266
26 0.005467 | 0.006709 | 0.008133 | 0.009751 | 0.011580 | 0.013634 | 0.015930 | 0.018485 | 0.021316
27 0.005487 | 0.006732 | 0.008158 | 0.009780 | 0.011612 | 0.013670 | 0.015971 | 0.018530 | 0.021365
28 0.005506 | 0.006754 | 0.008183 | 0.009808 | 0.011644 | 0.013707 | 0.016011 | 0.018575 | 0.021415
29 0.005525 | 0.006776 | 0.008209 | 0.009837 | 0.011677 | 0.013743 | 0.016052 | 0.018620 | 0.021465
30 0.005545 | 0.006799 | 0.008234 | 0.009866 | 0.011709 | 0.013779 | 0.016092 | 0.018665 | 0.021514
31 0.005564 | 0.006821 | 0.008260 | 0.009895 | 0.011742 | 0.013816 | 0.016133 | 0.018710 | 0.021564
32 0.005584 | 0.006843 | 0.008285 | 0.009924 | 0.011775 | 0.013852 | 0.016174 | 0.018755 | 0.021614
33 0.005603 | 0.006866 | 0.008311 | 0.009953 | 0.011807 | 0.013889 | 0.016215 | 0.018800 | 0.021665
34 0.005623 | 0.006888 | 0.008337 | 0.009982 | 0.011840 | 0.013926 | 0.016255 | 0.018846 | 0.021715
35 0.005643 | 0.006911 | 0.008362 | 0.010011 | 0.011873 | 0.013963 | 0.016296 | 0.018891 | 0.021765
36 0.005662 | 0.006934 | 0.008388 | 0.010041 | 0.011906 | 0.013999 | 0.016337 | 0.018937 | 0.021815
37 0.005682 | 0.006956 | 0.008414 | 0.010070 | 0.011939 | 0.014036 | 0.016379 | 0.018983 | 0.021866
38 0.005702 | 0.006979 | 0.008440 | 0.010099 | 0.011972 | 0.014073 | 0.016420 | 0.019028 | 0.021916
39 0.005722 | 0.007002 | 0.008466 | 0.010129 | 0.012005 | 0.014110 | 0.016461 | 0.019074 | 0.021967
40 0.005742 | 0.007025 | 0.008492 | 0.010158 | 0.012038 | 0.014148 | 0.016502 | 0.019120 | 0.022018
1 0.005762 | 0.007048 | 0.008518 | 0.010188 | 0.012071 | 0.014185 | 0.016544 | 0.019166 | 0.022068
V) 0.005782 | 0.007071 | 0.008544 | 0.010217 | 0.012105 | 0.014222 | 0.016585 | 0.019212 | 0.022119
43 0.005802 | 0.007094 | 0.008571 | 0.010247 | 0.012138 | 0.014259 | 0.016627 | 0.019258 | 0.022170
44 0.005822 | 0.007117 | 0.008597 | 0.010277 | 0.012172 | 0.014297 | 0.016669 | 0.019304 | 0.022221
45 0.005842 | 0.007140 | 0.008623 | 0.010307 | 0.012205 | 0.014334 | 0.016710 | 0.019350 | 0.022272
46 0.005862 | 0.007163 | 0.008650 | 0.010336 | 0.012239 | 0.014372 | 0.016752 | 0.019397 | 0.022324
47 0.005882 | 0.007186 | 0.008676 | 0.010366 | 0.012272 | 0.014409 | 0.016794 | 0.019443 | 0.022375
48 0.005903 | 0.007209 | 0.008702 | 0.010396 | 0.012306 | 0.014447 | 0.016836 | 0.019490 | 0.022426
49 0.005923 | 0.007233 | 0.008729 | 0.010426 | 0.012340 | 0.014485 | 0.016878 | 0.019536 | 0.022478
50 0.005943 | 0.007256 | 0.008756 | 0.010456 | 0.012373 | 0.014523 | 0.016920 | 0.019583 | 0.022529
51 0.005964 | 0.007280 | 0.008782 | 0.010486 | 0.012407 | 0.014560 | 0.016962 | 0.019630 | 0.022581
52 0.005984 | 0.007303 | 0.008809 | 0.010517 | 0.012441 | 0.014598 | 0.017004 | 0.019676 | 0.022633
53 0.006005 | 0.007327 | 0.008836 | 0.010547 | 0.012475 | 0.014636 | 0.017047 | 0.019723 | 0.022684
54 0.006025 | 0.007350 | 0.008863 | 0.010577 | 0.012509 | 0.014674 | 0.017089 | 0.019770 | 0.022736
55 0.006046 | 0.007374 | 0.008889 | 0.010608 | 0.012543 | 0.014713 | 0.017132 | 0.019817 | 0.022788
56 0.006067 | 0.007397 | 0.008916 | 0.010638 | 0.012578 | 0.014751 | 0.017174 | 0.019864 | 0.022840
57 0.006087 | 0.007421 | 0.008943 | 0.010669 | 0.012612 | 0.014789 | 0.017217 | 0.019912 | 0.022892
58 0.006108 | 0.007445 | 0.008970 | 0.010699 | 0.012646 | 0.014827 | 0.017259 | 0.019959 | 0.022944
59 0.006129 | 0.007469 | 0.008998 | 0.010730 | 0.012681 | 0.014866 | 0.017302 | 0.020006 | 0.022997
60 0.006150 | 0.007493 | 0.009025 | 0.010760 | 0.012715 | 0.014904 | 0.017345 | 0.020054 | 0.023049
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Involute Functions for Angles from 23 to 32 Degrees

INVOLUTE FUNCTIONS

Degrees
3 | u 25 6 | 2 | 28 29 30 31
Minutes Involute Functions

0 0.023049 | 0.026350 | 0.029975 | 0.033947 | 0.038287 | 0.043017 | 0.048164 | 0.053752 | 0.059809

1 0.023102 | 0.026407 | 0.030039 | 0.034016 | 0.038362 | 0.043100 | 0.048253 | 0.053849 | 0.059914

2 0.023154 | 0.026465 | 0.030102 | 0.034086 | 0.038438 | 0.043182 | 0.048343 | 0.053946 | 0.060019

3 0.023207 | 0.026523 | 0.030166 | 0.034155 | 0.038514 | 0.043264 | 0.048432 | 0.054043 | 0.060124

4 0.023259 | 0.026581 | 0.030229 | 0.034225 | 0.038590 | 0.043347 | 0.048522 | 0.054140 | 0.060230

5 0.023312 | 0.026639 | 0.030293 | 0.034294 | 0.038666 | 0.043430 | 0.048612 | 0.054238 | 0.060335

6 0.023365 | 0.026697 | 0.030357 | 0.034364 | 0.038742 | 0.043513 | 0.048702 | 0.054336 | 0.060441

7 0.023418 | 0.026756 | 0.030420 | 0.034434 | 0.038818 | 0.043596 | 0.048792 | 0.054433 | 0.060547

8 0.023471 | 0.026814 | 0.030484 | 0.034504 | 0.038894 | 0.043679 | 0.048883 | 0.054531 | 0.060653

9 0.023524 | 0.026872 | 0.030549 | 0.034574 | 0.038971 | 0.043762 | 0.048973 | 0.054629 | 0.060759
10 0.023577 | 0.026931 | 0.030613 | 0.034644 | 0.039047 | 0.043845 | 0.049064 | 0.054728 | 0.060866
11 0.023631 | 0.026989 | 0.030677 | 0.034714 | 0.039124 | 0.043929 | 0.049154 | 0.054826 | 0.060972
12 0.023684 | 0.027048 | 0.030741 | 0.034785 | 0.039201 | 0.044012 | 0.049245 | 0.054924 | 0.061079
13 0.023738 | 0.027107 | 0.030806 | 0.034855 | 0.039278 | 0.044096 | 0.049336 | 0.055023 | 0.061186
14 0.023791 | 0.027166 | 0.030870 | 0.034926 | 0.039355 | 0.044180 | 0.049427 | 0.055122 | 0.061292
15 0.023845 | 0.027225 | 0.030935 | 0.034997 | 0.039432 | 0.044264 | 0.049518 | 0.055221 | 0.061400
16 0.023899 | 0.027284 | 0.031000 | 0.035067 | 0.039509 | 0.044348 | 0.049609 | 0.055320 | 0.061507
17 0.023952 | 0.027343 | 0.031065 | 0.035138 | 0.039586 | 0.044432 | 0.049701 | 0.055419 | 0.061614
18 0.024006 | 0.027402 | 0.031130 | 0.035209 | 0.039664 | 0.044516 | 0.049792 | 0.055518 | 0.061721
19 0.024060 | 0.027462 | 0.031195 | 0.035280 | 0.039741 | 0.044601 | 0.049884 | 0.055617 | 0.061829
20 0.024114 | 0.027521 | 0.031260 | 0.035352 | 0.039819 | 0.044685 | 0.049976 | 0.055717 | 0.061937
21 0.024169 | 0.027581 | 0.031325 | 0.035423 | 0.039897 | 0.044770 | 0.050068 | 0.055817 | 0.062045
22 0.024223 | 0.027640 | 0.031390 | 0.035494 | 0.039974 | 0.044855 | 0.050160 | 0.055916 | 0.062153
23 0.024277 | 0.027700 | 0.031456 | 0.035566 | 0.040052 | 0.044940 | 0.050252 | 0.056016 | 0.062261
24 0.024332 | 0.027760 | 0.031521 | 0.035637 | 0.040131 | 0.045024 | 0.050344 | 0.056116 | 0.062369
25 0.024386 | 0.027820 | 0.031587 | 0.035709 | 0.040209 | 0.045110 | 0.050437 | 0.056217 | 0.062478
26 0.024441 | 0.027880 | 0.031653 | 0.035781 | 0.040287 | 0.045195 | 0.050529 | 0.056317 | 0.062586
27 0.024495 | 0.027940 | 0.031718 | 0.035853 | 0.040366 | 0.045280 | 0.050622 | 0.056417 | 0.062695
28 0.024550 | 0.028000 | 0.031784 | 0.035925 | 0.040444 | 0.045366 | 0.050715 | 0.056518 | 0.062804
29 0.024605 | 0.028060 | 0.031850 | 0.035997 | 0.040523 | 0.045451 | 0.050808 | 0.056619 | 0.062913
30 0.024660 | 0.028121 | 0.031917 | 0.036069 | 0.040602 | 0.045537 | 0.050901 | 0.056720 | 0.063022
31 0.024715 | 0.028181 | 0.031983 | 0.036142 | 0.040680 | 0.045623 | 0.050994 | 0.056821 | 0.063131
32 0.024770 | 0.028242 | 0.032049 | 0.036214 | 0.040759 | 0.045709 | 0.051087 | 0.056922 | 0.063241
33 0.024825 | 0.028302 | 0.032116 | 0.036287 | 0.040839 | 0.045795 | 0.051181 | 0.057023 | 0.063350
34 0.024881 | 0.028363 | 0.032182 | 0.036359 | 0.040918 | 0.045881 | 0.051274 | 0.057124 | 0.063460
35 0.024936 | 0.028424 | 0.032249 | 0.036432 | 0.040997 | 0.045967 | 0.051368 | 0.057226 | 0.063570
36 0.024992 | 0.028485 | 0.032315 | 0.036505 | 0.041077 | 0.046054 | 0.051462 | 0.057328 | 0.063680
37 0.025047 | 0.028546 | 0.032382 | 0.036578 | 0.041156 | 0.046140 | 0.051556 | 0.057429 | 0.063790
38 0.025103 | 0.028607 | 0.032449 | 0.036651 | 0.041236 | 0.046227 | 0.051650 | 0.057531 | 0.063901
39 0.025159 | 0.028668 | 0.032516 | 0.036724 | 0.041316 | 0.046313 | 0.051744 | 0.057633 | 0.064011
40 0.025214 | 0.028729 | 0.032583 | 0.036798 | 0.041395 | 0.046400 | 0.051838 | 0.057736 | 0.064122
41 0.025270 | 0.028791 | 0.032651 | 0.036871 | 0.041475 | 0.046487 | 0.051933 | 0.057838 | 0.064232
42 0.025326 | 0.028852 | 0.032718 | 0.036945 | 0.041556 | 0.046575 | 0.052027 | 0.057940 | 0.064343
43 0.025382 | 0.028914 | 0.032785 | 0.037018 | 0.041636 | 0.046662 | 0.052122 | 0.058043 | 0.064454
44 0.025439 | 0.028976 | 0.032853 | 0.037092 | 0.041716 | 0.046749 | 0.052217 | 0.058146 | 0.064565
45 0.025495 | 0.029037 | 0.032920 | 0.037166 | 0.041797 | 0.046837 | 0.052312 | 0.058249 | 0.064677
46 0.025551 | 0.029099 | 0.032988 | 0.037240 | 0.041877 | 0.046924 | 0.052407 | 0.058352 | 0.064788
47 0.025608 | 0.029161 | 0.033056 | 0.037314 | 0.041958 | 0.047012 | 0.052502 | 0.058455 | 0.064900
48 0.025664 | 0.029223 | 0.033124 | 0.037388 | 0.042039 | 0.047100 | 0.052597 | 0.058558 | 0.065012
49 0.025721 | 0.029285 | 0.033192 | 0.037462 | 0.042120 | 0.047188 | 0.052693 | 0.058662 | 0.065123
50 0.025778 | 0.029348 | 0.033260 | 0.037537 | 0.042201 | 0.047276 | 0.052788 | 0.058765 | 0.065236
51 0.025834 | 0.029410 | 0.033328 | 0.037611 | 0.042282 | 0.047364 | 0.052884 | 0.058869 | 0.065348
52 0.025891 | 0.029472 | 0.033397 | 0.037686 | 0.042363 | 0.047452 | 0.052980 | .058973 | 0.065460
53 0.025948 | 0.029535 | 0.033465 | 0.037761 | 0.042444 | 0.047541 | 0.053076 | 0.059077 | 0.065573
54 0.026005 | 0.029598 | 0.033534 | 0.037835 | 0.042526 | 0.047630 | 0.053172 | 0.059181 | 0.065685
55 0.026062 | 0.029660 | 0.033602 | 0.037910 | 0.042608 | 0.047718 | 0.053268 | 0.059285 | 0.065798
56 0.026120 | 0.029723 | 0.033671 | 0.037985 | 0.042689 | 0.047807 | 0.053365 | 0.059390 | 0.065911
57 0.026177 | 0.029786 | 0.033740 | 0.038060 | 0.042771 | 0.047896 | 0.053461 | 0.059494 | 0.066024
58 0.026235 | 0.029849 | 0.033809 | 0.038136 | 0.042853 | 0.047985 | 0.053558 | 0.059599 | 0.066137
59 0.026292 | 0.029912 | 0.033878 | 0.038211 | 0.042935 | 0.048074 | 0.053655 | 0.059704 | 0.066251
60 0.026350 | 0.029975 | 0.033947 | 0.038287 | 0.043017 | 0.048164 | 0.053752 | 0.059809 | 0.066364




INVOLUTE FUNCTIONS 113
Involute Functions for Angles from 32 to 41 Degrees
Degrees
2 | 3 34 33 | 3% [ 37 38 39 40
Minutes Involute Functions

0 0.066364 | 0.073449 | 0.081097 | 0.089342 | 0.098224 | 0.107782 | 0.118061 | 0.129106 | 0.140968

1 0.066478 | 0.073572 | 0.081229 | 0.089485 | 0.098378 | 0.107948 | 0.118238 | 0.129297 | 0.141173

2 0.066591 | 0.073695 | 0.081362 | 0.089628 | 0.098532 | 0.108113 | 0.118416 | 0.129488 | 0.141378

3 0.066705 | 0.073818 | 0.081494 | 0.089771 | 0.098686 | 0.108279 | 0.118594 | 0.129679 | 0.141584

4 0.066820 | 0.073941 | 0.081627 | 0.089914 | 0.098840 | 0.108445 | 0.118773 | 0.129870 | 0.141789

5 0.066934 | 0.074064 | 0.081760 | 0.090058 | 0.098994 | 0.108611 | 0.118951 | 0.130062 | 0.141995

6 0.067048 | 0.074188 | 0.081894 | 0.090201 | 0.099149 | 0.108777 | 0.119130 | 0.130254 | 0.142201

7 0.067163 | 0.074312 | 0.082027 | 0.090345 | 0.099303 | 0.108943 | 0.119309 | 0.130446 | 0.142408

8 0.067277 | 0.074435 | 0.082161 | 0.090489 | 0.099458 | 0.109110 | 0.119488 | 0.130639 | 0.142614

9 0.067392 | 0.074559 | 0.082294 | 0.090633 | 0.099614 | 0.109277 | 0.119667 | 0.130832 | 0.142821
10 0.067507 | 0.074684 | 0.082428 | 0.090777 | 0.099769 | 0.109444 | 0.119847 | 0.131025 | 0.143028
11 0.067622 | 0.074808 | 0.082562 | 0.090922 | 0.099924 | 0.109611 | 0.120027 | 0.131218 | 0.143236
12 0.067738 | 0.074932 | 0.082697 | 0.091067 | 0.100080 | 0.109779 | 0.120207 | 0.131411 | 0.143443
13 0.067853 | 0.075057 | 0.082831 | 0.091211 | 0.100236 | 0.109947 | 0.120387 | 0.131605 | 0.143651
14 0.067969 | 0.075182 | 0.082966 | 0.091356 | 0.100392 | 0.110114 | 0.120567 | 0.131799 | 0.143859
15 0.068084 | 0.075307 | 0.083101 | 0.091502 | 0.100549 | 0.110283 | 0.120748 | 0.131993 | 0.144068
16 0.068200 | 0.075432 | 0.083235 | 0.091647 | 0.100705 | 0.110451 | 0.120929 | 0.132187 | 0.144276
17 0.068316 | 0.075557 | 0.083371 | 0.091793 | 0.100862 | 0.110619 | 0.121110 | 0.132381 | 0.144485
18 0.068432 | 0.075683 | 0.083506 | 0.091938 | 0.101019 | 0.110788 | 0.121291 | 0.132576 | 0.144694
19 0.068549 | 0.075808 | 0.083641 | 0.092084 | 0.101176 | 0.110957 | 0.121473 | 0.132771 | 0.144903
20 0.068665 | 0.075934 | 0.083777 | 0.092230 | 0.101333 | 0.111126 | 0.121655 | 0.132966 | 0.145113
21 0.068782 | 0.076060 | 0.083913 | 0.092377 | 0.101490 | 0.111295 | 0.121837 | 0.133162 | 0.145323
22 0.068899 | 0.076186 | 0.084049 | 0.092523 | 0.101648 | 0.111465 | 0.122019 | 0.133358 | 0.145533
23 0.069016 | 0.076312 | 0.084185 | 0.092670 | 0.101806 | 0.111635 | 0.122201 | 0.133553 | 0.145743
24 0.069133 | 0.076439 | 0.084321 | 0.092816 | 0.101964 | 0.111805 | 0.122384 | 0.133750 | 0.145954
25 0.069250 | 0.076565 | 0.084458 | 0.092963 | 0.102122 | 0.111975 | 0.122567 | 0.133946 | 0.146165
26 0.069367 | 0.076692 | 0.084594 | 0.093111 | 0.102280 | 0.112145 | 0.122750 | 0.134143 | 0.146376
27 0.069485 | 0.076819 | 0.084731 | 0.093258 | 0.102439 | 0.112316 | 0.122033 | 0.134339 | 0.146587
28 0.069602 | 0.076946 | 0.084868 | 0.093406 | 0.102598 | 0.112486 | 0.123117 | 0.134537 | 0.146799
29 0.069720 | 0.077073 | 0.085005 | 0.093553 | 0.102757 | 0.112657 | 0.123300 | 0.134734 | 0.147010
30 0.069838 | 0.077200 | 0.085142 | 0.093701 | 0.102916 | 0.112829 | 0.123484 | 0.134931 | 0.147222
31 0.069956 | 0.077328 | 0.085280 | 0.093849 | 0.103075 | 0.113000 | 0.123668 | 0.135129 | 0.147435
32 0.070075 | 0.077455 | 0.085418 | 0.093998 | 0.103235 | 0.113172 | 0.123853 | 0.135327 | 0.147647
33 0.070193 | 0.077583 | 0.085555 | 0.094146 | 0.103395 | 0.113343 | 0.124037 | 0.135525 | 0.147860
34 0.070312 | 0.077711 | 0.085693 | 0.094295 | 0.103555 | 0.113515 | 0.124222 | 0.135724 | 0.148073
35 0.070430 | 0.077839 | 0.085832 | 0.094443 | 0.103715 | 0.113688 | 0.124407 | 0.135923 | 0.148286
36 0.070549 | 0.077968 | 0.085970 | 0.094593 | 0.103875 | 0.113860 | 0.124592 | 0.136122 | 0.148500
37 0.070668 | 0.078096 | 0.086108 | 0.094742 | 0.104036 | 0.114033 | 0.124778 | 0.136321 | 0.148714
38 0.070788 | 0.078225 | 0.086247 | 0.094891 | 0.104196 | 0.114205 | 0.124964 | 0.136520 | 0.148928
39 0.070907 | 0.078354 | 0.086386 | 0.095041 | 0.104357 | 0.114378 | 0.125150 | 0.136720 | 0.149142
40 0.071026 | 0.078483 | 0.086525 | 0.095190 | 0.104518 | 0.114552 | 0.125336 | 0.136920 | 0.149357
2 0.071146 | 0.078612 | 0.086664 | 0.095340 | 0.104680 | 0.114725 | 0.125522 | 0.137120 | 0.149572
42 0.071266 | 0.078741 | 0.086804 | 0.095490 | 0.104841 | 0.114899 | 0.125709 | 0.137320 | 0.149787
43 0.071386 | 0.078871 | 0.086943 | 0.095641 | 0.105003 | 0.115073 | 0.125896 | 0.137521 | 0.150002
44 0.071506 | 0.079000 | 0.087083 | 0.095791 | 0.105165 | 0.115247 | 0.126083 | 0.137722 | 0.150218
45 0.071626 | 0.079130 | 0.087223 | 0.095942 | 0.105327 | 0.115421 | 0.126270 | 0.137923 | 0.150434
46 0.071747 | 0.079260 | 0.087363 | 0.096093 | 0.105489 | 0.115595 | 0.126457 | 0.138124 | 0.150650
47 0.071867 | 0.079390 | 0.087503 | 0.096244 | 0.105652 | 0.115770 | 0.126645 | 0.138326 | 0.150866
48 0.071988 | 0.079520 | 0.087644 | 0.096395 | 0.105814 | 0.115945 | 0.126833 | 0.138528 | 0.151083
49 0.072109 | 0.079651 | 0.087784 | 0.096546 | 0.105977 | 0.116120 | 0.127021 | 0.138730 | 0.151299
50 0.072230 | 0.079781 | 0.087925 | 0.096698 | 0.106140 | 0.116296 | 0.127209 | 0.138932 | 0.151517
51 0.072351 | 0.079912 | 0.088066 | 0.096850 | 0.106304 | 0.116471 | 0.127398 | 0.139134 | 0.151734
52 0.072473 | 0.080043 | 0.088207 | 0.097002 | 0.106467 | 0.116647 | 0.127587 | 0.139337 | 0.151952
53 0.072594 | 0.080174 | 0.088348 | 0.097154 | 0.106631 | 0.116823 | 0.127776 | 0.139540 | 0.152169
54 0.072716 | 0.080306 | 0.088490 | 0.097306 | 0.106795 | 0.116999 | 0.127965 | 0.139743 | 0.152388
55 0.072838 | 0.080437 | 0.088631 | 0.097459 | 0.106959 | 0.117175 | 0.128155 | 0.139947 | 0.152606
56 0.072960 | 0.080569 | 0.088773 | 0.097611 | 0.107123 | 0.117352 | 0.128344 | 0.140151 | 0.152825
57 0.073082 | 0.080700 | 0.088915 | 0.097764 | 0.107288 | 0.117529 | 0.128534 | 0.140355 | 0.153044
58 0.073204 | 0.080832 | 0.089057 | 0.097917 | 0.107452 | 0.117706 | 0.128725 | 0.140559 | 0.153263
59 0.073326 | 0.080964 | 0.089200 | 0.098071 | 0.107617 | 0.117883 | 0.128915 | 0.140763 | 0.153482
60 0.073449 | 0.081097 | 0.089342 | 0.098224 | 0.107782 | 0.118061 | 0.129106 | 0.140968 | 0.153702
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Involute Functions for Angles from 41 to 50 Degrees

INVOLUTE FUNCTIONS

Degrees
41 [ 42 43 44 | 45 | 46 47 48 49
Minutes Involute Functions

0 0.153702 | 0.167366 | 0.182024 | 0.197744 | 0.214602 | 0.232679 | 0.252064 | 0.272855 | 0.295157

1 0.153922 | 0.167602 | 0.182277 | 0.198015 | 0.214893 | 0.232991 | 0.252399 | 0.273214 | 0.295542

2 0.154142 | 0.167838 | 0.182530 | 0.198287 | 0.215184 | 0.233304 | 0.252734 | 0.273573 | 0.295928

3 0.154362 | 0.168075 | 0.182784 | 0.198559 | 0.215476 | 0.233616 | 0.253069 | 0.273933 | 0.296314

4 0.154583 | 0.168311 | 0.183038 | 0.198832 | 0.215768 | 0.233930 | 0.253405 | 0.274293 | 0.296701

5 0.154804 | 0.168548 | 0.183292 | 0.199104 | 0.216061 | 0.234243 | 0.253742 | 0.274654 | 0.297088

6 0.155025 | 0.168786 | 0.183547 | 0.199377 | 0.216353 | 0.234557 | 0.254078 | 0.275015 | 0.297475

7 0.155247 | 0.169023 | 0.183801 | 0.199651 | 0.216646 | 0.234871 | 0.254415 | 0.275376 | 0.297863

8 0.155469 | 0.169261 | 0.184057 | 0.199924 | 0.216940 | 0.235186 | 0.254753 | 0.275738 | 0.298251

9 0.155691 | 0.169500 | 0.184312 | 0.200198 | 0.217234 | 0.235501 | 0.255091 | 0.276101 | 0.298640
10 0.155913 | 0.169738 | 0.184568 | 0.200473 | 0.217528 | 0.235816 | 0.255429 | 0.276464 | 0.299029
11 0.156135 | 0.169977 | 0.184824 | 0.200747 | 0.217822 | 0.236132 | 0.255767 | 0.276827 | 0.299419
12 0.156358 | 0.170216 | 0.185080 | 0.201022 | 0.218117 | 0.236448 | 0.256106 | 0.277191 | 0.299809
13 0.156581 | 0.170455 | 0.185337 | 0.201297 | 0.218412 | 0.236765 | 0.256446 | 0.277555 | 0.300200
14 0.156805 | 0.170695 | 0.185594 | 0.201573 | 0.218708 | 0.237082 | 0.256786 | 0.277919 | 0.300591
15 0.157028 | 0.170935 | 0.185851 | 0.201849 | 0.219004 | 0.237399 | 0.257126 | 0.278284 | 0.300983
16 0.157252 | 0.171175 | 0.186109 | 0.202125 | 0.219300 | 0.237717 | 0.257467 | 0.278649 | 0.301375
17 0.157476 | 0.171415 | 0.186367 | 0.202401 | 0.219596 | 0.238035 | 0.257808 | 0.279015 | 0.301767
18 0.157701 | 0.171656 | 0.186625 | 0.202678 | 0.219893 | 0.238353 | 0.258149 | 0.279381 | 0.302160
19 0.157925 | 0.171897 | 0.186883 | 0.202956 | 0.220190 | 0.238672 | 0.258491 | 0.279748 | 0.302553
20 0.158150 | 0.172138 | 0.187142 | 0.203233 | 0.220488 | 0.238991 | 0.258833 | 0.280115 | 0.302947
21 0.158375 | 0.172380 | 0.187401 | 0.203511 | 0.220786 | 0.239310 | 0.259176 | 0.280483 | 0.303342
22 0.158601 | 0.172621 | 0.187661 | 0.203789 | 0.221084 | 0.239630 | 0.259519 | 0.280851 | 0.303736
23 0.158826 | 0.172864 | 0.187920 | 0.204067 | 0.221383 | 0.239950 | 0.259862 | 0.281219 | 0.304132
24 0.159052 | 0.173106 | 0.188180 | 0.204346 | 0.221682 | 0.240271 | 0.260206 | 0.281588 | 0.304527
25 0.159279 | 0.173349 | 0.188440 | 0.204625 | 0.221981 | 0.240592 | 0.260550 | 0.281957 | 0.304924
26 0.159505 | 0.173592 | 0.188701 | 0.204905 | 0.222281 | 0.240913 | 0.260895 | 0.282327 | 0.305320
27 0.159732 | 0.173835 | 0.188962 | 0.205185 | 0.222581 | 0.241235 | 0.261240 | 0.282697 | 0.305718
28 0.159959 | 0.174078 | 0.189223 | 0.205465 | 0.222881 | 0.241557 | 0.261585 | 0.283067 | 0.306115
29 0.160186 | 0.174322 | 0.189485 | 0.205745 | 0.223182 | 0.241879 | 0.261931 | 0.283438 | 0.306513
30 0.160414 | 0.174566 | 0.189746 | 0.206026 | 0.223483 | 0.242202 | 0.262277 | 0.283810 | 0.306912
31 0.160642 | 0.174811 | 0.190009 | 0.206307 | 0.223784 | 0.242525 | 0.262624 | 0.284182 | 0.307311
32 0.160870 | 0.175055 | 0.190271 | 0.206588 | 0.224086 | 0.242849 | 0.262971 | 0.284554 | 0.307710
33 0.161098 | 0.175300 | 0.190534 | 0.206870 | 0.224388 | 0.243173 | 0.263318 | 0.284927 | 0.308110
34 0.161327 | 0.175546 | 0.190797 | 0.207152 | 0.224690 | 0.243497 | 0.263666 | 0.285300 | 0.308511
35 0.161555 | 0.175791 | 0.191060 | 0.207434 | 0.224993 | 0.243822 | 0.264014 | 0.285673 | 0.308911
36 0.161785 | 0.176037 | 0.191324 | 0.207717 | 0.225296 | 0.244147 | 0.264363 | 0.286047 | 0.309313
37 0.162014 | 0.176283 | 0.191588 | 0.208000 | 0.225600 | 0.244472 | 0.264712 | 0.286422 | 0.309715
38 0.162244 | 0.176529 | 0.191852 | 0.208284 | 0.225904 | 0.244798 | 0.265062 | 0.286797 | 0.310117
39 0.162474 | 0.176776 | 0.192116 | 0.208567 | 0.226208 | 0.245125 | 0.265412 | 0.287172 | 0.310520
40 0.162704 | 0.177023 | 0.192381 | 0.208851 | 0.226512 | 0.245451 | 0.265762 | 0.287548 | 0.310923
41 0.162934 | 0.177270 | 0.192646 | 0.209136 | 0.226817 | 0.245778 | 0.266113 | 0.287924 | 0.311327
42 0.163165 | 0.177518 | 0.192912 | 0.209420 | 0.227123 | 0.246106 | 0.266464 | 0.288301 | 0.311731
43 0.163396 | 0.177766 | 0.193178 | 0.209705 | 0.227428 | 0.246433 | 0.266815 | 0.288678 | 0.312136
44 0.163628 | 0.178014 | 0.193444 | 0.209991 | 0.227734 | 0.246761 | 0.267167 | 0.289056 | 0.312541
45 0.163859 | 0.178262 | 0.193710 | 0.210276 | 0.228041 | 0.247090 | 0.267520 | 0.289434 | 0.312947
46 0.164091 | 0.178511 | 0.193977 | 0.210562 | 0.228347 | 0.247419 | 0.267872 | 0.289812 | 0.313353
47 0.164323 | 0.178760 | 0.194244 | 0.210849 | 0.228654 | 0.247748 | 0.268225 | 0.290191 | 0.313759
48 0.164556 | 0.179009 | 0.194511 | 0.211136 | 0.228962 | 0.248078 | 0.268579 | 0.290570 | 0.314166
49 0.164788 | 0.179259 | 0.194779 | 0.211423 | 0.229270 | 0.248408 | 0.268933 | 0.290950 | 0.314574
50 0.165021 | 0.179509 | 0.195047 | 0.211710 | 0.229578 | 0.248738 | 0.269287 | 0.291330 | 0.314982
51 0.165254 | 0.179759 | 0.195315 | 0.211998 | 0.229886 | 0.249069 | 0.269642 | 0.291711 | 0.315391
52 0.165488 | 0.180009 | 0.195584 | 0.212286 | 0.230195 | 0.249400 | 0.269998 | 0.292092 | 0.315800
53 0.165722 | 0.180260 | 0.195853 | 0.212574 | 0.230504 | 0.249732 | 0.270353 | 0.292474 | 0.316209
54 0.165956 | 0.180511 | 0.196122 | 0.212863 | 0.230814 | 0.250064 | 0.270709 | 0.292856 | 0.316619
55 0.166190 | 0.180763 | 0.196392 | 0.213152 | 0.231124 | 0.250396 | 0.271066 | 0.293238 | 0.317029
56 0.166425 | 0.181014 | 0.196661 | 0.213441 | 0.231434 | 0.250729 | 0.271423 | 0.293621 | 0.317440
57 0.166660 | 0.181266 | 0.196932 | 0.213731 | 0.231745 | 0.251062 | 0.271780 | 0.294004 | 0.317852
58 0.166895 | 0.181518 | 0.197202 | 0.214021 | 0.232056 | 0.251396 | 0.272138 | 0.294388 | 0.318264
59 0.167130 | 0.181771 | 0.197473 | 0.214311 | 0.232367 | 0.251730 | 0.272496 | 0.294772 | 0.318676
60 0.167366 | 0.182024 | 0.197744 | 0.214602 | 0.232679 | 0.252064 | 0.272855 | 0.295157 | 0.319089
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Spherical Trigonometry

Spherical trigonometry deals with the measurement of triangles that are on the surface of
spheres. The sides of a spherical triangle curve across the surface of the sphere, and unlike
aplane triangle, the angles at the three corners of the triangle total 180 degrees or more.

Right-Angle Spherical Trigonometry.— The heavy black lines A, B, and C of Fig. 1 rep-
resentarightspherical triangle. The lines Jand K are radii of the sphere as they extend from
the center of the sphere to the corners of the triangle. The several plane triangles, indicated
by the various broken lines are formed from the radii and corner points of the spherical tri-
angle. Note in Fig. 1 that both J and K are radii and thus have the same value.

——

)

Fig. 1. Right-angle Spherical Triangle

Formulas for Right-angle Spherical Triangles

Formulas for Lengths

sk e p= g xT o = Ix L pe _ 180 B - 180 A
A—K><180><F B—J><180><G C—J><180><H J = = X Go K = z X o
Formulas for Angles
o 180 A .. 180 B .. 180 C
F° = nxK G° = nXJ H° = nxJ

Angle Angular Relationships

D sin(D) = sin(F)xcosec(H) cos(D) = tan(G) x cot(H) tan(D) = tan(F) x cosec(G)

cos(E) = cos(G) x sin(D) tan(E) = tan(G) x cosec(F)
sin(F) = tan(G) X cot(E) cos(F) = sec(G) x cos(H) tan(F) = tan(D) x sin(G)

cos(G) sin(F) x tan(E)

cos(H) x sec(F) tan(G)

T Q W ™

Cos(H) = cos(G) x cos(F) Cos(H) = cot(D) x COt(E)

Area Formula

2. B oy o o_ 1800 = 2 o4 Fo_ gno
Area—leSO(D + E°+90°-180°) K><180(D + E°-90°)
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Example 1:Find the length of arc A of a right-angle spherical triangle on the surface of a
sphere where radius K = 30.00 inches and angle F = 10°.
SN - I - I = i
Solution: A = KX 755(F) = 30 755(10) = 5.2359 in
Example 2: Find the length of arc B, on a sphere of radius J = 11.20 inches if angle G =
10°.
Solution: B = Jx-

- T 10) = i
180(G) = ll.20><180(10) 1.9547 in

Example 3: A right spherical triangle is to be constructed on the surface of a sphere
22.400 inches in diameter. Side A is 7.125 inches and angle E is 57° 59" 19”. Determine the
lengths of sides B and C, and angle D, and the area of the triangle.

Solution: The radius of the sphere, J = K =11.200, and the length of side A is used to find
the value of angle F. Angle E is converted to decimal degree format for simplicity, then
angles E and F are used to solve the equation for angle tan(G). Side B and angle D can then
be found. Angle H can be calculated using either of the two equations given for cos(H), and
finally the length of side C can be found. Notice that the sum of angles D + E + 90° is not
equal to 180°, but 194.98°. Calculation details are as follows:

180 A _ 180 7.125

- n K m 11.200 = 36449324
0EQ’10” — 59 19 _ o

= = + 2y = = .
E = 57°59°19 57 &0 3600 57.988611

tan(G) = sin(F)x tan(E) = sin(36.449324°) x tan(57.988611°) = 0.950357
G = atan0.950357 = 43.541944°

- T o — T =
B = Jx 180 X G 11.200 x 180 x 43.541944 = 8.511443
tan(D) = tan(F) x cosec(G) = tan(36.449324°) x cosec(43.541944°) = 1.0721569
180

D = TX atan(1.0721569) = 46.994354°

CoS(H) = cos(G) x cos(F) = c0s(43.541944°) x c0s(36.449324°) = 0.58307306

H = %)X acos(0.58307306) = 54.333023°

m e = o o =
C = Jx 155X H° = 11.200x 755 x 54.333023° = 10.62085

Angles(D + E +90°) = 46.994354° + 57.988611° + 90° = 194.98297°
Area = 11.200% x (194.98297 — 180) = 50.142591 in’
Example 4. A right spherical triangle on a20mm diameter sphere has two 90° angles, and

the distance B between the 90° angles is % of the circumference of the sphere. Find angle E,
the area of the triangle, and check using the conventional formula for area of a sphere.

Solution: By inspection, angle G is 360°/3 = 120°. Because angles D and G are known,
angle E can be calculated using cos(E) = cos(G) x sin(D) . Therefore,

COS(E) = cos(G) x sin(D) = ¢c0s(120°) x sin(90°) = -0.5
E = acos(-0.5) = 120°
Area = 102><&)(120°+900+900—1800) = 100 x 2.0943951 = 209.4 mm®

nR® _ 47(100)

Check: Total area of 20 mm dia. sphere/6 = 4 e 5 = 209.4 mm®
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Oblique-Angle Spherical Trigonometry.— The heavy black lines B, C, and S of Fig. 1
represent a right spherical triangle. The lines J and L are radii of the sphere as they extend
from the center of the sphere to the corners of the triangle. The several plane triangles, indi-
cated by the various broken lines are formed from the radii and corner points of the spheri-
cal triangle. Note in Fig. 1 that both Jand L are radii and thus have the same value.

Center of Sphere \

Fig. 2. Oblique-angle Spherical Triangle

Formulas for Oblique Spherical Triangles

Formulas for Lengths

= IxExGe | C=uxExme | §S=LxExge | j=180,8 - 180 S
B—J><180><G C—J><180><H N L><180><R J z X Ge L = “Rr°

Formulas for Angles

G"=%Q><179 H°=%Q><—§ R°=%x§
Angular Relationships
Angle Relationships Angle Relationships
D sin(D) = sin(R) x sin(E) x cosec(G) E sin(E) = sin(D) x sin(G) x cosec(R)
G sin(G) = sin(R) x sin(E) x cosec(D) E; cot(E;) = tan(D) x cos(H)

N COS(N) = cos(D) x cosec(E;) x sin(E,) E, cot(E,) = tan(N) X Cos(R)

w59, LG
v cot(gg-sin(,%q) 5z 3 O (29

R SinR = sinD X sinG X cSCE

Area of Oblique Spherical Triangle Formula

- 72, T _ o
Area = L ><180(D+E+N 180°)
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Example 1: A oblique spherical triangle is to be constructed on the surface of a sphere of
unknown size. The length of side S will be 5.470 inches; the spherical angle of arc S must
be51°1731” (angle R inFig. 2). Angle D must be 59° 55" 10”7, and angle E must be 85° 36
32”. Find the size of the sphere, lengths of sides B and C, and the value of angle N.

Solution: Convert known angles to decimal degrees format to simplify calculations:

R =510+ 4+ 3L _ 510910440
60 3600

D =59°+224 10 _ 599194440
60 3600
36 . 32

E = 85°+>2+ 24 = g5 °

85° + 32+ -2 = 85608889

Find the radius of the sphere:

180 S _ 180 _ 5470

© “R° -~ <5logloass - oLl inches

L =

Find value of angles of G and H in order to get length of sides B and C. Then solve for the
value of angle N, and finally the area. Remember that both J and L are radii, thus J = L.

sin(G) = sin(R) x sin(E) x cosec(D) = 0.780342 - (0.997065) - 1.15564
= 0.899148
G = asin(0.899148) = 64.046301°

B=B=Jx—2xG°= 611 —.64046301° = 6.829873 inches

180 180
. D+
sm( 2 E) R sin(72.76417)
tan(%[) = . (D—E) xtan( ZG) = sin(—12.844723)><tan(_6'377l85)
sin{ ——
2
_ 0.955093 _
= _0‘222310( 0.111765) = 0.480167
[Ei = atan(0.480167) = 25.648772° H = 51.297543°
= I o = I o = i
C=Jx 180><H 6.11 x 180><51.297543 5.470350 inches
- (R
sm( 2 D sin(57.669123)
cot(%/) = - ><tan( ZE) = sin(—6.377185)><tan(_12'844723)

0.844974
—-0.111073

(-0.228015) = 1.7345957

N |

= acot(1.7345957) = 29.963587° N = 59.927175°
2. T .2
Area = L XE(_)(D+E+N_1800) = 16.585 in

The triangle is an isosceles spherical triangle with legs B and S each being 5.470 inches.

Any problem of oblique spherical triangles can also be solved as two right spherical tri-
angles if a value is known for E; or E,; in that case, the equations for right spherical trian-

gles are used.
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Compound Angles

Three types of compound angles are illustrated by Figs. 1 through 6. The first type is
shown in Figs. 1, 2,and 3;the second in Fig. 4; and the third in Figs. 5 and 6.

In Fig. 1 is shown what might be considered as a thread-cutting tool without front clear-
ance. A is a known angle in plane y-y of the top surface. C is the corresponding angle in
plane x-x that is at some given angle B with plane y-y. Thus, angles A and B are components
of the compound angle C.

Example Problem Referring to Fig. 1: Angle 2A in plane y-y is known, as is also angle B
between planes x-x and y-y. It is required to find compound angle 2C in plane x-x.

Solution: Let2A =60and B=15
Then tan C =tan A cos B =tan 30 cos 15
tan C=0.57735x 0.96592 = 0.55767
C=29°8.8" 2C=58°17.6"
Fig. 2 shows a thread-cutting tool with front clearance angle B. Angle A equals one-half
the angle between the cutting edges in plane y-y of the top surface and compound angle C
is one-half the angle between the cutting edges in a plane x-x at right angles to the inclined

frontedge of the tool. The angle between planes y-y and x-x is, therefore, equal to clearance
angle B.

Example Problem Referring to Fig. 2: Find the angle 2C between the front faces of a
thread-cutting tool having a known clearance angle B, which will permit the grinding of
these faces so that their top edges will form the desired angle 24 for cutting the thread.

Solution: Let24A =60and B=15

Then anc = BnA _ tan30° _ 057735
cosB cos15° 0.96592

tan C=0.59772
C=30°52" 2C=61°44’

In Fig. 3 is shown a form-cutting tool in which the angle A is one-half the angle between
the cutting edges in plane y-y of the top surface; B is the front clearance angle; and C is one-
half the angle between the cutting edges in plane x-x at right angles to the front edges of the
tool. The formula for finding angle C when angles A and B are known is the same as that for
Fig. 2.

Example Problem Referring to Fig. 3:Find the angle 2C between the front faces of a
form-cutting tool having a known clearance angle B that will permit the grinding of these
faces so that their top edges will form the desired angle 24 for form cutting.

Solution: Let2A =46and B=12

Then o
tanC = tanA _ tan23° _ 0.42447

cosB  cosl2°  0.97815

tan C =0.43395
C=23°275" 2C=46°55"

In Fig. 4 is shown a wedge-shaped block, the top surface of which is inclined at com-
pound angle C with the base in a plane at right angles with the base and at angle R with the
front edge. Angle A in the vertical plane of the front of the plate and angle B in the vertical
plane of one side that is at right angles to the front are components of angle C.

Example Problem Referring to Fig. 4:Find the compound angle C of a wedge-shaped
block having known component angles A and B in sides at right angles to each other.
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Formulas for Compound Angles

For given angles A and B, find the resultant
angle C in plane x-x. Angle B is measured in
vertical plane y-y of midsection.

(Fig.1) tanC = tanA x cosB

tanA
cosB
(Fig. 3) (Same formula as for Fig. 2)

(Fig.2) tanC

Fig. 4. In machining plate to angles A and
B, itis held at angle C in plane x-x. Angle of
rotation R in plane parallel to base (or com-
plement of R) is for locating plate so that
plane x-x is perpendicular to axis of pivot on
angle-plate or work-holding vise.
tanB . _ fanA

t = &2

tanR = :
tanA COSR

Fig. 5. Angle R in horizontal plane parallel
to base is angle from plane x-x to side having
angle A.

tanA
tanB

tan C =tan A cos R =tan Bsin R
Compound angle C is angle in plane x-x from
base to corner formed by intersection of
planes inclined to angles A and B. This for-
mula for C may be used to find cot of com-
plement of C;, Fig. 6.

tanR =

Fig. 6.

Fig. 6. Angles A; and B, are measured in
vertical planes of front and side elevations.
Plane x-x is located by angle R from center-
line or from plane of angle B;.

tanA1
tanR =
tanB,

tanA1 _ tanB1
SiNnR  COSR

The resultant angle C; would be required in
drilling hole for pin.

tanC, =

C = compound angle in plane x-x and is the resultant of angles A and B
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Solution: Let A =47°14" and B = 38°10"

Then o ’ .
tanR = tanB _ tan38°10 _ 0.78598 — 0.72695 R= 36°09’

tanA  tan47°14’  1.0812

tanA _ tan47°14” _ 1.0812 _ — £q019/
COSR  €0s36°0.9” 0.80887 1.3367 €= 53712

In Fig. 5 is shown a four-sided block, two sides of which are at right angles to each other
and to the base of the block. The other two sides are inclined at an oblique angle with the
base. Angle C is a compound angle formed by the intersection of these two inclined sides
and the intersection of a vertical plane passing through x-x, and the base of the block. The
components of angle C are angles A and B and angle R is the angle in the base plane of the
block between the plane of angle C and the plane of angle A.

Example Problem Referring to Fig. 5:Find the angles C and R in the block shown in Fig.
5whenangles A and B are known.

Solution: Letangle A =27°and B = 36°

tanC =

Then = JcoA + co?B
COtC = JCOPA+ OB _ |1 96262 +1.3764% = /5.74627572 = 2.3971
C = 22°38.6’
tang = SOB _ Cot36% _ 1.3764 _ 150137 g = 35025

cOtA  cot27°  1.9626

Example Problem Referring to Fig. 6: Arod or pipe is inserted into a rectangular block at
an angle. Angle C; is the compound angle of inclination (measured from the vertical) in a

plane passing through the center line of the rod or pipe and at right angles to the top surface
of the block. Angles A; and B, are the angles of inclination of the rod or pipe when viewed

respectively in the front and side planes of the block. Angle R is the angle between the
plane of angle C; and the plane of angle B;. Find angles C; and R when a rod or pipe is

inclined at known angles A; and B;.
Solution: LetA; =39°and B, = 34°

TN tanc, = ftan?a, + tan2B, = 0809782+ 0674512 = 1.0539
C, = 46°30.2'
tan4; _ 0.80978
tanR = =2 = 12005 R = 50°12.4’

tanB;  0.67451

Interpolation.—In mathematics, interpolation is the process of finding a value in a table
or in a mathematical expression which falls between two given tabulated or known values.
In engineering handbooks, the values of trigonometric functions are usually given to
degrees and minutes; hence, if the given angle is to degrees, minutes and seconds, the value
of the function is determined from the nearest given values, by interpolation.

Interpolation to Find Functions of an Angle: Assume that the sine of 14°22°26” is to be
determined. It is evident that this value lies between the sine of 14° 22" and the sine of 14°
23’. Sine 14° 23’ = 0.24841 and sine 14° 22’ = 0.24813. The difference = 0.24841 —
0.24813 = 0.00028. Consider this difference as a whole number (28) and multiply it by a
fraction having as its numerator the number of seconds (26) in the given angle, and as its
denominator 60 (number of seconds in one minute). Thus %, x 28 = 12 nearly; hence, by
adding 0.00012 to sine of 14° 22" we find that sine 14°22’26” = 0.24813 + 0.00012 =
0.24825. The correction value (represented in this example by 0.00012) is added to the
function of the smaller angle nearest the given angle in dealing with sines or tangents but
this correction value is subtracted in dealing with cosines or cotangents.
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MATRICES

A matrix is a set of real numbers arranged in rows and columns to form a rectangular
array. A matrix with m rows and » columns is an m x n matrix (m by n) and may be written
as

(111 (112 Clln
A - a21 azz azn

mn

aml am2 amn

The a;; terms are called the entries or elements of the matrix. The first subscript i identifies

the row position of an entry, and the second subscriptj identifies the column position in the
matrix.

Some common matrix types have special names, as follows:
Column Matrix: A matrix that has only one column (m x 1).

Diagonal Matrix: A square matrix in which all values are zero except for those on one of
the diagonals. If the diagonal entries are all 1, the matrix is an identity matrix.

Identity Matrix: A diagonal matrix in which the diagonal entries are all 1.
Row Matrix: A matrix that has only one row (1x n).
Square Matrix: A matrix in which the number of rows and columns are equal, i.e., m = n.

Zero Matrix: A matrix in which all the entries of the matrix are zero. The zero matrix is
also called the null matrix.

Matrix Operations

Matrix Addition and Subtraction.—Matrices can be added or subtracted if they have
the same shape, that is, if number of columns in each matrix is the same, and the number of
rows in each matrix is the same. The sum or difference of the matrices are determined by
adding or subtracting the corresponding elements of each matrix. Thus, each elementin the

resultant matrix is formed using ¢;; = a;;+ b;; as illustrated below:

‘1 €12 €13 ayy ayp agg| by bip byg (a2 byy) (agp £byp) (a13%by3)

Co1 Cop Cog| = |Agy Gpp g T |byy by bog| = |(ap1 1 byy) (a5t by)) (551 byg)

€31 €32 €33 a3y gy dg3 b3y by by (a3 T byy) (azy*byy) (agz*bs3)
Example 1

4 6 -5 [8-26 (4+8) (6-2) (-5+6) |124 1
5 -78|+|-6 95/ =|(5-6) (=7+9) (8+5)| = |-1213
86 -7 |9 -22 |(-8+9) (6-2) (-7+2) 14-5

Matrix Multiplication.— Two matrices can be multiplied only when the number of col-
umns in the first matrix is equal to the number of rows of the second matrix. Matrix multi-
plication is not commutative, thus, A x B is not necessarily equal to B x A.

Eachresulting entry c;; in the product matrix, C = A x B, is the sum of the products of each

element in the it row of matrix A multiplied by the corresponding element in the /" column
of matrix B, as illustrated in the following:
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djpp A dg3 byy byy byg
gy Ayy Agz| X |byy byy byg

dgzp d3p A3z b3y byy by

(ay1bqy + agpbyy + aygbyy) (ayybyy +agybyy + ajgbsy) (agybiz+ agpbys + agzhss)
(ag1b13 + agybyy + aggbgy) (agybiy +agbyy +axbsy) (agbiz+ aypbys+ aybss)
(ag1byy + agybyy + agzbyy) (ag byp + agybyy + agzbsy) (agybyg+ agybys + agshys)

Example 2

123 [789 [(1-7+2-1+3-4)(1-8+2.2+3.5)(1-9+2.3+3.7)
456/%|123 = |[(4-7+5-1+6-4) (4-8+5-2+6-5)(4-9+5-3+6-7)
321 (457 [(3-7+2-1+1-4)(3-8+2-2+1-5)(3-9+2-3+1-7)

(7+2+12) (8+4+15) (9+6+21) 21 27 36
= |(28+5+24) (32+10+30) (36 +15+42)| = |57 72 93
1 (21+2+4) (24+4+5) (271+6+7) 27 33 40

Transpose of a Matrix.—If the rows of a matrix A,,, are interchanged with its columns,
the new matrix is called the transpose of matrix A, or AT,,.. The first row of the matrix

becomes the first column in the transposed matrix, the second row of the matrix becomes
second column, and the third row of the matrix becomes third column.

Example 3:

21 27 36 21 57 27
_ T _

A = |57 7293 A = 1277233

27 33 40 36 93 40

Determinant of a Square Matrix.— Every square matrix A is associated with a real
number, its determinant, which may be written det (A) or |A]| .

For A = {a“ alz} , the determinant of A is
dpy App

app a
— - 11 %12 | —
det(A) = \A\ = = Aq1A9p — A1p0dyq

dpp A2
For a 3 x 3 matrix B, the determinant is
bll blZ bl3
det(B) = | by by, byg
by b3y by
= (b11b22b33 - b11b23b32) - (b12b21b33 - b12b23b31) + (bl3b21b32 - b13b22b31)
= bll(b22b33 - b23b32) - b12(521b33 - b23b31) + b13(b21b32 - b22b31)
The determinant of an n x n matrix results in n successive terms with alternating signs (+
or —). The troublesome task of keeping track of the proper sign for each term can be

avoided by multiplying each term by (-1)* and adding all the terms. For example, using
this rule, the last line of the previous equation can be rewritten as follows:

= (1) A* Dby (byybgg = byghgy) + (1)1 Dbyp(by bag = bygbgy) + (=1) 1 * 3by3(byybgy — byybyy)

Example 4: Find the determinant of the following matrix.
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567
A=1123
456

Solution: det(A) = (<1 Y. 5. [(2x6) = (5x3)]

+ (DY 6 [(1x6) - (4% 3)]

(DY 7 1(1x5) - (2% 4)]
det(A) = 5(12—-15)-6(6-12) + 7(5-8)
5(=3)—6(=6) +7(=3) = —15+36-21 = 0

Minors and Cofactors.— The minor M;; of a matrix A is the determinant of a submatrix
resulting from the elimination of row i and of column ;. If A is a square matrix, the minor
M;; of the entry a;; is the determinant of the matrix obtained by deleting the i row and jt"
column of A.

The cofactor C;; of the entry a;; is given by C;; = (-1)*)M,.. When the matrix is formed by
the cofactors, then it is called a cofactors matrix.

Example 5: Find the minors and cofactors of

123
A= 456
321

Solution: To determine the minor M, delete the first row and first column of A and find
the determinant of the resulting matrix.

My = = (5x1)-(6x2) = 5-12 = -7

56
1

Similarly to find M, delete the first row and second column of A and find the determi-
nant of the resulting matrix.

My, = = (4x1)-(6x3) = 4-18 = -14

46
1

Continuing this way, we obtain the following minors:
My, = -7 My, = -14 My = -7
My = -4 My, = -8 My = -4
My = -3 Mg, = -6 Mgy = -3

To find the cofactor C;; = (1)) x M, thus Cyy = (1) D x My = 1x (=7) = -7
Similarly Cp, = (-1)*2 x M,, = -1 x =14 = 14, and continuing this way we obtain the

following cofactors

Cy = -7 Cyp, = 14 Cypy = -7

Cy =4 C,y = -8 Cpy = 4

Cy = -3 Cyp = 6 Cy3 = -3
Adjoint of a Matrix.— The transpose of cofactor matrix is called the adjoint matrix. First
determine the cofactor matrix and then transpose it to obtain the adjoint matrix.

Example 6: Find the adjoint matrix of A
123

A= 456
321
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Solution: The cofactor matrix from the above example is shown below at the left, and the
adjoint matrix on the right.

T
-7 14 -7 -7 14 -7 -7 4 -3
Cofactor(A) = | 4 -8 4 Adjoint(A) = | 4 -8 4| = |14-8 6
-3 6 -3 -3 6 -3 -7 4 -3

Singularity and Rank of a Matrix.— A singular matrix is one whose determinant is
zero. The rank of a matrix is the maximum number of linearly independent row or column
vectors.

Inverse of a Matrix.—A square non-singular matrix A has an inverse A-1 such that the

product of matrix A and inverse matrix A-1, is the identity matrix 7. Thus, AA~1 = 1. The
inverse is the ratio of adjoint of the matrix and the determinant of that matrix.

A—l - Ad{()lir‘ltgA!

Example 7:What is the inverse of the following matrix?
235

A=|416
140

Solution: The basic formula of an inverse of a matrix is

A—l - Adjoint(A)
|A]
The determinant of A is
Al = 2(1x0-4x6)-3(4x0-1%x6)+5(4x4-1x1)
= 2(0-24)-3(0-6)+5(16-1)
= -48+18+75 = 45

The cofactors are
1+1)/ 16 1+2| 4 6 1+3/ 41
a,, = (-1) =-24 a,, =(-1) =6 ayq = (-1) =15
Hu 40 12 10 13 14
2+1| 35 2+2| 25 2+3/ 23
a, = (-1) =20 a,, = (1) = -5 Ay = (-1) = -5
21 40 22 10 23 14
3+1/ 35 3+2| 25 3+3/ 23
a, = (-1) =13 a., = (-1) =8 g = (-1) = -10
31 16 32 46 33
) |24 6 15 o . |-2420 13
The matrix of cofactorsis | o9 _s _5| andthe adjointmatrixis | ¢ _5 g
13 8 -10 15 -5 -10
Then the inverse of matrix A is
Al = Adjoini(4) _ L _24 20 183
Al 45| 6 -5
15 -5 -10

Simultaneous Equations.— Matrices can be used to solve systems of simultaneous equa-
tions with a large number of unknowns. Generally, this method is less cumbersome than
using substitution methods. The coefficients of the equations are placed in matrix form.
The matrix is then manipulated into the Identity matrix, see below, to yield a solution.
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100
010
001

Identity Matrix
Example 8: Solve the three simultaneous equations using matrix operations.
—4x,; +8x,+12x; = 16

5

xq+7x,+6x3 = 10

3x1—x,+ 2x3

Solution: First, place the equation coefficients and constants into matrix form. The object
is to transform the coefficient matrix into the form shown below, thereby obtaining a solu-
tion to the system of equations.

4 8 12 16 100x
3-125[e|010x,

1 7 610 001 x,

Transform the coefficient matrix so that element ¢4, is 1 and all other elements in the first
column are 0, as follows: a) Divide Row I (R;) by —4; b) multiply new R, by -3, then add
toR,; and c) multiply R, by —1, then add to R;.

_—iél—%-l%%@ 1 2 -3 -4 1-2-3-4
3 12 5| |B-3)(-1+6)(2+9)(5+12)= |0 5 11 17
1 7 6 10| LA-1 (T+2) (6+3)(10+4)] [0 9 9 14

Transform the resulting matrix so that element c,, is 1 and all other elements in the sec-
ond column are 0, as follows: a) Divide R; by 9; b) multiply new R; by -5, then add to R,;

c) multiply R; by 2, thenadd to R,; and d) swap R, and R;.

28 8 8

1(-2+2)(-3+2)|-4+= 10-1-2 10-1-2

1-2-3-4 ( ( )( 9) 01 01
05 1117 70 83 14
=10 (5-5) (11-5) (17-=]|= (006 T|= |01 1 =

05 91 [0 7% 1 (1) 9 9
99 9 9 14 83
0o 1 1 154 0115 (006

Transform the resulting matrix so that element c45 is 1 and all other elements in the third
column are 0, as follows: a) Divide R; by 6; b) multiply new R; by -1, then add to R,; and
c)add R;toR;.

8 8 82) 35

10-1 -2 10(-1+1)(-=+= 29
5 ( (9 5 1005

14 14 83 1

—_ = _ =1 _0OJ = _

011 3 01 (1-1) (9 54) 010z
6 83 83 83

6 96y |00 1 54 0015,

Finally, when the identity matrix has been formed, the last column contains the values of
X1, X, and x5 that satisfy the original equations.

% 1 _ 83

X175 Xy = = x3—54
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Checking the solutions:
—4x1+8x2+12x3 = 16 3xl—x2+2x3 =5 x1+7x2+6x3 =10
16 = 16 5=5 10 = 10

Example 9: Use matrix operations to find the currents (13, I,, I5) in the following electrical
network.

By Kirchoff’s Current Law: 20 A
L+1, = I W -
I 2
L+1,-1,=0 !
st I =50 =100
By Kirchoff’s Voltage Law, and Ohm’s Law: T
21, +51;-40 = 0 "
101, +51;-30 = 0 B -

30V

By combining all the above equations, a linear system of three independent equations is
formed. Solve the system for the currents 7;, I,, and .

L+l,-1;=0
21, +5I; = 40
101, + 51, = 30

Solution: 1f A is the matrix of coefficients of the currents, B is the matrix of currents (vari-
ables), and C be the matrix of constants from the right side of the equations, then the prob-

lem can be written in the following form: AB = C, and B=A-1C, where A-1 is the inverse of
matrix A.

Thus,
I I 1
1141 1 0 1 11-1 |0
A=120 5 B =1 C =40 and Ll =120 5| |40
010 5 Iy 30 I (010 5] |30
Using the method of Example 7, the inverse of matrix A is
5 3 1
-1 1
Lot 1|50 15-5 fi’;G
A = = = _ = | = _=— =
ows] Plaws |18
] 111
4 8 40
and finally, matrix B can be found as follows:
5 3 1
1
) j i ;6 0 5.625
B = A_ C = - = = =
8 16 80 38 05'17255
111 '
4 8 40

Thus, I; =5.625 amps, I, = 0.125 amps, and /; = 5.75 amps.
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STATISTICAL ANALYSIS OF MANUFACTURING DATA

Statistics Theory

High volume manufacturing production, unlike prototype design work, typically
involves repeating the same machining operations and processes hundreds, thousands, or
millions of times during a given product’s or product family’s production run. Understand-
ing the failure mechanisms in a product’s tooling and improving the efficiency of these
operations by adjusting manufacturing parameters can save on: tool wear of indexable
inserts, milling cutters, reamers, twist drills; improve speed, feeds, and power consump-
tion profiles; reduce machine tool accuracy drift; and reduce lubrication and other mainte-
nance related failures. Improving these and other related process, by even a tiny amount,
can result in huge cost savings in large production run environments.

The first step is to take measurements and test the values of production processes so that
patterns can be found. Most testing procedures include the collection and tabulation of
experimental data. Without mathematical statistical analysis and interpretation it would be
impossible to know whether or not the testing was comprehensive enough to offer valid
experimental conclusions that can then be used to make manufacturing process changes.

Statistical Distribution Curves.— Statistical analysis depends on the type of statistical
distributions that apply to various properties of the data being examined.

There are six statistical distributions: 1) Normal; 2) Log Normal; 3) Exponential;
4) Binomial; 5) Weibull; and 6) Poisson.
Normal Distribution Curve.—The normal distribution is the most widely used and best-
understood statistical distribution. It is used to model mechanical, physical, electrical, and
chemical properties which scatter randomly about a well-defined mean value without
either positive or negative bias. This curve is frequently called a bell curve. The following
describes the characteristics of the normal distribution curve.

Statistical Analysis.— Statistically analyzing data is a very important scientific and engi-
neering tool which defines the characteristics of samples (limited number of observations,
trials, data points, etc.). If a sample of data is randomly selected from the population, its
statistical characteristics converge towards the statistical characteristics of the population
as the sample size increases. Because economic constraints, such as testing time and cost,
prevent a large number of repeat tests, it is important to understand how a sample of data
represents an approximation of the real population of data. The following parameters must
be calculated to evaluate the sample of data with respect to the population of data:
X = Samplemean S = Sample standard deviation V= Coefficient of variation
A, = Absolute error of the sample mean
R, = Relative error of the sample mean
t = Critical value of t-distribution (Or Student’s Distribution)
u = Population mean
X+1txA, = Confidence interval for the population mean

Sample Mean, (X): The sample mean, sometimes called the measure of average, is a
value about which the data is “centered around.” There are several types of such “average”
measures, the most common of which is the arithmetic mean, or the sample mean. The
sample mean X is calculated as:

X =

S i

z X; (1)

where x; = individual data point
n = number of data points

Sample Standard Deviation, (S) is a measure of the dispersion of data about its standard
mean X. The sample standard deviation is calculated by the formula:
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2

where n- 1 = the number of degrees of freedom (d. f.)

Degrees of freedom, (d.f.) can be defined as the number of observations made in excess
of the minimum needed to estimate a statistical parameter or quantity. For example, only
one measurement is required to identify the width of an indexable insert’s flank wear that
occurred while machining aworkpiece. If the measurements are repeated seven times, then
the sample variance of flank wear measurement has six degrees of freedom.

Coefficient of Variation, (V) is used to evaluate or control the variability in data points.
The coefficient of variation is calculated by dividing the sample standard deviation S by
the sample mean X and expressing the result in per cent:

v = S 100% ©)
X

Absolute Error of the Sample Mean, (A,) is calculated by dividing the sample standard

deviation by the square root of the number of data points. The result is expressed in the
same unit of measure as the sample standard deviation and the sample mean:

A= S (4)

T
Relative Error of the Sample Mean, (R,) is calculated by dividing the absolute error of
the sample mean by the sample mean and expressing the result in per cent:

R = ﬁ‘lOO% (5)
R ¢

Critical Value of “t-Distribution” (Student distribution): The “t-Distribution” was dis-
covered in 1908 by W. S. Gosset, who wrote under the name “Student”. The critical value
of ¢ depends on the number of degrees of freedom and the probability of error. If a 95%
two-sided confidence is used for statistical analysis, then the probability of error is 5% or
2.5% per side. A 5% probability of error provides practical accuracy, which is commonly
acceptable in various engineering calculations.

For a 5% probability of error, the critical value of +-Distribution can be determined from
Table 1, page 131, at the intersection of the column under the heading ¢, o,5 and the row
corresponding to the number of degrees of freedom shown in the column heading d.f.

Population Mean (l): The normal distribution has two parameters: the population mean
w and the population standard deviation S. The sample mean X is an estimate of the popu-
lation mean (1 = X), and the sample standard deviation is an estimate of the population
standard deviation (c = S). A graph of the normal distribution is symmetric about its mean
w. Virtually, all of the area (99.74%) under the graph is contained within the interval:

u-3c, u+3c

Thus, almost all of the probability associated with a normal distribution falls within
+ three standard deviations of the population mean pt. Also, 95.44% of the area falls within
+two standard deviations of i, and 68.26% within & one standard deviation.

Confidence Interval for the Population Mean: The degree of confidence associated with
a confidence interval or limit is known as its confidence level. Confidence levels of 90%,
95%, and 99% are commonly used. For example, a 95% confidence limit for the unknown
population mean, estimated by use of the sample mean and sample standard deviation, pro-
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vides a value above which the unknown population mean is expected to lie with 95% con-
fidence.

Equations (1) through (5) describe a sample mean that is only an estimate of the true
(population) mean. Therefore, it is important to define a confidence interval that deter-
mines a range within which the population mean lies. Such an interval depends on the sam-
ple mean, X, absolute error of the sample mean, A, and r-distribution (Student’s) value. A

confidence interval for the population mean satisfies the inequality:
X-A Xt<U<X+A Xt (6)

Applying Statistics

Minimum Numbers of Tests, or Data Points .—Minimum numbers of the data points,
which represent the sample size can be determined through the formulas for the coefficient
of variation V, Equation (3), the absolute error of the sample mean A, Equation (4), and the

relative error of the sample mean R, Equation (5).
According to Equation (4), the absolute error of the sample mean is:
S
Yo
The other expression for the absolute error of the sample mean from Equation (5) is:
A, = XXR, (7)
Because the values to the left from the equal sign in Equations (4) and (7) are equal, the
values to the right from the equal sign are also equal and, therefore:
S

= XxR (8)
ﬁ X
Solving for ./n in Equation (8) produces:
Jn= =5 €)
X X Rx
Because S/X is the coefficient of variation V, see Equation (3), then:
=X and n= Ki (10)
R, R

The coefficient of variation of the sample mean must be known or selected according to
previously collected data of a similar kind, or, if necessary, preliminary tests should be
conducted to estimate its value. Based on numerous studies of cutting tool performance
and publications on mechanical properties of cutting tool materials, the values of the coef-
ficient of variation within 25 to 45% are considered as typical. The relative error of the
sample mean between 6 and 12% is also considered typical. The coefficient of variation
and the relative error are used to estimate how many tests are required. For example, if V=
30% and R = 8%, then the numbers of tests required are n = 30%/82 = 14.

Comparing Products with Respect to Average Performance.—Lab and field tests are
usually conducted to compare the average performance of two or more products. The term
“average performance” is a quantitative value, which can be any mechanical, physical, or
chemical characteristics of a product. For example, the average tool life of drills and index-
able cutting inserts, the average hardness of cemented carbide grades, etc. The products
may differ in manufacturing procedure (CVD or PVD coatings), in chemical composition
(alloying elements and their amount), and in other parameters. Data collected during the
experiments must be statistically treated to determine whether the products have the same
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performance characteristics or not. For example, is there a difference in the sample means
or not?

Statistical treatment of data obtained from experiments with two products, includes the
following steps:

a) Calculation of the samples mean X, and X, using Equation (1)
b) Calculation of the samples standard deviation S; and S, using Equation (2)
c) Calculation of a weighted, or pooled standard deviation using the following formula:

5, = (ny—1)x 2+ (ny— 1) x S5 )
(ng=1)+(ny,-1)

where n,and n,the number of data points for products 1 and 2 respectively.

d) Selection of a confidence level. A 95% two-sided confidence level is recommended.
At this confidence level, the probability of error is £2.5% per side. The values of #-Distri-
bution versus degrees of freedom (d.f.) are provided in Table 1, and for a 95% confidence
level are located in the column under the heading “z, ;5" with respect to given degrees of
freedom (d. f. = ny + n, - 2).

e) Calculation of Decision Criterion (d.c.) using the following formula:

de. = 10 xS A" (12)
= oo Xy S

f) Comparison of the value of Decision Criterion with the difference of the samples
mean: take X, - X, if X; > X,, or X, - X; if X, > X;

The products average performance is statistically significant if the difference in the two
sample means is greater than Decision Criterion, i.e.

)_(1—)_(2>d.c. or )_(2—)_(1>d.c.
Table 1. Critical Values of ¢-Distribution
ta

df.  lio fooso fos  foow  looos  df df. foao0  fooso  foozs  foowo  fooos  d.f
1 3.078 6.314 12.706 31.821 63.657 1 16 1337 1746 2120 2583 2921 16
2 1.886 2920 4.303 6.965 9.925 2 17 1333 1740 2110 2567 2.898 17
3 1.638 2.353 3.182 4541 5841 3 18 1.330 1.734 2101 2552 2878 18
4 1533 2132 2776 3.747 4.604 4 19 1328 1.729 2.093 2539 2861 19
5 1476 2.015 2571 3.365 4.032 5 20 1325 1725 2.086 2528 2.845 20
6 1.440 1943 2.447 3.143 3.707 6 21 1323 1721 2080 2518 2831 21
7 1415 1.895 2365 2998 3.499 7 22 1321 1717 2.074 2508 2.819 22
8 1397 1.860 2306 2.896 3.355 8 23 1319 1714 2.069 2500 2.807 23
9 1383 1.833 2262 2821 3.250 9 24 1.318 1.711 2.064 2.492 2797 24
10 1.372 1812 2228 2764 3.169 10 25 1316 1.708 2.060 2.485 2.787 25
11 1.363 1.796 2201 2.718 3.106 11 26 1.315 1706 2.056 2479 2779 26
12 1356 1.782 2179 2681 3.055 12 27 1314 1703 2.052 2473 2771 27
13 1350 1.771 2160 2650 3.012 13 28 1313 1.701 2.048 2467 2.763 28
14 1.345 1761 2.145 2.624 2977 14 29 1.311 1699 2.045 2.462 2.756 29
15 1.341 1753 2131 2.602 2.947 15 Inf. 1.282 1645 1960 2.326 2576 Inf.
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EXAMPLES OF STATISTICAL ANALYSIS

Example 1:
Tool Life Tests of CNMG-432 Indexable Inserts Made of
Two Different Carbide Grades (A and B)
Carbide Grade A Carbide Grades
Test Data, x; Treatment of Data Characteristics of Normal Distribution A B
Number minutes X=X (x~X)? Number of data points, n 7 7
1 15.0 2.1 4.41 Number of degrees of freedom, n— 1 6 6
2 19.0 1.9 3.61 Sample mean (s.m.), Equation (1) 17.1 14.8
3 16.9 -0.2 0.04 Sample standard deviation, Equation (2) 1.6 2.1
4 16.6 -0.5 0.25 Coefficient of variation, Equation (3) 9.4% | 14.2%
5 16.6 -0.5 0.25 Absolute error of the s.m., Equation (4) 0.6 0.8
6 16.1 -1.0 1.00 Relative error of the s.m., Equation (5) 3.5% | 5.4%
7 194 2.3 5.29 _ 0 i i
2x= 1196 Y(x;—X)?= 14.85 Population mean is greater than: 15.6 12.8
Population mean is less than: 18.6 16.8
Carbide Grade B Comparison of Grades A and B
Test Data, x, Treatment of Data Poo:ed standoard de;{:jation, |Equ|ati0n- (1 1)d 1.9
Nomber minies | 5-X (- || aestsssconaenoe el stohenderes | 1
1 14.6 -0.2 0.04 Decision Criterion, Equation (12) 2.2
2 135 -1.3 1.69 The difference between the two sample means 2.3
3 15.6 0.8 0.64 Conclusion:
4 124 -2.4 5.76 Sample means of the tool life of carbide grades A and B are
5 14.6 -0.2 0.04 statistically significant at the 95% confidence level, since
6 13.8 -1.0 1.00 the difference of the sample means (17.1 - 14.8 = 2.3 min.)
7 19.1 43 18.49 is greater than the Decision Criterion (22 min.).
n=17 X= 148 Note: n; = ith test or data point, x; = i" value of the data
2x= 103.6 Y(x;—X)2= 27.66 point
Example 2:
Tensile Strength of Carbon Steel Specimens Versus Heat Treatment
Carbon Steel Sample A Samples
Test Data, x; Treatment of Data Characteristics of Normal Distribution A B
Number MPa x—-X (v~ X)2 Number of data points, n 5 5
1 522.0 6.9 47.61 Number of degrees of freedom, n — 1 4 4
2 511.0 -4.1 16.81 Sample mean (s.m.), Equation (1) 515.1 | 504.7
3 488.9 -26.2 686.44 Sample standard deviation, Equation (2) | 24.8 11.1
4 553.7 38.6 1490.00 Coefficient of variation, Equation (3) 4.8% 2.2%
5 499.9 -15.1 228.01 Absolute error of the s.m., Equation (4) 111 5.0
n=5 X = 515.1 Relative error of the s.m., Equation (5) 2.2% 1.0%
Yx= 25755 Y(x;—X)2= 2468.9 t-value at 95% confidence level at given 2776 | 2.776
degrees of freedom, d.f. = 4, Table 1 ' '
Carbon Steel Sample B Population mean is greater than: 484.3 | 490.8
Test Data, x; Treatment of Data Population mean is less than: 545.9 | 518.6
Number MPa x-X (x~ X)? Comparison of Samples A and B
1 517.1 12.4 153.76 Pooled standard deviation, Equation (11) 19.2
2 490.2 -14.5 210.25 t-value at 95% confidence level at given degrees 2.306
3 499.1 56 31.36 of freedom, d.f. =4 + 4 =8, Table 1
4 514.4 9.7 94.09 Decision Criterion, Equation (12) 28.0
5 502.6 -2.1 4.41 The difference between the two sample means 10.4
n=5 X= 5047 Conclusion:
2x= 2523.4 2(x; - X)2= 493.87 Sample means of the tensile strength of samples A and B

Note: n; = i test or data point, x; = i value of the data

point

are statistically insignificant at the 95% confidence level,
since the difference of the sample means (515.1 — 504.7 =
10.4 MPa) is less than the Decision Criterion (28.0 MPa).
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Example 3:
Tool Life Tests of 6.0 mm Diameter Drills with Different Web Thickness
Drills with 2.0 mm Web, Group A Drill Groups
Test Data, x; Treatment of Data Characteristics of Normal Distribution A B
Number minutes x-X (x~X)? Number of data points, n 14 16
1 15.68 -11.06 122.3236 Number of degrees of freedom, n— 1 13 15
2 18.88 -7.86 61.7796 Sample mean (s.m.), Equation (1) 26.74 | 15.01
3 19.20 -7.54 56.8516 Sample standard deviation, Equation (2) | 6.94 7.30
4 22.56 -4.18 17.4724 Coefficient of variation, Equation (3) 26.0% | 48.6%
5 23.20 -3.54 12.5316 Absolute error of the s.m., Equation (4) 1.85 1.83
6 24.40 -2.34 5.4756 Relative error of the s.m., Equation (5) 6.9% | 12.2%
! 2.64 ~210 44100 lue at 95% confidence level at gi 2.160 | 2.131
t-value al % confidence level at given . .
8 26.56 0.18 0.0324 degrees of freedom, Table 1 d.f=13 | d.f. =15
9 27.20 0.46 0.2116
10 30.24 3.50 12.2500 Population mean is greater than: 2274 | 1111
11 32.16 5.42 29.3764 Population mean is less than: 30.74 | 18.91
12 33.60 6.86 47.0596 Comparison of Grades A and B
13 36.80 10.06 101.2036 Pooled standard deviation, Equation (11) 7.14
14 39.20 12.46 155.2516 r-value at 95% confidence level at given degrees | , /o
n= 14 X= 2674 of freedom, d.f. = 13 + 15 = 28, Table 1 '
2x= 37432 Y(x;—X)? = 626.2296 Decision Criterion, Equation (12) 5.35
The difference between the two sample means 11.73
Drills with 0.9 mm Web, Group B
Test Data, x, Treitment of Data_ Test Data, x, Treitment of Data_
Number  minutes x; =X (x—X)? Number  minutes X=X (x~X)?
1 5.04 -9.97 99.4009 7 12.16 -2.85 8.1225
2 6.48 -8.53 72.7609 8 14.24 -0.77 0.5929
3 7.12 -7.89 62.2521 9 15.68 0.67 0.4489
4 7.20 -7.81 60.9961 10 16.32 1.31 1.7161
5 9.44 -5.57 31.0249 11 17.84 2.83 8.0089
6 11.36 -3.65 13.3225 12 18.00 2.99 8.9401
Conclusion: 13 21.28 6.27 39.3129
Sample means of the tool life of the drills in Group A 14 23.04 8.03 64.4809
and B are statistically significant at the 95% confidence 15 24.60 9.59 91.9681
level, since the difference of the sample means (26.74 —
15.01 = 11.73 min.) is greater than the Decision Crite- 16 — 30.40 15.39 _ 236.8521
rion (5.35 min.).Note: n, = i test or data point, x, = it n= 16 _X= 1501
value of the data point 2x= 240.20 >(x;—X)?= 800.2008

Machinability and Hardness.— In cutting steels, the allowable cutting speed for a given
tool life between grindings is, as a general rule, inversely proportional to the hardness of a
given steel. To illustrate, tests in turning an alloy steel with a high-speed steel tool showed
acutting speed of 70 feet per minute (21.3 meter per minute) when the hardness of the steel
was 180 Brinell; the cutting speed had to be reduced to about 35 feet per minute (10.7 meter
per minute) when the hardness was increased to 360 Brinell, the life between tool grindings
for these tests being 20 minutes in each case. The machinability of other steels of the same
hardness might vary. For example, the tests just referred to showed more or less variation
in the cutting speeds for steels of the same hardness, but having different compositions or
properties. Thus, while there is a constant relationship between the hardness of a steel and
its tensile strength, there is not the same constant relationship between steel hardness and
machinability as applied to different steels.
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ENGINEERING ECONOMICS

Engineers, managers, purchasing agents, and others are often required to plan and evalu-
ate project alternatives, and make economic decisions that may greatly affect the success
or failure of a project.

The goals of a project, such as reducing manufacturing cost or increasing production,
selection of machine tool alternatives, or reduction of tooling, labor and other costs, deter-
mine which of the available alternatives may bring the most attractive economic return.

Various cost analysis techniques that may be used to obtain the desired outcome are dis-
cussed in the material that follows.

Interest

Interest is money paid for the use of money lent for a certain time. Simple interest is the
interest paid on the principal (money lent) only. When simple interest that is due is not
paid, and its amount is added to the interest-bearing principal, the interest calculated on
this new principal is called compound interest. The compounding of the interest into the
principal may take place yearly or more often, according to circumstances.

Interest Formulas.— The symbols used in the formulas to calculate various types of
interest are:

P =principal or amount of money lent
I'=nominal annual interest rate stated as a percentage, i.e., 10 per cent per annum

I, =effective annual interest rate when interest is compounded more often than
once a year (see Nominal vs. Effective Interest Rates)

i =nominal annual interest rate per cent expressed as a decimal, i.e., if I =12 per
cent, theni=12/100=0.12

n =number of annual interest periods
m =number of interest compounding periods in one year

F =a sum of money at the end of » interest periods from the present date that is
equivalent to P with added interest i

A =the payment at the end of each period in a uniform series of payments continu-
ing for n periods, the entire series equivalent to P at interest rate i

Note: The exact amount of interest for one day is 1365 of the interest for one year.
Banks, however, customarily take the year as composed of 12 months of 30 days, making
a total of 360 days to a year. This method is also used for home-mortgage-type payments,
so that the interest rate per month is 30/360 = 1712 of the annual interest rate. For example,
if I'is a 12 per cent per annum nominal interest rate, then for a 30-day period, the interest
rate is (12 x 1712) = 1.0 per cent per month. The decimal rate per month is then 1.0/100 =
0.01.

Simple Interest.— The formulas for simple interest are:
Interest for n years = PXiXn
Total amount after n years, S = P+ P XiXn

Example: For $250 that has been lent for three years at 6 per cent simple interest: P =250;
I=6;i=1/100=0.06;n=3.

F = 250 + (250 x 0.06 x 3) = 250 + 45 = $295

Compound Interest.—The following formulas apply when compound interest is to be
computed and assuming that the interest is compounded annually.
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P(1+i)n

F/(1+i)"
l/n_ 1

i = (F/P)
(logF —logP)/log(1 + i)

Example: At 10 per cent interest compounded annually for 10 years, a principal amount
P of $1000 becomes a sum F of

F = 1000(1 + 10/100)10 = $2 593.74

If asum F =$2593.74 is to be accumulated, beginning with a principal P = $1,000 over a
period n = 10 years, the interest rate i to accomplish this would have to be i =
(2593.74,/1000)10 — 1 = 0.09999, which rounds to 0.1, or 10 per cent.

For a principal P = $500 to become F = $1,000 at 6 per cent interest compounded annu-
ally, the number of years n would have to be

n = (log1000 - log500)/log(1 + 0.06)
= (3-2.69897)/0.025306 = 11.9 years

Totriple the principal P =$500 to become F = $1,500, the number of years would have to
be

n

n = (log1500 - log500)/log(1 + 0.06)
= (3.17609 - 2.69897)/0.025306 = 18.85 years

Interest Compounded More Often Than Annually.—If interest is payable m times a
year, it will be computed m times during each year, or nm times during » years. The rate for
each compounding period will be i/m if i is the nominal annual decimal interest rate. There-
fore, at the end of n years, the amount F will be: F = P(1 + ilm)™™.

As an example, if P =$1,000; n is 5 years, the interest payable quarterly, and the annual
rate is 6 per cent,thenn=5; m=4;i=0.06; i/m=0.06/4=0.015; and nm =5 x4 =20, so that

F = 1000(1 +0.015)2 = $1,346.86

Nominal vs. Effective Interest Rates.—Deposits in savings banks, automobile loans,
interest on bonds, and many other transactions of this type involve computation of interest
due and payable more often than once a year. For such instances, there is a difference
between the nominal annual interest rate stated to be the cost of borrowed money and the
effective rate that is actually charged.

For example, a loan with interest charged at 1 per cent per month is described as having
an interest rate of 12 per cent per annum. To be precise, this rate should be stated as being a
nominal 12 per cent per annum compounded monthly; the actual or effective rate for
monthly payments is 12.7 per cent. For quarterly compounding, the effective rate would be
12.6 per cent:

I, = (1+1/mm-1

In this formula, I, is the effective annual rate, 7 is the nominal annual rate, and m is the
number of times per year the money is compounded.

Example: For a nominal per annum rate of 12 per cent, with monthly compounding, the
effective per annum rate is

I, = (1+0.12/12)12-1 = 0.1268 = 12.7 per cent effective per annum rate
Example: Same as before but with quarterly compounding:
I, = (1+0.12/4)4-1 = 0.1255 = 12.6 per cent effective per annum rate
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Finding Unknown Interest Rates.—If a single payment of P dollars is to produce a sum
of F dollars after » annual compounding periods, the per annum decimal interest rate is
found using:

Cash Flow and Equivalence

The sum of money receipts or disbursement in a project’s financial report are called cash
flows. Due to the time value of money, the timing of cash flows over the project life plays
a vital role in project success. Engineering economy problems involve the following four
patterns of cash flow, both separately and in combination.Two cash flow patterns are said
to be equivalent if they have the same value at a particular time.

Present Value and Discount.—The present value or present worth P of a given amount F
is the amount P that, when placed at interest i for a given time n, will produce the given
amount F.

At simple interest, P = F/ (1 + ni)

At compound interest, P = F/(1+i)"

The true discount D is the difference between Fand P: D=F — P.

These formulas are for an annual interest rate. If interest is payable other than annually,
modify the formulas as indicated in the formulas in the section Interest Compounded More
Often Than Annually on page 135.

Example: Find the present value and discount of $500 due in six months at 6 per cent sim-
ple interest. Here, F = 500; n = 6/12 = 0.5 year; i = 0.06. Then, P =500/(1 + 0.5 % 0.06) =
$485.44.

Example: Find the sum that, placed at 5 per cent compound interest, will in three years
produce $5,000. Here, F =5000; i =0.05; n = 3. Then,

P = 5000/(1+0.05)3 = $4,319.19

Annuities.—An annuity is a fixed sum paid at regular intervals. In the formulas that fol-
low, yearly payments are assumed. It is customary to calculate annuities on the basis of
compound interest. Ifan annuity A is to be paid out for n consecutive years, the interest rate
being i, then the present value P of the annuity is

p = Al 1+)n-1
i(1+0)n
If at the beginning of each year a sum A is set aside at an interest rate i, the total value F of
the sum set aside, with interest, at the end of n years, will be

A+DH[A+H"-1]
i

If at the end of each year a sum A is set aside at an interest rate #, then the total value F of
the principal, with interest, at the end of n years will be

poo g Lri-1
i

F=A

Ifaprincipal Pis increased or decreased by a sum A at the end of each year, then the value
of the principal after n years will be

F=pa+insadti=l
l
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If the sum A by which the principal P is decreased each year is greater than the total yearly
interest on the principal, then the principal, with the accumulated interest, will be entirely
used up inn years:

0= logA —log(A —iP)
log(1l+1i)

Example: If an annuity of $200 is to be paid for 10 years, what is the present amount of
money that needs to be deposited if the interest is 5 per cent. Here, A =200; i = 0.05; n = 10:

10 _
p=200d%009) " -1 _ ¢ 54435
0.05(1 + 0.05)10

The annuity a principal P drawing interest at the rate i will give for a period of n years is

4= piri)
(L+i)y1-1

Example: Asum of $10,000 is placed at 4 per cent. What is the amount of the annuity pay-
able for 20 years out of this sum: Here, P = 10000; i = 0.04; n = 20:

20
A = 10,000228A + 00T _ ¢a5 65
(1+0.04)20-1

Sinking Funds.—Amortization is “the extinction of debt, usually by means of a sinking
fund.” The sinking fund is created by a fixed investment A placed each year at compound
interest for a term of years n, and is therefore an annuity of sufficient size to produce at the
end of the term of years the amount F necessary for the repayment of the principal of the
debt, or to provide a definite sum for other purposes. Then,

z (L+in-1

Example: 1f $2,000 is invested annually for 10 years at 4 per cent compound interest, as a
sinking fund, what would be the total amount of the fund at the expiration of the term?
Here, A=2000; n=10;i=0.04:

_ (L0000 -1 _
F = 2000°=— = $24,012.21

Cash Flow Diagrams.—The following conventions are used to standardize cash flow
diagrams. The horizontal (time) axis is marked off in equal increments, one per period, up
to the duration of the project. Receipts are represented by arrows directed upwards and dis-
bursements are represented by arrows directed downwards. The arrow length is propor-
tional to the magnitude of cash flow. In the following, i = interest rate, and » = number of
payments or periods.

Table 1. Cash Flow Patterns

P-pattern A single amount P occurring at the P
p= rgsent value beginning of n years. P represents
P “Present” amount. t=o0
A single amount F occurring at the F
_F -pattern end of n years. F represents “Future”
F = future value
amount. T=n
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Table 1. (Continued) Cash Flow Patterns

Equal amounts A occurring at the end A each
A-pattern
_ of each of n years. A represents
A = annual value “gnnnal” amount. t:tlt 1 1 1 t 1t:tn
G-pattern . .
o G is increasing by an equal amount
Cér;(;jire":fgp over the period of life x. G 112G (n-1)G
expense G represents “Gradient” amount. t=2 t=n
Table 2. Standard Cash Flow Factors
=}
= c
= g
Symbol s Formula o Symbol
F (FIP, %, n) ]P
F n P
F=P(l+i)
t=n t=0
P (PIF, i%, n) E
P p=_F F
=0 @+’ =n
A each (AP, i%, n) P
0 P 2
t=1 t=n (1+i)"-1 t=0
1P (PIA, i%, n) A each
Pl poaaxr al pEEEPLLY
t=0 i(1+5)" t=1 t=n
A each (AIF, i%, n) FI
bttty 4 acr—i—F
t=1 t=n 1+ -1 t=n
FI (FIA, i%, n) A each
Pl gy jal fPREYEE
t=n l t=1 t=n
P (PIG, i%, n)
1 Plp- Gl{(lﬂ)"—l_ n } G G_12G (n-1)G
t=0 Lia+n"  @a+d)" t=2 t=n
FI (FIG, i%, n) /r
1 2G n-1)G
Floo.. Gi[Lei’=1_,) G| _TIG I (n-1)
t=n i i t=2 t=n
A each (AIG, i%, n) /r
tttttttst |a A=GF—#} G G 126 (n-1)G
t=1 t=n Lo@a+d)'-1 t=2 t=n

Example: A rental property pays $2000/month with a $10 per month increase starting the
second year. Based on 10 year period and 8% annual interest, compute the unified average
annuity, considering the gradient.
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Solution:
Average rental = G[l - LJ +A
Lo@a+"-1
= 10[ l___ 120 J +2000
(871200) (1 +8,1200)1%° -1
= 516 + 2000 = $2516
Depreciation

Depreciation is the allocation of the cost of an asset over its depreciable life. A machine
may decline in value because it is wearing out and no longer performing its function as well
as when it is new. Depreciation is a economical technique that spreads the purchase price
of an asset or other property over a number of years. Tax regulations do not allow the cost
of an asset to be treated as a deductible expense in the year of purchase. Portions of the
expense must be allocated to each of the years of the asset’s depreciation period. The
amount that is allocated each year is called the depreciation.

Straight Line Depreciation.— Straight line depreciation is a constant depreciation
charge over the period of life. If P is the principal value, L is the salvage value and n is the
period of life. The depreciation will be

Depreciation at xth year D, =

Book Value after x years BV, = P-D)r=x)
n

N
After Tax Depreciation Recovery ATDR = TR(P — L) ((1 ti) - 1]
n i(1+i)"
Sum of the Years Digits.—Another method for allocating the cost of an asset minus sal-
vage value over its useful life is called sum of the years digits depreciation. This method

results in larger than straight line depreciation charges during the early years of an asset
and smaller charges near the end period.

_2(P-L)(n=x+1)
* nn+1)

Depreciation at xth year D

X
nn+1)

Double Declining Balance Method.—A constant depreciation is applied to the book
value of the property.

Book Value after x years BV, = P-(P-L)2n-x+1)

Depreciation at xth year D, = 2(9(

n-2)(x—1>
n

_ X
Book Value after x years BV, = P(n " 2)

Statutory Depreciation System.— The latest depreciation method is used in U.S.
income tax purpose is called accelerated cost recovery system (ACRS) depreciation. The
first step in ACRS is to determine the property class of the asset being depreciated. All per-
sonal property falls into one of six classes.

Depreciation at xth year D, = PxFactor
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Table 3. Property Class and Factor

ACRS Classes of Depreciable Property

Depreciation Rate for Recovery Period (n)

Property Year
Class Personal Property (x) 3Years | 5Years | 7 Years | 10 Years
Handling device for food and beverage manu- 1 33.33% | 20.00% | 14.29% | 10.00%
3 facture, plastic products, fabricated metal 2 44.45% 32.00% 24.49% 18.00%
products 3 14.81% | 19.20% | 17.49% | 14.40%
Automobiles, trucks, computer, aircraft, 4 7.41% 11.52% | 12.49% | 11.52%
5 petroleum drilling equipment, research and
experimentation equip. 5 11.52% 8.93% 9.22%
7 Office furniture, fixtures, and equip. 6 5.76% 8.92% 7.37%
10 Railroad cars, manufacture of tobacco prod- 7 8.93% 6.55%
ucts 8 4.46% 6.55%
15 Telephone distribution line, municipal sewers 9 6.56%
plant 10 6.55%
20 Municipal sewers 11 3.28%

Evaluating Alternatives

Two or more mutually exclusive investments compete for limited funds. There are a
number of ways for selecting the superior alternative from a group of proposals. This sec-
tion concerns strategies for selecting alternatives in such a way that net value is maxi-

mized.

Net Present Value.—One of the easiest way to compare mutually exclusive alternatives
is to resolve their consequences to the present time. It is most frequently used to determine
the present value of future money receipts and disbursements. There are three economic
criteria for present worth analysis described in the table that follows. If investment cost is
same, consider only the output money. If the output result is known, then minimize the
investment cost. If neither input nor output is fixed, then maximize the output minus the
input. This method is widely applied when alternatives have the same period of time.

With uniform annual

NPV = -P+ (AR—AE)[

(1+i)"—1]+ L

expense before tax A+ ) 1+
With uniform gradi- (1+i)' -1 L
ent on annual NPV = —P+(AR-AE-(A/G,i, n)G)( - ) + -
expense before tax i(1+1i) (1+1i)

- . N
With uniform annual NPV = — P+ (AR-AE)(1-TR) A+i) =1, L
expense after tax i(a+" ) @+
With uniform gradi- 1+ -1 L
ent on annual NPV = —P+(AR-AE-(A/G, i,”)G)(l—TR)[ P )J' n
expense after tax i(1+1i) (1+19)

The symbol used in this table are defined as follows:

P =Presentvalue NPV = Netpresentvalue AR = Annual revenue
AE = Annual expense G =Uniform gradient of expense 7R = Tax rate as percentage
i =Interestrate n =Number of payments or periods L =Salvage value
The previous formulas do not consider depreciation. To include depreciation, the after tax depreci-
ation recovery (ATDR) must be added to get the net present value.
Example : A pharmaceutical company produces a product from different chemical com-
positions. Two mixing processes, batch and continuous, are available.
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Process Continuous Batch
Initial cost $75000 $35000
Lifetime (years) 10 10
Maintenance (per year) $5000 $8000
Capacity (units/year) 25000 20000

The company uses straight line depreciation, pays 40% of its net income as income tax,
and has an after tax minimum attractive rate of return of 15%. The company can sell the
product at $1.00 per unit. Which manufacturing process should the company invest in?

Solution: Because the lifetimes are equal, we can make a comparison using the present
worth method by applying the formulas for NPV and also for ATDR.

N N
NPVC()ntinu()u.\' = _P+(AR_AE)(1_TR)( Lr] _1J +TR(P_L)( b _1J

i(1+0)" n i1+
10 10
1+ 5)7 1 (1 + 5)7 1
10 75000 10
= — 75000 + (25000 x 1 —5000)(1 — 0.40)| —————| +0. )

15 1510 10 15 15)\10
= )(1+= =l1+=
100 10 100 10

= — 14775+ 15056 = 281

NPV,,,., = —P+(AR-AE)(1- TR)[@L]'J + TR(E)[MJ

i(1+0)" n i(1+0)"
14+45)° 4 (1+£10—1
10 35000 10
= — 35000 + ([20000 x 1]-8000)(1  0.40)| ——————— | +0. ( )
(381, 15" 07 18y, 15y
100\ " 10 TVASRET:

= 1135+ 7026 = 8161

Based on above calculations, the batch production process is selected because it gives a
greater net present value (NPV) than the continuous process.

Capitalized Cost.— In governmental analyses, there are some circumstances where a ser-
vice is required for an infinite period of time such as with roads, dams, pipelines, etc.
Present worth of a project with an infinite life is known as capitalized cost. Capitalized cost
is the amount of money at n = 0 needed to perpetually support the projection the earned
interest only. Capitalized cost is the present sum of money that would need to be set aside
now, at some interest rate, to yield the funds required to provide the service.

CC=P+A(PIA, i%, n)— L(PIF, i%, n) + G(PIG, i%, n)

Without Periodical Replacement cc=r +‘i,‘

1
With 100% Periodical Replacement CC =P+ _P-L +‘$
1+"-1 1
With Periodical Renovation Cost CC =P+ —RC__ +é
(1+)"-1 1!

where CC = capitalized cost; P = initial cost; L = salvage value; A = annual cost; RC =
renovation cost; i = interest rate; and, n = effective period of time.
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Equivalent Uniform Annual Cost.— This method is applied when the alternatives have
unequal periods of life. To avoid unequal periods of time, the present value and future
value is converted to an annual value.The alternatives must be mutually exclusive and
repeatedly renewed up to the duration of the longest lived alternative.

A=P(AIP, %, n) — L(AIF, i%, n) + G(AIG, i%, n) + AE

with Sinking Fund 4 = (p_)-LLED" Ly 4

Depreciation (1+ l.)n _1
With Sinking Fund i1+ " ) 1
pepreciationand. A = (P- L)~ 4 pisaps gt —2 )
Uniform Gradient G (1+i) -1 L a+d'-1
Straight Line A=P=L, ;i pap+EB=L)(n+1)i
Depreciation n 2n

Example: An investment of $15,000 is being considered to reduce labor and labor-asso-
ciated costs in a materials handling operation from $8,200 a year to $3,300. This operation
is expected to be used for 10 years before being changed or discontinued entirely. In addi-
tion to the initial investment of $15,000 and the annual cost of $3,300 for labor, there are
additional annual costs for power, maintenance, insurance, and property taxes of $1,800
associated with the revised operation. Based on comparisons of annual costs, should the
$15,000 investment be made or the present operation continued?

The present annual cost of the operation is $8,200 for labor and labor-associated costs.
The proposed operation has an annual cost of $3,300 for labor and labor extras plus $1,800
for additional power, maintenance, insurance, and taxes, plus the annual cost of recovering
the initial investment of $15,000 at some interest rate (minimum acceptable rate of return).

Assuming that 10 per cent would be an acceptable rate of return on this investment over a
period of 10 years, the annual amount to be recovered on the initial investment would be
$15,000 multiplied by the capital recovery factor.

Putting this value into (A/P, i%, n) yields:

. . 10
A= LA pypp = QOA0A104100) 15000+ 5100 = 754118
1+)"-1 (1+10/100)" -1

Adding this amount to the $5,100 annual cost associated with the investment ($3,300 +
$1,800 = $5,100) gives a total annual cost of $7,542, which is less than the present annual
cost of $8,200. Thus, the investment is justified unless there are other considerations such
as the effects of income taxes, salvage values, expected life, uncertainty about the required
rate of return, changes in the cost of borrowed funds, and others.

A tabulation of annual costs of alternative plans A, B, C, etc., is a good way to compare
costs item by item. For this example:

Item Plan A PlanB
1 Labor and labor extras $8,200.00 $3,300.00
2 Annual cost of $15,000 investment 2,442.00
3 Power 400.00
4 Maintenance 1,100.00
5 Property taxes and insurance 300.00
Total annual cost $8,200.00 $7,542.00
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Example, (Annual Cost Considering Salvage Value): If in the previous example the sal-
vage value of the equipment installed was $5,000 at the end of 10 years, what effect does
this have on the annual cost of the proposed investment of $15,0007?

The only item in the annual cost of the previous example that will be affected is the capi-
tal recovery amount of $2,442. The following formula gives the amount of annual capital
recovery when salvage value is considered:

e
A= @e-0)EED LA

(1+i)"-1
&) (1 . 10)%
= (15000 — 5000 100 10 +5000( 10) +5100 = 7227.45
= ( - ) 010 100 - '

(oo
10
Adding this amount to the $5,100 annual cost determined previously gives a total annual
cost of $7,227, which is $315 less than the previous annual cost of $7,542 for the proposed
investment.

Rate of Return.—The estimated interest rate produced by an investment. Rate of return
(ROR) isthe interest rate at which the benefits are equivalent to the costs. It is defined as the
interest rate paid on the unpaid balance of a loan such that the payment schedule makes the
unpaid loan balance equal to zero when the final payment is made. It may be computed by
finding the interest rate in such a way that the estimated expenditures are equal to the capi-
tal gain. Net Present Worth =0, or PW of benefits — PW of costs =0

L

((A+ROR) “Vyp_ppy+—L - p
ROR(1+ROR)" (1+ROR)"

The rate of return can only be calculated by trial and error solution.To find out the present
worth, select a reasonable interest rate, calculate the present worth. Choose another rate,
calculate the present worth. Interpolate or extrapolate the value of ROR to find the zero
value of present worth.

Benefit-Cost Ratio.— It is the ratio of present worth of benefit and present worth of cost.
This method is applied to municipal project evaluations where benefits (B) and costs (C)
accrue to different segments of the community. The project is considered acceptable if the
ratio equals or exceeds 1. For fixed input maximize the B/C > 1 and for fixed output maxi-
mize the B/C > 1and if neither input nor output is fixed, to compute the incremental benefit
cost ratio (AB/AC), choose AB/IAC > 1.

Example: To build a bridge over a river costs $1,200,000, benefits of $2,000,000, and
disbenefits of $500,000. (a) What is the benefit cost ratio? (b) What is the excess of benefits

over costs?
Solution: The benefit costratiois B/C = B-D _ 2,000,000 500,000 _
D 500,000

The excess of benefits over cost equal 2,000,000 — 1,200,000 — 500,000 = 300,000.

Payback Period.— This is the period of time required for the profit or other benefits of an
investment to equal the cost of investment. The criterion in all situations is to minimize the
payback period.

Break-Even Analysis.—Break-even analysis is a method of comparing two or more
alternatives to determine which works best. Frequently, cost is the basis of the comparison,
with the least expensive alternative being the most desirable. Break-even analysis can be
applied in situations such as: to determine if it is more efficient and cost effective to use
HSS, carbide, or ceramic tooling; to compare coated versus uncoated carbide tooling; to
decide which of several machines should be used to produce a part; or to decide whether to

3
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buy a new machine for a particular job or to continue to use an older machine. The tech-
niques used to solve any of these problems are the same; however, the details will be differ-
ent, depending on the type of comparison being made. The remainder of this section deals
with break-even analysis based on comparing the costs of manufacturing a product using
different machines.

Choosing a Manufacturing Method: The object of this analysis is to decide which of
several machines can produce parts at the lowest cost. In order to compare the cost of pro-
ducing a part, all the costs involved in making that part must be considered. The cost of
manufacturing any number of parts can be expressed as the sum: C;, = Cr + nx Cy, where
Cristhe total cost of manufacturing one part, Cis the sum of the fixed costs of making the
parts, n is the number of parts made, and Cy, is the total variable costs per piece made.

Fixed costs are manufacturing costs that have to be paid whatever number of parts are
produced and usually before any parts can be produced. They include the cost of drafting
and CNC part programs, the cost of special tools and equipment required to make the part,
and the cost of setting up the machine for the job. Fixed costs are generally one-time
charges that occur at the beginning of a job or are recurrent charges that do not depend on
the number of pieces made, such as those that might occur each time a job is run again.

Variable costs depend on the number of parts produced and are expressed as the cost per
part made. The variable costs include the cost of materials, the cost of machine time, the
cost of the labor directly involved in making the part, and the portion of the overhead that
is attributable to production of the part. Variable costs can be expressed as: C,, = material
cost +machine cost + labor cost + overhead cost. When comparing alternatives, if the same
cost is incurred by each alternative, then that cost can be eliminated from the analysis with-
out affecting the result. For example, the cost of material is frequently omitted from a man-
ufacturing analysis if each machine is going to make parts from the same stock and if there
is not going to be a significant difference in the amount of scrap produced by each method.
The time to produce one part is needed to determine the machine, labor, and overhead
costs. The total time expressed in hours per part is ¢ = t, + ¢, where t,equals the floor-to-
floor production time for one part and ¢, the setup time per part. The setup time, ¢, is the
time spent setting up the machine and periodically reconditioning tooling, divided by the
number of parts made per setup.

Material cost equals the cost of the materials divided by the number of parts made.

Machine cost is the portion of amachine's total cost that is charged toward the production
of each part. Itis found by multiplying the machine rate (cost of the machine per hour) by
the machine time per part, .. The machine hourly rate is calculated by dividing the lifetime
costs (including purchase price, insurance, maintenance, etc.) by the estimated lifetime
hours of operation of the machine. The total operating hours may be difficult to determine
but a reasonable number can be based on experience and dealer information.

Labor costs are the wages paid to people who are directly involved in the manufacture of
the part. The labor cost per part is the labor rate per hour multiplied by the time needed to
manufacture each part, ¢, Indirect labor, which supports but is not directly involved in the

manufacture of the part, is charged as overhead.

Overhead cost is the cost of producing an item that is not directly related to the cost of
manufacture. Overhead includes the cost of management and other support personnel,
building costs, heating and cooling, and similar expenses. Often, overhead is estimated as
a percentage of the largest component cost of producing a part. For example, if direct labor
is the largest expense in producing a part, the overhead can be estimated as a percentage of
the direct labor costs. On the other hand, if equipment costs are higher, the overhead would
be based on a percentage of the machine cost. Depending on the company, typical over-
head charges range from about 150 to 800 per cent of the highest variable cost.
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Most of the time, the decision to use one machine or another for making parts depends on
how many pieces are needed. For example, given three machines A, B, and C, if only a few
parts need to be produced, then, in terms of cost, machine A might be the best; if hundreds
of parts are needed, then machine B might be best; and, if thousands of components are to
be manufactured, then machine C may result in the lowest cost per part. Break-even analy-
sis reveals how many components need to be produced before a particular machine
becomes more cost effective than another.

To use break-even analysis, the cost of operating each machine needs to be established.
The costs are plotted on a graph as a function of the number of components to be manufac-
tured to learn which machine can make the required parts for the least cost. The following
graphis a plot of the fixed and variable costs of producing a quantity of parts on two differ-
ent machines, Machine 1 and Machine 2. Fixed costs for each machine are plotted on the
vertical cost axis. Variable costs for each machine are plotted as a line that intersects the
cost axis at the fixed cost for each respective machine. The variable cost line is constructed
with a slope that is equal to the cost per part, that is, for each part made, the line rises by an
amount equal to the cost per part. If the calculations necessary to produce the graph are
done carefully, the total cost of producing any quantity of parts can be found from the data
plotted on the graph.

As an example, the graph shown in Fig. 7 is a comparison of the cost of manufacturing a
quantity of asmall part on a manually operated milling machine (Machine 1) and ona CNC
machining center (Machine 2). The fixed costs (fixed costs = lead time x lead time rate +
setup time x setup rate) for the manual machine are $190 and the fixed costs for the CNC
machine are higher at $600. The fixed cost for each machine is the starting point of the line
representing the cost of manufacturing a quantity of parts with that machine. The variable
costs plotted are: $18 per piece for the manual machine and $5 per piece for the CNC mill.

2500

20001 Machine 1

Slope = Cost per Unit
1500 \

1000

Machine 2

Cost

Fixed Costs

600
500

190 ;
0 } L . ! } ! } L }
2 ‘\40Break-Eve1610Point 80 100
Fig. 7. Quantity of Parts
The variable costs are calculated using the machine, labor, and overhead costs. The cost
of materials is not included because it is assumed that materials cost will be the same for
parts made on either machine and there will be no appreciable difference in the amount of
scrap generated. The original cost of Machine 1 (the manual milling machine) is $19,000
with an estimated operating life of 16,000 hours, so the hourly operating cost is 19,000/
16,000 = $1.20 per hour. The labor rate is $17 per hour and the overhead is estimated as 1.6
times the labor rate, or $17 x 1.6 = $27.20 per hour. The time, ¢, needed to complete each
part on Machine 1 is estimated as 24 minutes (0.4 hour). Therefore, by using Machine 1,
the variable cost per part excluding material is (1.20 + 17.00 + 27.20) $/h x 0.4 h/part = $18
per part. For Machine 2 (the CNC machining center), the machine cost is calculated at $3
per hour, which is based on a $60,000 initial cost (including installation, maintenance,
insurance, etc.) and 20,000 hours of estimated lifetime. The cost of labor is $15 per hour for
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Machine 2 and the overhead is again calculated at 1.6 times the labor rate, or $24 per hour.
Each part is estimated to take 7.2 minutes (0.12 h) to make, so the variable cost per part
made on Machine 2 is (3 + 15 + 24) $/h x 0.12 h/part = $5 per part.

The lines representing the variable cost of operating each machine intersect at only one
point on the graph. The intersection point corresponds to a quantity of parts that can be
made by either the CNC or manual machine for the same cost, which is the break-even
point. In the figure, the break-even point is 31.5 parts and the cost of those parts is $757, or
about $24 apiece, excluding materials. The graph shows that if fewer than 32 parts need to
be made, the total cost will be lowest if the manual machine is used because the line repre-
senting Machine 1 is lower (representing lower cost) than the line representing Machine 2.
On the other hand, if more than 31 parts are going to be made, the CNC machine will pro-
duce them for a lower cost. Itis easy to see that the per piece cost of manufacturing is lower
on the CNC machine because the line for Machine 2 rises at a slower rate than the line for
Machine 1. For producing only a few parts, the manual machine will make them less
expensively than the CNC because the fixed costs are lower, but once the CNC part pro-
gram has been written, the CNC can also run small batches efficiently because very little
setup work is required.

The quantity of parts corresponding to the break-even point is known as the break-even
quantity Q,. The break-even quantity can be found without the use of the graph by using
the following break-even equation: Q, = (Cp — C)/(Cy, — Cyy). Inthis equation, the Cpy
and Cp, are the fixed costs for Machine 1 and Machine 2, respectively: C,, and Cy,, are the
variable costs for Machine 1 and Machine 2, respectively.

Break-even analysis techniques are also useful for comparing performance of more than
two machines. Plot the manufacturing costs for each machine on a graph as before and then
compare the costs of the machines in pairs using the techniques described. For example, if
an automatic machine such as a rotary transfer machine is included as Machine 3 in the pre-
ceding analysis, then three lines representing the costs of operating each machine would be
plotted on the graph. The equation to find the break-even quantities is applied three times
in succession, for Machines 1 and 2, for Machines 1 and 3, and again for Machines 2 and 3.
The result of this analysis will show the region (range of quantities) within which each
machine is most profitable.

Overhead Expenses.—Machine-Hour Distribution: The machine-hour rate method con-
sists of distributing all the manufacturing expenses of an establishment by a charge to each
job of the overhead cost of operating the machines and other facilities used on that job. This
overhead charge is not an average for the whole plant or department, but is, as nearly as
possible, the actual overhead cost of maintaining and operating each of the machines,
group of machines, benches, etc., which are found in the plant. By the proper use of this
method it is possible to show the difference between the expense cost of a boring mill and
a lathe, a gear-cutter and a splining machine, etc.

Man-Hour Distribution: The man-hour method of distributing overhead has for its base
the number of hours spent on a job instead of the amount of wages paid. The assumption is
made that the overhead expenses have a fixed ratio to the number of hours of time spent on
a job. Certain items of expense bear a direct relation to the number of hours worked, and
include the expenses of the payroll, compensation, insurance, and supervision.

Man-Rate Distribution: The man-rate method of distributing overhead costs is the one in
most general use because of its simplicity. To use this method, find the ratio of total
expenses to total labor for a given business, and to apply this ratio to the labor cost of each
job. For afactory making one kind of product, this method of distributing overhead is quite
satisfactory, but where the product itself is varied and the tools used are different for each
of the products, this method is incorrect and misleading as to final results.
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MECHANICS

Throughout this section in this Handbook, both English and metric SI data and for-
mulas are given to cover the requirements of working in either system of measure-
ment. Except for the passage entitled 7/¢ Use of the Metric SI System in Mechanics
Calculations, formulas and text relating exclusively to SI are given in bold face type.

Terms and Definitions

Definitions.— The science of mechanics deals with the effects of forces in causing or pre-
venting motion. Starics is the branch of mechanics that deals with bodies in equilibrium,
i.e., the forces acting on them cause them to remain at rest or to move with uniform veloc-
ity. Dynamics is the branch of mechanics that deals with bodies not in equilibrium, i.e., the
forces acting on them cause them to move with non-uniform velocity. Kinetics is the
branch of dynamics that deals with both the forces acting on bodies and the motions that
they cause. Kinematics is the branch of dynamics that deals only with the motions of bodies
without reference to the forces that cause them.

Definitions of certain terms and quantities as used in mechanics follow:

Force may be defined simply as a push or a pull; the push or pull may result from the
force of contact between bodies or from a force, such as magnetism or gravitation, in which
no direct contact takes place.

Matter is any substance that occupies space; gases, liquids, solids, electrons, atoms,
molecules, etc., all fit this definition.

Inertia is the property of matter that causes it to resist any change in its motion or state of
rest.

Mass is a measure of the inertia of a body.

Work, in mechanics, is the product of force times distance and is expressed by a combi-
nation of units of force and distance, as foot-pounds, inch-pounds, meter-kilograms, etc.
The metric SI unit of work is the joule, which is the work done when the point of appli-
cation of a force of one newton is displaced through a distance of one meter in the
direction of the force.

Power, in mechanics, is the product of force times distance divided by time; it measures
the performance of a given amount of work in a given time. It is the rate of doing work and
as such is expressed in foot-pounds per minute, foot-pounds per second, kilogram-meters
per second, etc. The metric SI unit is the watt, which is one joule per second.

Horsepower is the unit of power that has been adopted for engineering work. One horse-
power is equal to 33,000 foot-pounds per minute or 550 foot-pounds per second. The kilo-
watt, used in electrical work, equals 1.34 horsepower; or 1 horsepower equals 0.746
kilowatt. However, in the metric SI, the term horsepower is not used, and the basic
unit of power is the watt. This unit, and the derived units milliwatt and kilowatt, for
example, are the same as those used in electrical work.

Torque or moment of a force is a measure of the tendency of the force to rotate the body
upon which it acts about an axis. The magnitude of the moment due to a force acting in a
plane perpendicular to some axis is obtained by multiplying the force by the perpendicular
distance from the axis to the line of action of the force. (If the axis of rotation is not perpen-
dicular to the plane of the force, then the components of the force in a plane perpendicular
to the axis of rotation are used to find the resultant moment of the force by finding the
moment of each component and adding these component moments algebraically.)
Moment or torque is commonly expressed in pound-feet, pound-inches, kilogram-meters,
etc. The metric SI unit is the newton-meter (N - m).

Velocity is the time-rate of change of distance and is expressed as distance divided by
time, that is, feet per second, miles per hour, centimeters per second, meters per second,
etc.
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Acceleration is defined as the time-rate of change of velocity and is expressed as veloc-
ity divided by time or as distance divided by time squared, that is, in feet per second, per
second or feet per second squared; inches per second, per second or inches per second
squared; centimeters per second, per second or centimeters per second squared; etc. The
metric SI unit is the meter per second squared.

Unit Systems.—In mechanics calculations, both absolute and gravitational systems of
units are employed. The fundamental units in absolute systems are length, time, and mass,
and from these units, the dimension of force is derived. Two absolute systems which have
been in use for many years are the cgs (centimeter-gram-second) and the MKS (meter-
kilogram-second) systems. Another system, known as MKSA (meter-kilogram-second-
ampere), links the MKS system of units of mechanics with electro magnetic units.

The Conference General des Poids et Mesures (CGPM), which is the body responsi-
ble for all international matters concerning the metric system, adopted in 1954 a
rationalized and coherent system of units based on the four MKSA units and includ-
ing the kelvin as the unit of temperature, and the candela as the unit of luminous
intensity. In 1960, the CGPM formally named this system the ‘Systeme International
d'Unites,” for which the abbreviation is SI in all languages. In 1971, the 14th CGPM
adopted a seventh base unit, the mole, which is the unit of quantity (‘“amount of sub-
stance”). Further details of the SI are given in the section VVEASURING UNITS start-
ing on page 2656, and its application in mechanics calculations, contrasted with the
use of the English system, is considered on page 150.

The fundamental units in gravitational systems are length, time, and force, and from
these units, the dimension of mass is derived. In the gravitational system most widely used
in English measure countries, the units of length, time, and force are, respectively, the foot,
the second, and the pound. The corresponding unit of mass, commonly called the slug, is
equal to 1 pound second? per foot and is derived from the formula, M = W= g inwhich M =
mass in slugs, W =weight in pounds, and g = acceleration due to gravity, commonly taken
as 32.16 feet per second?. A body that weighs 32.16 Ibs. on the surface of the earth has,
therefore, a mass of one slug.

Many engineering calculations utilize a system of units consisting of the inch, the sec-
ond, and the pound. The corresponding units of mass are pounds second? per inch and the
value of g is taken as 386 inches per second?.

In a gravitational system that has been widely used in metric countries, the units of
length, time, and force are, respectively, the meter, the second, and the kilogram. The cor-
responding units of mass are kilograms second? per meter and the value of g is taken as
9.81 meters per second?.

Acceleration of Gravity g Used in Mechanics Formulas.—The acceleration of a freely
falling body has been found to vary according to location on the earth’s surface as well as
with height, the value at the equator being 32.09 feet per second, per second while at the
poles it is 32.26 ft/sec2. In the United States it is customary to regard 32.16 as satisfactory
for most practical purposes in engineering calculations.

Standard Pound Force: For use in defining the magnitude of a standard unit of force,
known as the pound force, a fixed value of 32.1740 ft/sec?, designated by the symbol g,
has been adopted by international agreement. As a result of this agreement, whenever the
term mass, M, appears in a mechanics formula and the substitution M = W/g is made, use of
the standard value g, = 32.1740 ft/sec? is implied although as stated previously, it is cus-
tomary to use approximate values for g except where extreme accuracy is required.

The Use of the Metric SI System in Mechanics Calculations.—The S| system is a
development of the traditional metric system based on decimal arithmetic; fractions are
avoided. For each physical quantity, units of different sizes are formed by multiplying or
dividing a single base value by powers of 10. Thus, changes can be made very simply by
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adding zeros or shifting decimal points. For example, the meter is the basic unit of length;
the kilometer is a multiple (1,000 meters); and the millimeter is a sub-multiple (one-thou-
sandth of a meter).

In the older metric system, the simplicity of a series of units linked by powers of 10 is an
advantage for plain quantities such as length, but this simplicity is lost as soon as more
complex units are encountered. For example, in different branches of science and engi-
neering, energy may appear as the erg, the calorie, the kilogram-meter, the liter-atmo-
sphere, or the horsepower-hour. In contrast, the SI provides only one basic unit for each
physical quantity, and universality is thus achieved.

There are seven base-units, and in mechanics calculations three are used, which are for
the basic quantities of length, mass, and time, expressed as the meter (m), the kilogram
(kg), and the second (s). The other four base-units are the ampere (A) for electric current,
the kelvin (K) for thermodynamic temperature, the candela (cd) for luminous intensity,
and the mole (mol) for amount of substance.

The Sl is a coherent system. A system of units is said to be coherent if the product or quo-
tient of any two unit quantities in the system is the unit of the resultant quantity. For exam-
ple, in a coherent system in which the foot is a unit of length, the square foot is the unit of
area, whereas the acre is not. Further details of the SI, and definitions of the units, are given
in the section MEASURING UNITS starting on page 2656, near the end of the book.

Other physical quantities are derived from the base-units. For example, the unit of veloc-
ity is the meter per second (m/s), which is a combination of the base-units of length and
time. The unit of acceleration is the meter per second squared (m/s2). By applying New-
ton's second law of motion — force is proportional to mass multiplied by acceleration —
the unit of force is obtained, which is the kg - m/s2. This unit is known as the newton, or N.
Work, or force times distance, is the kg - m2/s2, which is the joule, (1 joule = 1 newton-
meter) and energy is also expressed in these terms. The abbreviation for joule is J. Power,
or work per unit time, is the kg - m?/s3, which is the watt (1 watt = 1 joule per second = 1
newton-meter per second). The abbreviation for watt is W.

More information on Newton’s laws may be found in the section Newron's Laws of
Motion on page 175.

The coherence of Sl units has two important advantages. The first, that of uniqueness and
therefore universality, has been explained. The second is that it greatly simplifies technical
calculations. Equations representing physical principles can be applied without introduc-
ing such numbers as 550 in power calculations, which, in the English system of measure-
ment have to be used to convert units. Thus conversion factors largely disappear from
calculations carried out in SI units, with a great saving in time and labor.

Mass, Weight, Force, Load: Sl isan absolute system (see Unit Systems on page 150), and
consequently it is necessary to make a clear distinction between mass and weight. The
mass Of abody is a measure of its inertia, whereas the weight of a body is the force exerted
on it by gravity. In a fixed gravitational field, weight is directly proportional to mass, and
the distinction between the two can be easily overlooked. However, if abody is moved toa
different gravitational field, for example, that of the moon, its weight alters, but its mass
remains unchanged. Since the gravitational field on earth varies from place to place by
only a small amount, and weight is proportional to mass, it is practical to use the weight of
unit mass as a unit of force, and this procedure is adopted in both the English and older met-
ric systems of measurement. In common usage, they are given the same names, and we say
that a mass of 1 pound has a weight of 1 pound. In the former case the pound is being used
as a unit of mass, and in the latter case, as a unit of force. This procedure is convenient in
some branches of engineering, but leads to confusion in others.

As mentioned earlier, Newton's second law of motion states that force is proportional to
mass times acceleration. Because an unsupported body on the earth's surface falls with
acceleration g (32 ft/s? approximately), the pound (force) is that force which will impart an
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acceleration of g ft/s? to a pound (mass). Similarly, the kilogram (force) is that force which
will impart an acceleration of g (9.8 meters per second? approximately), to a mass of one
kilogram. In the Sl, the newton is that force which will impart unit acceleration (1 m/s?) to
a mass of one kilogram. It is therefore smaller than the kilogram (force) in the ratio 1:g
(about 1:9.8). This fact has important consequences in engineering calculations. The factor
g now disappears from a wide range of formulas in dynamics, but appears in many formu-
las in statics where it was formerly absent. It is however not quite the same g, for reasons
which will now be explained.

In the article on page 179, the mass of a body is referred to as M, but it is immediately
replaced in subsequent formulas by W/g, where W is the weight in pounds (force), which
leads to familiar expressions such as WV2/ 2g for kinetic energy. In this treatment, the M
which appears briefly is really expressed in terms of the slug (page 150), a unit normally
used only in aeronautical engineering. In everyday engineers’ language, weight and mass
are regarded as synonymous and expressions such as WV2/ 2g are used without pondering
the distinction. Nevertheless, on reflection it seems odd that g should appear in a formula
which has nothing to do with gravity at all. In fact the g used here is not the true, local value
of the acceleration due to gravity, but an arbitrary standard value which has been chosen as
part of the definition of the pound (force) and is more properly designated g, (page 150).
Its function is not to indicate the strength of the local gravitational field, but to convert from
one unit to another.

In the SI the unit of mass is the kilogram, and the unit of force (and therefore weight) is
the newton.

The following are typical statements in dynamics expressed in Sl units:

A force of R newtons acting on a mass of M kilograms produces an acceleration of R/M
meters per second?. The kinetic energy of a mass of M kg moving with velocity Vm/sis ¥
MV?kg (m/s)? or % MV? joules. The work done by a force of R newtons moving a distance
L meters is RL Nm, or RL joules. If this work were converted entirely into kinetic energy
we could write RL =% MV?and itis instructive to consider the units. Remembering that the

N is the same as the kg - m/s2, we have (kg - m/s2) x m = kg (m/s)2, which is obviously cor-
rect. It will be noted that g does not appear anywhere in these statements.

In contrast, in many branches of engineering where the weight of a body is important,
rather than its mass, using Sl units, g does appear where formerly it was absent. Thus, if a
rope hangs vertically supporting a mass of M kilograms the tension in the rope is Mg N.
Here g is the acceleration due to gravity, and its units are m/s2. The ordinary numerical
value of 9.81 will be sufficiently accurate for most purposes on earth. The expression is
still valid elsewhere, for example, on the moon, provided the proper value of g is used. The
maximum tension the rope can safely withstand (and other similar properties) will also be
specified in terms of the newton, so that direct comparison may be made with the tension
predicted.

Words like load and weight have to be used with greater care. In everyday language we
might say “a lift carries a load of five people of average weight 70 kg,” but in precise tech-
nical language we say that if the average mass is 70 kg, then the average weight is 70g N,
and the total load (that is force) on the lift is 350g N.

If the lift starts to rise with acceleration a - m/s?, the load becomes 350 (g + @) N; both g

and a have units of m/s?, the mass is in kg, so the load is in terms of kg - m/s?, which is the
same as the newton.

Pressure and stress: These quantities are expressed in terms of force per unit area. In the
Sl the unit is the pascal (Pa), which expressed in terms of Sl derived and base units is the
newton per meter squared (N/m?2). The pascal is very small—it is only equivalent to 0.15 x
10-3 Ib/in2 — hence the kilopascal (kPa = 1000 pascals), and the megapascal (MPa = 10°
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pascals) may be more convenient multiples in practice. Thus, note: 1 newton per millime-
ter squared = 1 meganewton per meter squared = 1 megapascal.

In addition to the pascal, the bar, a non-Sl unit, is in use in the field of pressure measure-
ment in some countries, including England. Thus, in view of existing practice, the Interna-
tional Committee of Weights and Measures (CIPM) decided in 1969 to retain this unit for
a limited time for use with those of SI. The bar = 10° pascals and the hectobar = 107 pascals.

Force Systems

Scalar and Vector Quantities.— The quantities dealt with in mechanics are of two kinds
according to whether magnitude alone or direction as well as magnitude must be known in
order to completely specify them. Quantities such as time, volume and density are com-
pletely specified when their magnitude is known. Such quantities are called scalar quanti-
ties. Quantities such as force, velocity, acceleration, moment, and displacement which
must, in order to be specified completely, have a specific direction as well as magnitude,
are called vector quantities.

Graphical Representation of Forces.—A force has three characteristics which, when
known, determine it. They are direction, point of application, and magnitude. The direc-
tion of a force is the direction in which it tends to move the body upon which it acts. The
point of application is the place on the line of action where the force is applied. Forces may
conveniently be represented by straight lines and arrow heads. The arrow head indicates
the direction of the force, and the length of the line, its magnitude to any suitable scale. The
point of application may be at any pointon the line, but it is generally convenient to assume
itto be at one end. In the accompanying illustration, a force is supposed to actalong line AB
in a direction from left to right. The length of line AB shows the magnitude of the force. If
point A is the point of application, the force is exerted as a pull, but if point B be assumed to
be the point of application, it would indicate that the force is exerted as a push.

>0
w

Vector

Velocities, moments, displacements, etc. may similarly be represented and manipulated
graphically because they are all of the same class of quantities called vectors. (See Scalar
and Vector Quantities.)

Addition and Subtraction of Forces: The resultant of two forces applied at the same point
and acting in the same direction, as in Fig. 1, is equal to the sum of the forces. For example,
if the two forces AB and AC, one equal to two and the other equal to three pounds, are
applied at point A, then their resultant AD equals the sum of these forces, or five pounds.

e— 6 4
]
Fig. 1. Fig. 2.

If two forces act in opposite directions, as in Fig. 2, then their resultant is equal to their
difference, and the direction of the resultant is the same as the direction of the greater of the
two forces. For example, AB and AC are both applied at point A; then, if AB equals four and
AC equals six newtons, the resultant AD equals two newtons and acts in the direction of
AC.
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Parallelogram of Forces: If two forces applied at a point are represented in magnitude
and direction by the adjacent sides of a parallelogram (AB and AC in Fig. 3), their resultant
will be represented in magnitude and direction by the diagonal AR drawn from the intersec-
tion of the two component forces.

A D

Fig. 3. Fig. 4. Fig. 5.

If two forces P and Q do not have the same point of application, as in Fig. 4, but the lines
indicating their directions intersect, the forces may be imagined as applied at the point of
intersection between the lines (as at A), and the resultant of the two forces may be found by
constructing the parallelogram of forces. Line AR shows the direction and magnitude of
the resultant, the point of application of which may be assumed to be atany pointon line AR
or its extension.

If the resultant of three or more forces having the same point of application is to be found,
as in Fig. 5, first find the resultant of any two of the forces (AB and AC) and then find the
resultant of the resultant just found (AR;) and the third force (AD). If there are more than
three forces, continue in this manner until the resultant of all the forces has been found.

Parallel Forces: If two forces are parallel and act in the same direction, as in Fig. 6, then
their resultant is parallel to both lines, is located between them, and is equal to the sum of
the two components. The point of application of the resultant divides the line joining the
points of application of the components inversely as the magnitude of the components.
Thus,

AB:CE=CD:AD

The resultant of two parallel and unequal forces acting in opposite directions, Fig. 7, is
parallel to both lines, is located outside of them on the side of the greater of the compo-
nents, has the same direction as the greater component, and is equal in magnitude to the
difference between the two components. The point of application on the line AC produced
is found from the proportion:

AB:CD=CE:AE

B A
Do, F cpbm————>D
A B Eie———F
Fig. 6. Fig. 7.

Polygon of Forces: When several forces are applied at a point and act in a single plane,
Fig. 8, their resultant may be found more simply than by the method just described, as fol-
lows: From the extreme end of the line representing the first force, draw a line representing
the second force, parallel to it and of the same length and in the direction of the second
force. Then through the extreme end of this line draw a line parallel to, and of the same
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length and direction as the third force, and continue this until all the forces have been thus
represented. Then draw a line from the point of application of the forces (as A) to the
extreme point (as 5,) of the line last drawn. This line (A 5,) is the resultant of the forces.

p
p—r1
AO————B
Fig. 8. Fig. 9.

Moment of a Force: The moment of a force with respect to a point is the product of the
force multiplied by the perpendicular distance from the given point to the direction of the
force. In Fig. 9, the moment of the force P with relation to point A is P x AB. The perpen-
dicular distance AB is called the lever-arm of the force. The moment is the measure of the
tendency of the force to produce rotation about the given point, which is termed the center
of moments. If the force is measured in pounds and the distance in inches, the moment is
expressed in inch-pounds. In metric SI units, the moment is expressed in newton-
meters (N - m), or newton-millimeters (N - mm).

The moment of the resultant of any number of forces acting together in the same plane is
equal to the algebraic sum of the moments of the separate forces.

Couples.—If the forces AB and CD are equal and parallel but act in opposite directions,
then the resultant equals O, or, in other words, the two forces have no resultant and are
called a couple. A couple tends to produce rotation. The measure of this tendency is called
the moment of the couple and is the product of one of the forces multiplied by the distance
between the two.

H

————
F
| C——
G

C D E

Two Examples of Couples

Asa couple has no resultant, no single force can balance or counteract the tendency of the
couple to produce rotation. To prevent the rotation of a body acted upon by a couple, two
other forces are therefore required, forming a second couple. In the illustration, E and F
form one couple and G and H are the balancing couple. The body on which they act is in
equilibrium if the moments of the two couples are equal and tend to rotate the body in
opposite directions. A couple may also be represented by a vector in the direction of the
axis about which the couple acts. The length of the vector, to some scale, represents the
magnitude of the couple, and the direction of the vector is that in which a right-hand screw
would advance if it were to be rotated by the couple.
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Composition of a Single Force and Couple.—A single force and a couple in the same
plane or in parallel planes may be replaced by another single force equal and parallel to the
first force, at a distance from it equal to the moment of the couple divided by the magnitude
of the force. The new single force is located so that the moment of the resultant about the
point of application of the original force is of the same sign as the moment of the couple.

In the next figure, with the couple N — N in the position shown, the resultant of P, — N, and
Nis O (which equals P) acting on a line through point ¢ so that (P — N) x ac = N X bc.

Thus, it follows that,

¢ = Nlac+tbc) _ Moment of Couple
P P

a

Single Force and Couple Composition

Algebraic Composition and Resolution of Force Systems.— The graphical methods
given beginning on page 153 are convenient for solving problems involving force systems
in which all of the forces lie in the same plane and only a few forces are involved. If many
forces are involved, however, or the forces do not lie in the same plane, it is better to use
algebraic methods to avoid complicated space diagrams. Systematic procedures for solv-
ing force problems by algebraic methods are outlined beginning on page 156. In connec-
tion with the use of these procedures, it is necessary to define several terms applicable to
force systems in general.

The single force which produces the same effect upon a body as two or more forces acting
together is called their resultant. The separate forces which can be so combined are called
the components. Finding the resultant of two or more forces is called the composition of
forces, and finding two or more components of a given force, the resolution of forces.
Forces are said to be concurrent when their lines of action can be extended to meet at a
common point; forces that are parallel are, of course, nonconcurrent. Two forces having
the same line of action are said to be collinear. Two forces equal in magnitude, parallel,
and in opposite directions constitute a couple. Forces all in the same plane are said to be
coplanar; if not in the same plane, they are called noncoplanar forces.

The resultant of a system of forces is the simplest equivalent system that can be deter-
mined. It may be asingle force, a couple, or anoncoplanar force and a couple. This last type
of resultant, a noncoplanar force and a couple, may be replaced, if desired, by two skewed
forces (forces that are nonconcurrent, nonparallel, and noncoplanar). When the resultant of
a system of forces is zero, the system is in equilibrium, that is, the body on which the force
system acts remains at rest or continues to move with uniform velocity.
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Algebraic Solution of Force Systems—All Forces in the Same Plane

Finding Two Concurrent Components of a Single Force:

Case I: To find two components F; and F, at

angles 6 and ¢, ¢ not being 90°.

Fsin®
sind

F. = Fsin(¢—6)
2 sing

F, =

Case II: Components F; and F, form 90° angle.
F, = Fsin®
F, = Fcos®

Forces:

Case I: Forces F; and F, do not form 90° angle.

_ Fysing _ F,sing
F gy// \ = Tsino T Ssino-0) "
//‘\9 \\ R = [F2+F3+2F F,cos¢
Fysin
\ F2 \ tano = 1—¢
F,cos¢ + F,
—————————— g Case II: Forces F; and F, form 90° angle.
—~
F * l = i = i 0
- ~ | cos0 sin®
//‘\ ] R = 12124. F22
~ o l F
- } Fp | tan® = }71
2

Finding the Resultant of Three or More Concurrent Forces:

YE
F
F3 03— o, )
B4 9,
—X
Fy4
-y
y

— Eer

| ~UR
- ; A .

Y F,

To determine resultant of forces F;, F,, F, etc.
making angles, respectively, of 8,, 8,, 85, etc. with
the x axis, find the x and y components 7, and F, of
each force and arrange in a table similar to that
shown below for a system of three forces. Find the
algebraic sum of the F, and F,, components (2F,

and 2F,) and use these to determine resultant R.

Force | F, F,
F, F; cos 6, F;sin 9,
F, F,cos 0, F,sin®,
F, F5C0S 05 F5sin 64

2F, 2F,
R = J(ZF )2+ (ZF,)?
cos0, = i
R
or tan@, = p
IF

X
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Finding a Force and a Couple Which Together are Equivalent to a Single Force:

d—l F To resolve asingle force F into a couple of
k_ *1 moment M and a force P passing through any cho-

0 sen point O at a distance d from the original force
—/J F, use the relations
b—h‘ P=F

M = Fxd

P
[ The moment M must, of course, tend to produce
0O rotation about O in the same direction as the origi-
/\1\‘4 nal force. Thus, as seen in the diagram, F tends to

produce clockwise rotation; hence M is shown
clockwise.

Finding the Resultant of a Single Force and a Couple:

The resultant of a single force F and a couple M
isasingle force Requal in magnitude and direc-
tion to Fand parallel to it at a distance d to the left
orright of F.

R=F
d=M=+R

F
' R
Resultant R is placed to the left or right of point
E’ of application O of the original force F depending
onwhich position will give R the same direction of

moment about O as the original couple M.

Finding the Resultant of a System of Parallel Forces:

To find the resultant of a system of coplanar par-
allel forces, proceed as indicated below.

1) Select any convenient point O from which perpendicular distances d,, d,, ds, etc. to parallel forces
F,, F,, F3, etc. can be specified or calculated.

2) Find the algebraic sum of all the forces; this will give the magnitude of the resultant of the system.

R=ZXF=F +F,+F3+..

3) Find the algebraic sum of the moments of the forces about O; clockwise moments may be taken as

negative and counterclockwise moments as positive:
M, = Fydy+ Fydy+ ...
4) Calculate the distance d from O to the line of action of resultant R:
d=2M,+R

This distance is measured to the left or right from O depending on which position will give the
moment of R the same direction of rotation about O as the couple XM, that is, if XM, is negative, then
dis left or right of O depending on which direction will make R x d negative.

Note Concerning Interpretation of Results: 1f R =0, then the resultant of the system isa couple >M,,;
if XM, =0thentheresultantis asingle force R; if both Rand >M, =0, then the system is in equilibrium.
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Finding the Resultant of Forces Not Intersecting at a Common Point:

y
F3 F,
To determine the resultant of a

coplanar, nonconcurrent, nonpar-
allel force system as shown in the

Fy4
| (< b4
et \ .
Y4 Y diagram, proceed as shown
below.
X4+ Fy

y

1) Draw a set of x and y coordinate axes through any convenient point O in the plane of the forces as
shown in the diagram.

2) Determine the x and y coordinates of any convenient point on the line of action of each force and
the angle 6, measured in a counterclockwise direction, that each line of action makes with the positive
xaxis. For example, in the diagram, coordinates x,, y,, and 6, are shown for F,. Similar data should be
known for each of the forces of the system.

3) Calculate the x and y components (F, ) of each force and the moment of each component about
0. Counterclockwise moments are considered positive and clockwise moments are negative. Tabulate
all results in a manner similar to that shown below for a system of three forces and find X F,, > F,, >M,,

by algebraic addition.

Force Coordinates of F Components of F Moment of F about O
F X y 0 F, Fy My =xF,—yF,
F; Xq b2l 0, F,cos 6, F;sin,; x,Fysin6; —y,F; cos 6,
F, Xy V2 0, F,c0s6, F,sin 0, x,F, Sin 8, —y,F, C0S 0,
Fs X3 V3 03 F5C0s 0,4 F5sin 0 X3F'3SiN 05— y3F5COS 04
2F, ZR XM,

4. Compute the resultant of the system and the angle 8, it makes with the x axis by using the formulas:

R = [(ZF,)?+ (ZF),)Z
cosb, = LF,+Rortanf, = XF +XF,
5. Calculate the distance d from O to the line of action of the resultant R:
d=ZZM,+R

Distance d is in such direction from O as will make the moment of R about O have the same sign as
>M,,.

Note Concerning Interpretation of Results: If R = 0, then the resultant is a couple 2M; if XM, =0,
then R passes through O; if both R =0and >M, = 0, then the system is in equilibrium.
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Example: Find the resultant of three coplanar nonconcurrent forces for which the follow-
ing data are given.

R
—
I

10 Ibs; x; = 5in,; y; = -1in; 0, = 270°
F, = 201lbs; x, = 4in.; y, = 151in,; 6, = 50°
Fy =301Ibs; x3 = 2in.; y; = 2in.; 65 = 60°

F_ = 10c0s270° = 10x0 = 0 Ibs.

sz = 20cos50° = 20 x 0.64279 = 12.86 Ibs.
Fx3 = 30c0s60° = 30 x0.5000 = 15.00 Ibs.
Fy1 = 10 x sin270° = 10 x (-1) = -10.00 Ibs.
Fy2 = 20 x sin50° = 20 x 0.76604 = 15.32 Ibs.
Fy3 = 30 x sin60° = 30 x 0.86603 = 25.98 Ibs.
MO1 = 5x(-10)-(-1)x0 = =50 in. Ibs.

MO2 = 4x15.32-15x%x12.86 = 41.99 in. Ibs.
Mo3 = 2x2598-2x15 = 21.96 in. Ibs.

Note: When working in metric SI units, pounds are replaced by newtons (N); inches by
meters or millimeters, and inch-pounds by newton-meters (N - m) or newton-millimeters
(N - mm).

Force Coordinates of F Components of F Moment
F N y 0 F, F, of Fabout O
F,=10 5 -1 270° 0 -10.00 -50.00
F,=20 4 15  50° 12.86 15.32 41.99
F;=30 2 2 60° 15.00 25.98 21.96

2F,=2786 XF,=3130 2M,=13.95

y
= J/(27.86)2 + (31.30)2
R = J(27.86)2 +(31.30) 41.90 LBS.
= 41.90 Ibs. +
~ ™~
taneR = @ = 1.1235 / \
27.86 { \
0y = 48°20° . \ / 4 '

measured as shown on the diagram.

48°20'
d = B9 - 033 inches /\<_,
41.90 0.33" /
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Algebraic Solution of Force Systems — Forces Not in Same Plane

Resolving a Single Force Into Its Three Rectangular Components:

The diagram shows how a force F may be
y resolved at any point O on its line of action into
three concurrent components each of which is per-
pendicular to the other two.
The x, y, zcomponents F,, F,, F, of force F are
determined from the accompanying relations in
which 6, 0,,6, are the angles that the force F

makes with the x, y, z axes.

Fcosey

Fcoso,
- A/Fx2+Fvl+Fzz

Finding the Resultant of Any Number of Concurrent Forces:

~
|

z
|
!

To find the resultant of any number of noncopla-
nar concurrent forces F,, F,, Fj, etc., use the pro-

cedure outlined below.

1) Draw a set of x, y, z axes at O, the point of concurrency of the forces. The angles each force makes
measured counterclockwise from the positive x, y, and z coordinate axes must be known in addition to
the magnitudes of the forces. For force F,, for example, the angles are 0,5, 6,,, 0, as indicated on the
diagram.

2) Apply the first three formulas given under the heading “Resolving a Single Force Into Its Three
Rectangular Components” to each force to find its x, y, and z components. Tabulate these calculations
as shown below for a system of three forces. Algebraically add the calculated components to find 2 F,

2F,, and 2 F, which are the components of the resultant.

Force Angles Components of Forces
F 0, 8, 0, F, F, F,
F, 0,4 0,1 0, F,c0s0, Fycos0y, F;cos0,
F, 0,, 0y, 0, F,cos6,, F,c0s0,, F,c0s0,,
Fs 0,3 0,3 0.3 F5c080,4 F3c050,4 F3C0s 03
2F, 2F, 2F,

3. Find the resultant of the system from the formular = J(EFX)z + (EFy)2 +(ZF,)?
4. Calculate the angles 0., 0, and 0, that the resultant R makes with the respective coordinate axes:

XF,
cos6, . = 53
XF,
cos0,p = =
XF,
cos6 p = —=

R
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Finding the Resultant of Parallel Forces Not in the Same Plane:

YA
—X
/ Fy
/___y‘__{ In the diagram, forces F;, F,, etc.
! / ’ represent a system of noncoplanar
[ OL/ . parallel forces. To find the resultant
-y ya -— £ y of such systems, use the procedure
lL/_—_— ,/ shown below.
F3 X / Fy

1) Draw a set of x, y, and z coordinate axes through any point O in such a way that one of these axes,
say the z axis, is parallel to the lines of action of the forces. The x and y axes then will be perpendicular
to the forces.

2) Setthe distances of each force from the x and y axes in a table as shown below. For example, x; and
y, are the x and y distances for F; shown in the diagram.

3) Calculate the moment of each force about the x and y axes and set the results in the table as shown
for a system consisting of three forces. The algebraic sums of the moments XM, and M, are then
obtained. (In taking moments about the x and y axes, assign counterclockwise moments a plus ( +) sign
and clockwise moments a minus (-) sign. In deciding whether a moment is counterclockwise or clock-
wise, look from the positive side of the axis in question toward the negative side.)

Force Coordinates of Force F Moments M, and M, due to F
F x y M, M,
Fy Xy 1 Fiy, Fix
F, X Y2 Fay, Fox,
Fy X3 Y3 Fays Faxg

2F XM, XM,

4. Find the algebraic sum X F of all the forces; this will be the resultant R of the system.
R=3F = F +F,+..
5. Calculate x ; and y g, the moment arms of the resultant:
Xp = ZMy +R
yg = ZM,+R
These moment arms are measured in such direction along the x and y axes as will give the resultant a
moment of the same direction of rotation as >M, and M, .
Note Concerning Interpretation of Results: 1f M and M are both 0, then the resultant is a single
force R along the z axis; if R is also 0, then the system is in equilibrium. If R is 0 but XM, and XM, are
not both 0, then the resultant is a couple

My = J(EM,)?+ (ZM)?

that lies in a plane parallel to the z axis and making an angle 6, measured in a counterclockwise direc-
tion from the positive x axis and calculated from the following formula:

sin@, =
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Finding the Resultant of Nonparallel Forces Not Meeting at a Common Point:

z

The diagram shows a system of
noncoplanar, nonparallel, noncon-
current forces Fy, F,, etc. for which
the resultant is to be determined.
Generally speaking, the resultant
will be a noncoplanar force and a
couple which may be further com-
bined, if desired, into two forces
y that are skewed.

/X2 This is the most general force sys-
tem that can be devised, so each of
the other systems so far described
represents a special, simpler case of
this general force system. The

¥ method of solution described below
/ for a system of three forces applies
for any number of forces.

F

Fy

1) Select a set of coordinate x, y, and z axes at any desired point O in the body as shown in the diagram.

2) Determine the x, y, and z coordinates of any convenient point on the line of action of each force as
shown for F,. Also determine the angles, 0., 0,6, that each force makes with each coordinate axis.
These angles are measured counterclockwise from the positive direction of the x, y, and z axes. The data
is tabulated, as shown in the table accompanying Step 3, for convenient use in subsequent calculations.

3) Calculate the x, y, and z components of each force using the formulas given in the accompanying
table. Add these components algebraically to get >F,, >.F, and 2F_ which are the components of the

resultant, R, given by the formula,
R = j(ZFX)Z +(ZF))%+(ZF)?

Force Coordinates of Force F Components of F
F | x 'y 'z 6 6 8, F, F, F,
F ox o 7 0y By 6y F;c0s0,, Fycos8,, Fycos0,
F xp ¥, 2z 6, 8, 6, F,cos0,, F,c0s0,, F,c0s0,,
Fs  x3 y3 zz 065 05 04 F43c080,5 F53C050,5 F5C056_3
2F, 2F, 2F,

The resultant force R makes angles of 6,, 6, and 6, with the x, y, and z axes, respectively, and passes
through the selected point O. These angles are determined from the formulas,

c0s0,, = ZF . +R

cosO,, = ZF, +R

c0s6,, = TF,+R
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4. Calculate the moments M, M, M, about.x, y, and z axes, respectively, due tothe F, F,, and F,com-

wEy
ponents of each force and set them in tabular form. The formulas to use are given in the accompanying
table.

In interpreting moments about the x, y, and z axes, consider counterclockwise moments a plus (+)
sign and clockwise moments a minus (—) sign. In deciding whether a moment is counterclockwise or
clockwise, look from the positive side of the axis in question toward the negative side.

Force Moments of Components of F (F,, F, F ) aboutx, y, zaxes
F M, =yF —zF| M, =zF . —xF, M, =xF,—yF,
F, M=y Fy—2uF, My =2F—xF, My =xF —y1F
F My =y,F 5 —2,F, M, =2F 5 —x,F, M, =xF 5 —y,Fyy
F M 3=ysF 3—23F 3 M3 =23F 3= x3F 3 M 3=x3F 53— y3F 3

z

5. Add the component moments algebraically to get M, >M, and >M_ which are the components of
the resultant couple, M, given by the formula,

M = [(EM )2+ (IM,)2 +(IM.)>

The resultant couple M will tend to produce rotation about an axis making angles of 3, B,, and 3, with
the x, y, z axes, respectively. These angles are determined from the formulas,
M

M M, z
cosP, = M" cosp, = ——Ml cosp, = 7

General Method of Locating Resultant When Its Components are Known: To determine
the position of the resultant force of a system of forces, proceed as follows:

From the origin, point O, of a set of coordinate axes x, y, z, lay off on the x axis a length A
representing the algebraic sum > F of the x components of all the forces. From the end of
line A lay off a line B representing 2F,, the algebraic sum of the y components; this line B
isdrawn inadirection parallel to the y axis. From the end of line B lay off a line C represent-
ing 2 F.. Finally, draw a line R from O to the end of C; R will be the resultant of the system.
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Friction

Properties of Friction.—Friction is the resistance to motion that takes place when one
body is moved upon another, and is generally defined as “that force which acts between
two bodies at their surface of contact, so as to resist their sliding on each other.” According
to the conditions under which sliding occurs, the force of friction, F, bears a certain relation
to the force between the two bodies called the normal force N. The relation between force
of friction and normal force is given by the coefficient of friction, generally denoted by the
Greek letter p. Thus:

F = uxN and =L
N
Example: A body weighing 28 pounds rests on a horizontal surface. The force required to

keep it in motion along the surface is 7 pounds. Find the coefficient of friction.

If abody is placed on an inclined plane, the friction between the body and the plane will
prevent it from sliding down the inclined surface, provided the angle of the plane with the
horizontal is not too great. There will be a certain angle, however, at which the body will
just barely be able to remain stationary, the frictional resistance being very nearly over-
come by the tendency of the body to slide down. This angle is termed the angle of repose,
and the tangent of this angle equals the coefficient of friction. The angle of repose is fre-
quently denoted by the Greek letter 6. Thus, i =tan ©.

A greater force is required to start a body moving from a state of rest than to merely keep
it in motion, because the friction of rest is greater than the friction of motion.

Laws of Friction.— Unlubricated or Dry Surfaces:

1) For low pressures (normal force per unit area) the friction is directly proportional to
the normal force between the two surfaces. As the pressure increases, the friction does not
rise proportionally; but when the pressure becomes abnormally high, the friction increases
atarapid rate until seizing takes place.

2) The friction both in its total amount and its coefficient is independent of the areas in
contact, so long as the normal force remains the same. This is true for moderate pressures
only. For high pressures, this law is modified in the same way as in the first case.

3) At very low velocities the friction is independent of the velocity of rubbing. As the
velocities increase, the friction decreases.

Lubricated Surfaces: For well lubricated surfaces, the laws of friction are considerably
different from those governing dry or poorly lubricated surfaces.

1) The frictional resistance is almost independent of the pressure (normal force per unit
area) if the surfaces are flooded with oil.

2) The friction varies directly as the speed, at low pressures; but for high pressures the
friction is very great at low velocities, approaching a minimum at about two feet per second
(0.61 meter per second), linear velocity, and afterwards increasing approximately as the
square root of the speed.

3) For well lubricated surfaces the frictional resistance depends, to a very great extent, on
the temperature, partly because of the change in the viscosity of the oil and partly because,
for a journal bearing, the diameter of the bearing increases with the rise of temperature
more rapidly than the diameter of the shaft, thus relieving the bearing of side pressure.

4) If the bearing surfaces are flooded with oil, the friction is almost independent of the
nature of the material of the surfaces in contact. As the lubrication becomes less ample, the
coefficient of friction becomes more dependent upon the material of the surfaces.

Influence of Friction on the Efficiency of Small Machine Elements.—Friction
between machine parts lowers the efficiency of a machine. Average values of the effi-
ciency, in per cent, of the most common machine elements when carefully made are ordi-
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nary bearings, 95 to 98; roller bearings, 98; ball bearings, 99; spur gears with cut teeth,
including bearings, 99; bevel gears with cut teeth, including bearings, 98; belting, from 96
to 98; high-class silent power transmission chain, 97 to 99; roller chains, 95 to 97.

Coefficients of Friction.—Tables 1 and 2 provide representative values of static friction
for various combinations of materials with dry (clean, unlubricated) and lubricated sur-
faces. The values for static or breakaway friction shown in these tables will generally be
higher than the subsequent or sliding friction. Typically, the steel-on-steel static coeffi-
cient of 0.8 unlubricated will drop to 0.4 when sliding has been initiated; with oil lubrica-
tion, the value will drop from 0.16 to 0.03.

Many factors affect friction, and even slight deviations from normal or test conditions
can produce wide variations. Accordingly, when using friction coefficients in design cal-
culations, due allowance or factors of safety should be considered, and in critical applica-
tions, specific tests conducted to provide specific coefficients for material, geometry,
and/or lubricant combinations.

Table 1. Coefficients of Static Friction for Steel on Various Materials

Coefficient of Friction, i Coefficient of Friction, p

Material Clean Lubricated Material Clean Lubricated
Steel 0.8 0.16 Hard carbon 0.14 0.11-0.14
Copper-lead alloy 0.22 Graphite 0.1 0.1
Phosphor-bronze 0.35 Tungsten carbide 0.4-0.6 0.1-0.2
Aluminum-bronze 0.45 Plexiglas 0.4-0.5 0.4-0.5
Brass 0.35 0.19 Polystyrene 0.3-0.35 0.3-0.35
Cast iron 0.4 0.21 Polythene 0.2 0.2
Bronze 0.16 Teflon 0.04 0.04
Sintered bronze 0.13

Tables 1 and 2 used with permission from The Friction and Lubrication of Solids, Vol. 1, by
Bowden and Tabor, Clarendon Press, Oxford, 1950.

Table 2. Coefficients of Static Friction for Various Materials Combinations

Coefficient of Friction, u Coefficient of Friction, pu

Material Combination Clean Lubricated Material Combination Clean Lubricated
Aluminum-aluminum 135 030 | Tungsten carbide-tungsten | g 5.0.25 0.12
Cadmium-cadmium 0.5 0.05 Plexiglas-Plexiglas 0.8 0.8
Chromium-chromium 0.41 0.34 Polystyrene-polystyrene 0.5 0.5
Copper-copper 1.0 0.08 Teflon-Teflon 0.04 0.04
Iron-iron 1.0 0.15-0.20 Nylon-nylon 0.15-0.25
Magnesium-magnesium 0.6 0.08 Solids on rubber 1-4
Nickel-nickel 0.7 0.28 Wood on wood (clean) 0.25-0.5
Platinum-platinum 1.2 0.25 Wood on wood (wet) 0.2
Silver-silver 1.4 0.55 Wood on metals (clean) 0.2-0.6
Zinc-zinc 0.6 0.04 Wood on metals (wet) 0.2
Glass-glass 0.9-1.0 0.1-0.6 Brick on wood 0.6
Glass-metal 0.5-0.7 0.2-0.3 Leather on wood 0.3-04
Diamond-diamond 0.1 0.05-0.1 Leather on metal (clean) 0.6
Diamond-metal 0.1-0.15 0.1 Leather on metal (wet) 0.4
Sapphire-sapphire 0.2 0.2 Leather on metal (greasy) 0.2
Hard carbon on carbon 0.16 0.12-0.14 || Brake material on cast iron 0.4
Grezg)nhcscg[]arg;nte 05-0.8 Br?xgt;natenal on cast iron 0.2
Graphite-graphite 0.1 0.1
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Rolling Friction.—When a body rolls on a surface, the force resisting the motion is
termed rolling friction or rolling resistance. Let W =total weight of rolling body or load on
wheel, in pounds (newtons); r = radius of wheel, in inches (centimeters); f = coefficient of
rolling resistance, in inches (centimeters). Then, resistance to rolling , in pounds (newtons)
equals (Wxf)+r.

Coefficient of rolling resistance varies with conditions. For wood on wood 0.06 inch
(0.152 cm) may be used; for iron on iron, 0.02 inch (0.051 cm); iron on granite, 0.085 inch
(0.216 cm); iron on asphalt, 0.15 inch (0.381 cm); and iron on wood, 0.22 inch (0.559 cm).

The coefficient of rolling resistance, £, is in inches (or centimeters) and is not the same as
the sliding or static coefficient of friction given in Tables 1 and 2, which is a dimensionless
ratio between frictional resistance and normal load. Various investigators are not in close
agreement on the true values for these coefficients and the foregoing values should only be
used for the approximate calculation of rolling resistance.

Mechanisms
Levers
Types of Levers Examples
a A pull of 80 pounds is exerted at the end of the
L_, } L . lever, at W; [ = 12 inches and L = 32 inches.
= Find the value of force F required to balance the
i l lever.
F 80x12 _ 960
F = ==== = =— = 30 pounds
FiW = IiL FxL = WxI 32 32
Wxi Fxr | 1FF=20; W=180; and / = 3; how long must L
F = I W= —; | be made to secure equilibrium?
;= Wxa _WxI ,_ Fxa _ FxL L = 1803 _ o
W+F F W+F 20
L—I | L i Total length L of a lever is 25 centimeters. A
! a ! weight of 400 newtons supported at W; [ is 10 cen-
A | } timeters. Find the value of F.
F F = 4002—:1(—) = 160 newtons

&l
S
"
~
]
X
~
"
S
X

If F =400 newtons, W = 9000 pounds, and a =

F= Wxl w = EXL |1.5m, what should L equal to secure equilibrium?
L !
9000 x 1.5
L = ———=—=—— = 524 feet
L = Wxa _ WxlI ;= Fxa _ FXL 9000 — 400(100) ee
W-F F W-F w
| X
l b ,__a_; j Let W= 20, P =30, and Q = 15 pounds; a = 4,
7a) b=7,and ¢ =10 inches.
é} é i } If x = 6 inches, find .
F F o= 20x4+30x7+15%10 _ 4ol
When three or more forces act on lever: 6 3
Fxx=Wxa+Pxb+Qxc Assuming F = 20 pounds in the example above,
how long must lever arm x be made?
v = Wxa+Pxb+Qxc
F x:20X4+302X07+15X10=22inches

Wxa+Pxb+QXc
X

F =

The above formulas are valid using metric SI units, with forces expressed in newtons, and
lengths in meters. However, it should be noted that the weight of a mass W kilograms is equal to
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a force of Wg newtons, where g is approximately 9.81 m/s2. Thus, supposing that in the first
example / = 0.4 m, L = 1.2 m, and W = 30 kg, then the weight of W is 30g newtons, so that the

force F required to balance the leveris F = 30 1X20‘4 = 10g = 98.1 newtons.

This force could be produced by suspending a mass of 10 kg at F.

Table of Forces on Inclined Planes

o {

1t

Rise

l

The table below makes it possible to find the force required for moving a body on an
inclined plane. The friction on the plane is not taken into account. The column headed
“Tension P in Cable per Ton of 2000 Pounds” gives the pull in pounds required for
moving one ton along the inclined surface. The fourth column gives the perpendicular
or normal pressure. If the coefficient of friction is known, the added pull required to
overcome friction is thus easily determined:

| 100° Q x coefficient of friction = additional pull required.
Per Cent Tension ng;gﬁ:guéar Per Cent Tension P:zzggg:gugr
of Grade. A P in Cable of Grade. P in Cable
. ngle o on Plane . Angle o on Plane
Rise, Ft. per Ton of per Ton of Rise, Ft. per Ton of per Ton of
per 100 Ft. 2000 Lbs. 2000 Lbs. per 100 Ft. 2000 Lbs. 2000 Lbs.
1 0.57 20.00 1999.90 51 27.02 908.65 1781.67
2 1.15 39.99 1999.60 52 27.47 922.71 1774.43
3 1.72 59.97 1999.10 53 27.92 936.59 1767.15
4 2.29 79.94 1998.40 54 28.37 950.30 1759.81
5 2.86 99.88 1997.50 55 28.81 963.84 1752.43
6 3.43 119.78 1996.41 56 29.25 977.21 1745.01
7 4.00 139.66 1995.12 57 29.68 990.41 1737.55
8 4.57 159.49 1993.63 58 30.11 1003.44 1730.06
9 5.14 179.28 1991.95 59 30.54 1016.30 1722.54
10 5.71 199.01 1990.07 60 30.96 1028.99 1714.99
11 6.28 218.68 1988.01 61 31.38 1041.52 1707.41
12 6.84 238.29 1985.75 62 31.80 1053.88 1699.81
13 7.41 257.83 1983.31 63 32.21 1066.08 1692.18
14 7.97 277.30 1980.68 64 32.62 1078.11 1684.54
15 8.53 296.68 1977.87 65 33.02 1089.98 1676.89
16 9.09 315.98 1974.88 66 33.42 1101.68 1669.22
17 9.65 335.19 1971.71 67 33.82 1113.23 1661.54
18 10.20 354.31 1968.37 68 34.22 1124.62 1653.85
19 10.76 373.32 1964.85 69 34.61 1135.85 1646.16
20 11.31 392.23 1961.16 70 34.99 1146.92 1638.46
21 11.86 411.03 1957.31 71 35.37 1157.84 1630.77
22 1241 429.72 1953.29 72 35.75 1168.61 1623.07
23 12.95 448.30 1949.11 73 36.13 1179.22 1615.37
24 13.50 466.75 1944.77 74 36.50 1189.69 1607.68
25 14.04 485.07 1940.29 75 36.87 1200.00 1600.00
26 14.57 503.27 1935.65 76 37.23 1210.17 1592.32
27 15.11 521.33 1930.86 7 37.60 1220.19 1584.66
28 15.64 539.26 1925.93 78 37.95 1230.06 1577.00
29 16.17 557.05 1920.86 79 38.31 1239.80 1569.36
30 16.70 574.70 1915.65 80 38.66 1249.39 1561.74
31 17.22 592.20 1910.31 81 39.01 1258.84 1554.13
32 17.74 609.55 1904.85 82 39.35 1268.16 1546.54
33 18.26 626.76 1899.26 83 39.69 1277.34 1538.96
34 18.78 643.81 1893.55 84 40.03 1286.38 1531.41
35 19.29 660.70 1887.72 85 40.36 1295.30 1523.88
36 19.80 677.44 1881.77 86 40.70 1304.08 1516.37
37 20.30 694.02 1875.72 87 41.02 1312.73 1508.89
38 20.81 710.44 1869.57 88 41.35 1321.26 1501.43
39 21.31 726.69 1863.31 89 41.67 1329.65 1493.99
40 21.80 742.78 1856.95 90 41.99 1337.93 1486.59
41 22.29 758.71 1850.50 91 42.30 1346.08 1479.21
42 22.78 774.47 1843.96 92 42.61 1354.11 1471.86
43 23.27 790.06 1837.34 93 42.92 1362.03 1464.54
44 23.75 805.48 1830.63 94 43.23 1369.82 1457.26
45 24.23 820.73 1823.84 95 43.53 1377.50 1450.00
46 24.70 835.81 1816.98 96 43.83 1385.06 1442.77
47 25.17 850.72 1810.05 97 44.13 1392.52 1435.58
48 25.64 865.46 1803.05 98 44.42 1399.86 1428.43
49 26.10 880.03 1795.98 99 4471 1407.09 1421.30
50 26.57 894.43 1788.85 100 45.00 1414.21 1414.21

Tensions and pressures in pounds.
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Inclined Plane—Wedge

W = weight of body

Neglecting friction:

P = Wx% = Wxsino
W = P><£ = _L = P Xxcoseco
h sino
_ b _
Q= Wx? = Wx coso

If friction is taken into account, then
Force P to pull body up is:

P = W(ucoso + sina)
Force P, to pull body down is:

P, = W(ucoso —sina)
Force P, to hold body stationary:

P, = W(sino—pcosa)

in which p is the coefficient of friction.

W = weight of body

W = weight of body

Coefficient of friction = .

P = 2Q(pcoso + sino)

Neglecting friction: With friction: Neglecting friction: With friction:
_ sino Coefficient of friction _ h _ Coefficient of friction
P = WXCOSB =u= tanq) P = WXb = Wxtana =pu= tanq)
w = px B p = wxSN@*0) [w=pxl = pxcota P = Wian(o+¢)
sino cos(B - o) h
Q=W><%£&2 Q=l=W><secoc
cosf cosa
P
b Pleb
Q- Q Q Q
Neglecting friction: Neglecting friction:
P=2Q><%’=2Q><sin(x P=2Q><§=2Q><tanoc
Q=P><—-l-=lP><cosecoc =P ﬁ—lp cot
2~ 2 Q = Pxgy = b cota
With friction: With friction:

Coefficient of friction = u = tan ¢.
P = 2Qtan(o + ¢)

Force Moving Body on Horizontal Plane.—F tends to
move B along line CD; Q is the component which actually
moves B; P is the pressure, due to F, of the body on CD.

P = /FZ_QZ

Q0 = Fxcoso
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Wheels and Pulleys
F:W = rR
FXR = Wxr The radius of a drum on which is wound the
WX r lifting rope of a windlass is 2 inches. What force
F = R will be exerted at the periphery of a gear of 24
‘. inches diameter, mounted on the same shaft as
L/ w = EXR the drum and transmitting power to it, if one ton
r (2000 pounds) is to be lifted? Here W = 2000; R
R:WXr =12;r=2.
F
F F = 2000x2 _ 333 pounds
m , = FXR 12
114

Let the pitch diameters of gears A, B, C and D be
30, 28, 12 and 10 inches, respectively. Then R, =
15;R;=14;r,=6;and r=5. LetR=12,and r, =
4. Then the force F required to lift a weight W of
2000 pounds, friction being neglected, is:

_ 2000x5x6x4 _

A, B, C and D are the pitch circles of gears. F = &—=2272327 = 95 pounds
12x 14 x 15
e WXrxriXr,
RXR{XR,
FXRXR;XR
W = 1252
r><r1><r2
) & F:W = seca:2
F=Y%w F = Wxseca
The velocity with which 2
weight W will be raised W = 2F x coso.

equals one-half the veloc-
ity of the force applied at
F.

n = number of strands or
parts of rope (ny, n,, etc.).

F = l>< w
n
ny
ns F The velocity with which
2 . , 1
ns ng W will be raised equals ;,

of the velocity of the force
applied at F.

In the illustration is shown a combination of a
double and triple block. The pulleys each turn
freely on a pin as axis, and are drawn with differ-
ent diameters, to show the parts of the rope more
clearly. There are 5 parts of rope. Therefore, if
200 pounds is to be lifted, the force F required at
the end of the rope is:

F = %x200 = 40 pounds

Note: The above formulas are valid using metric S| units, with forces expressed in newtons, and
lengths in meters or millimeters. (See note on page 167 concerning weight and mass.)
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Differential Pulley

~ In the differential pulley a chain must be used,
engaging sprockets, so as to prevent the chain
T from slipping over the pulley faces.

PXR = %YW(R-r)

p = W(R-r)
2R
W= 2PR
R-r

The Chinese windlass is of the differential
motion principle, in that the resultant motion is
the difference between two original motions. The

hoisting rope is arranged to unwind from one part
of a drum or pulley onto another part differing
somewhat in diameter. The distance that the load
or hook moves for one revolution of the com-

0 pound hoisting drum is equal to half the differ-
ence between the circumferences of the two drum
sections.

Chinese Windlass
Screw

"

F = force at end of handle or wrench; R = lever-arm of F;
r = pitch radius of screw; p = lead of thread; Q = load. Then,
neglecting friction:
_ p _ . 6.2832R
F=0x55pr 271X
If w is the coefficient of friction, then:
For motion in direction of load Q which assists it:
- 6.2832ur—p r
F = 0 83ar+up R
For motion opposite load Q which resists it:
_ p+6.2832ur r
F = 0 a2r—up R

Geneva Wheel

Geneva wheels are frequently used on machine tools for indexing or rotating some part
of the machine through a fractional part of a revolution.

The driven wheel shown in the illustration has four radial slots located 90 degrees
apart, and the driver carries a roller k which engages one of these slots each time it makes
a revolution, thus turning the driven wheel one-quarter revolution. The concentric surface
b engages the concave surface ¢ between each pair of slots before the driving roller is dis-
engaged from the driven wheel, which prevents the latter from rotating while the roller is
moving around to engage the next successive slot. The circular boss b on the driver is cut
away at d to provide a clearance space for the projecting arms of the driven wheel. In
designing gearing of the general type illustrated, it is advisable to so proportion the driv-
ing and driven members that the angle a will be approximately 90 degrees.

The radial slots in the driven part will then be tangent to the circular path of the driving
roller at the time the roller enters and leaves the slot. When the gearing is designed in this
way, the driven wheel is started gradually from a state of rest and the motion is also grad-
ually checked.
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Toggle Joint

A link mechanism commonly known as a toggle joint is applied to
machines of different types, such as drawing and embossing presses, stone
crushers, etc., for securing great pressure. The principle of the toggle joint
is shown by Fig. 10. There are two links, » and ¢, which are connected at
the center. Link b is free to swivel about a fixed pin or bearing at 4, and
link e is connected to a sliding member e. Rod £ joins links b and ¢ at the
central connection. When force is applied to rod fin a direction at right
angles to center-line xx, along which the driven member e moves, this
force is greatly multiplied at e, because a movement at the joint g pro-
duces a relatively slight movement at e. As the angle o becomes less,
motion at e decreases and the force increases until the links are in line. If
R = the resistance at e, P = the applied power or force, and o= the angle
between each link, and a line x-x passing through the axes of the pins,
then:

2R sino.= P cos o

7 4‘7/4

Fig. 10. Toggle Joint Principle

SIMPLE MECHANISMS

If arms ED and EH are of unequal length then
P=(Fxa)+b
The relation between P and F changes constantly
as F moves downward.
If arms ED and EH are equal, then
P=(Fxa)+2h
A double toggle-joint does not increase the pres-
sure exerted so long as the relative distances moved
by F and P remain the same.

T F

Toggle-joints with Equal Arms

angle.

2Psino. = Fcoso
P _ cosa

F  2sina
P = F x coefficient

= coefficient

where = F = force applied; P = resistance; avd, oo = given

Equivalent expressions (see diagram):

P:ﬂg P:P;S
4h H

To use the table, measure angle o, and find the coefficient
in the table corresponding to the angle found. The coeffi-
cient is the ratio of the resistance to the force applied, and
multiplying the force applied by the coefficient gives the

neglecting friction.

resistance,
Angle ° Coefficient Angle ° Coefficient Angle °
0.01 2864.79 1.00 28.64 5.25
0.02 1432.39 1.10 26.04 5.50
0.03 954.93 1.20 23.87 5.75
0.04 716.20 1.30 22.03 6.00
0.05 572.96 1.40 20.46 6.50
0.10 286.48 1.50 19.09 7.00
0.15 190.99 1.60 17.90 7.50
0.20 143.24 1.70 16.85 8.00
0.25 114.59 1.80 1591 8.50
0.30 95.49 1.90 15.07 9.00
0.35 81.85 2.00 14.32 10.00
0.40 71.62 2.25 12.73 11.00
0.45 63.66 2.50 11.45 12.00
0.50 57.29 2.75 10.41 13.00
0.55 52.09 3.00 9.54 14.00
0.60 47.74 3.25 8.81 15.00
0.65 44.07 3.50 8.17 16.00
0.70 40.92 3.75 7.63 17.00
0.75 38.20 4.00 7.15 18.00
0.80 35.81 4.25 6.73 19.00
0.85 33.70 4.50 6.35 20.00
0.90 31.83 4.75 6.02 21.00
0.95 30.15 5.00 5.72 22.00

Coefficient Angle ° Coefficient
5.44 23 1.18
5.19 24 1.12
4.97 25 1.07
4.76 26 1.03
4.39 27 0.98
4.07 28 0.94
3.80 29 0.90
3.56 30 0.87
3.35 31 0.83
3.16 32 0.80
2.84 33 0.77
2.57 34 0.74
2.35 35 0.71
2.17 36 0.69
2.01 37 0.66
1.87 38 0.64
1.74 39 0.62
1.64 40 0.60
1.54 41 0.58
1.45 42 0.56
1.37 43 0.54
1.30 44 0.52
1.24 45 0.50
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Pendulums

A compound or physical pendulum consists of any rigid body suspended from a fixed
horizontal axis about which the body may oscillate in a vertical plane due to the action of
gravity.

A simple or mathematical pendulum is similar to a compound pendulum except that the
mass of the body is concentrated at a single point which is suspended from a fixed horizon-
tal axis by a weightless cord. Actually, a simple pendulum cannot be constructed since it is
impossible to have either a weightless cord or a body whose mass is entirely concentrated
at one point. A good approximation, however, consists of a small, heavy bob suspended by
a light, fine wire. If these conditions are not met by the pendulum, it should be considered
as a compound pendulum.

A conical pendulum is similar to a simple pendulum except that the weight suspended by
the cord moves at a uniform speed around the circumference of a circle in a horizontal
plane instead of oscillating back and forth in a vertical plane. The principle of the conical
pendulum is employed in the Watt fly-ball governor.

Four Types of Pendulum
‘ o\
{ NS
XN
\.l 7] P
\\~J—//
| I
’ W
Physical Pendulum Simple Pendulum

777

Conical Pendulum Torsional Pendulum
W =Weight of Disk

A torsional pendulum in its simplest form consists of a disk fixed to a slender rod, the
other end of which is fastened to a fixed frame. When the disc is twisted through some
angle and released, it will then oscillate back and forth about the axis of the rod because of
the torque exerted by the rod.

Pendulum Formulas.—From the formulas that follow, the period of vibration or time
required for one complete cycle back and forth may be determined for the types of pendu-
lums shown in the accompanying diagram.
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TZZn@ D

where T'= period in seconds for one complete cycle; g =acceleration due to gravity =32.17
feet per second per second (approximately); and 7 is the length of the pendulum in feet as
shown on the accompanying diagram.

For a physical or compound pendulum,

k2
T =2n |2 (2
gr

where k, = radius of gyration of the pendulum about the axis of rotation, in feet, and r is the
distance from the axis of rotation to the center of gravity, in feet.

The metric SI units that can be used in the two above formulas are 7' = time in sec-
onds; g = approximately 9.81 meters per second squared, which is the value for accel-
eration due to gravity; / = the length of the pendulum in meters; k, = the radius of
gyration in meters, and r = the distance from the axis of rotation to the center of grav-
ity, in meters.

Formulas (1) and (2) are accurate when the angle of oscillation 6 shown in the diagram is
very small. For 6 equal to 22 degrees, these formulas give results that are too small by 1 per
cent; for 6 equal to 32 degrees, by 2 per cent.

For a conical pendulum, the time in seconds for one revolution is:

T = 25 [LCOS® (Ba)  or T = 2 [LCOLO (3b)
g g

For a torsional pendulum consisting of a thin rod and a disk as shown in the figure

2 ImwWr2l
=z 4)
3\ gd*G

where W = weight of disk in pounds; r = radius of disk in feet; / = length of rod in feet; d =
diameter of rod in feet; and G = modulus of elasticity in shear of the rod material in pounds
per square inch.

The formula using metric ST units is:

_ g |tM r2l
d‘G

where 7T = time in seconds for one complete oscillation; M = mass in kilograms; r =
radius in meters; / = length of rod in meters; d = diameter of rod in meters; G = mod-
ulus of elasticity in shear of the rod material in pascals (newtons per meter squared).
The same formula can be applied using millimeters, providing dimensions are
expressed in millimeters throughout, and the modulus of elasticity in megapascals
(newtons per millimeter squared).

Harmonic.—A harmonic is any component of a periodic quantity which is an integral
multiple of the fundamental frequency. For example, a component the frequency of which
is twice the fundamental frequency is called the second harmonic.

A harmonic, in electricity, is an alternating-current electromotive force wave of higher
frequency than the fundamental, and superimposed on the same so as to distort it from a
true sine-wave shape. It is caused by the slots, the shape of the pole pieces, and the pulsa-
tion of the armature reaction. The third and the fifth harmonics, i.e., with a frequency three
and five times the fundamental, are generally the predominating ones in three-phase
machines.

For a simple pendulum,
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VELOCITY, ACCELERATION, WORK, AND ENERGY

Velocity and Acceleration

Motion is a progressive change of position of a body. Velocity is the rate of motion, that
is, the rate of change of position. When the velocity of a body is the same at every moment
during which the motion takes place, the latter is called uniform motion. When the velocity
is variable and constantly increasing, the rate at which it changes is called acceleration.
Acceleration is the rate at which the velocity of a body changes in a unit of time, as the
change in feet or meters per second, in one second. When the motion is decreasing instead
of increasing, it is called retarded motion, and the rate at which the motion is retarded is
frequently called the deceleration. If the acceleration is uniform, the motion is called uni-
Sformly accelerated motion. An example of such motion is found in that of falling bodies.

Newton's Laws of Motion.— The first clear statement of the fundamental relations exist-
ing between force and motion was made in the seventeenth century by Sir Isaac Newton,
the English mathematician and physicist. It was put in the form of three laws, which are
given as originally stated by Newton:
1) Every body continues in its state of rest, or uniform motion in a straight line, exceptin
so far as it may be compelled by force to change that state.
2) Change of motion is proportional to the force applied and takes place in the direction
in which that force acts.
3) To every action there is always an equal reaction; or, the mutual actions of two bodies
are always equal and oppositely directed.

Motion with Constant Velocity.— In the formulas that follow, S = distance moved; V =
velocity; ¢ = time of motion, 6 = angle of rotation, and @ = angular velocity; the usual units
for these quantities in the US Customary System are, respectively, feet, feet per second,
seconds, radians, and radians per second. The usual metric units are meters, meters per sec-
ond, seconds, radians, and radians per second. Any consistent set of units may be
employed.

Constant Linear Velocity: S = VXt V=_58=+t t=8=+V

Constant Angular Velocity: 6 = ot O =0+t tr=0+wm

Relation between Angular Motion and Linear Motion: The relation between the angular
velocity of a rotating body and the linear velocity of a point at a distance r from the center
of rotation is:

V(ft/s) = r(ft) x o(radians/s) V(m/s) = r(m) x w(radians/s)
Similarly, the distance moved by the point during rotation through angle 0 is:

S(ft) = r(ft) x 6(radians) S(m) = r(m) x 6(radians)

Linear Motion with Constant Acceleration.— The relations between distance, velocity,
and time for linear motion with constant or uniform acceleration are given by the formulas
in the accompanying Table 1. In these formulas, the acceleration is assumed to be in the
same direction as the initial velocity; hence, if the acceleration in a particular problem
should happen to be in a direction opposite that of the initial velocity, then a should be
replaced by — a. Thus, for example, the formula V=V, + at becomes V=V, — at when a
and V, are opposite in direction.

Example: A car is moving at 100 kmph when the brakes are suddenly locked and the car
begins to skid. If it takes 2 seconds to slow the car to 50 kmph, at what rate is it being decel-
erated, how long is it before the car comes to a halt, and how far will it have traveled?

The initial velocity V, of the car is 100 kmph or 27.78 m/sec and the acceleration a due to
braking is opposite in direction to V,, since the car is slowed to 50 kmph or 13.89 m/sec.



176 VELOCITY AND ACCELERATION

Table 1. Linear Motion with Constant Acceleration

To Find Known Formula H To Find ‘ Known ‘ Formula
Motion Uniformly Accelerated From Rest (V, = 0)

a,t S = Yar? S, Vg t=25+V;
S Vit S=%V t S,a t=J25+a
Vi a S§S=VZ+2a a, vy t=Vi+a
a,t Ve=at S, t a=28+1
S, t Vi=2S+t a S,V a=\/f2+28
v, a, S V, = J2as Vit a=Vy+t
Motion Uniformly Accelerated From Initial Velocity V,
at,V, S=V,t+ Yar? . Vo Viva t=(V,=V,)+a
S Vo Vit | S= (Ve V,)i+2 V, VoS | 1=25+(V,+V,)
Vo Vya | S=(VF-V2)+2a Vo VS | a=(V-V2+2S
Vi, a,t S=Vi— Yar? . Vo Vi t a=(V,=V,)+t
V,at V=V, +at V, St a=2(S-V,0)+r
vV, St Vi=(@2S+1n-V, Vi, S, t a=2(Vi—S)+ 2
- 2
Vora, § Vy= JVo+2a8 Meanings of Symbols
|% S, at V.= (S+1)+ %at . .
I “ ==+ S = distance moved in feet or meters
Via, S v, = /ng —2aS$ V= fir_la}l velocit_y, feet or meters per second
_ V, = initial velocity, feet or meters per second
Vin S, t Vo= (@2S+1)-V; a = acceleration, feet or meters per second per
Viat V,=V,—at second
’ t = time of acceleration in seconds
v, S, a,t V,=(S+1)—-Y%at

Since V,, V,, and ¢ are known, a can be determined from the formula
a=(Ve=V,)+r=(1389-27.78)+2 = -6.95 m/sec?
The time required to stop the car can be determined from the formula
1= (Vp=V,))+a = (0-27.78) + (-6.95) = 4 seconds
The distance traveled by the car is obtained from the formula

L S=V %atz = (27.78x4)+(%(—6.95)x42) = (11112 -55.6) = 55.52 meters

Angular Velocity of Rotating Bodies.—The angular velocity of a rotating body is the
angle through which the body turns in a unit of time. Angular velocity is commonly
expressed in terms of revolutions per minute, but in certain engineering applications it is
necessary to express it as radians per second. By definition there are 2r radians in 360
degrees, or one revolution, so that one radian =360 + 27t =57.3 degrees. To convert angular
velocity in revolutions per minute, n, to angular velocity in radians per second, ®, multiply
by w and divide by 30:
n

® =25 1)
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The following Table 2 may be used to obtain angular velocity in radians per second for all
numbers of revolutions per minute from 1 to 239.

Table 2. Angular Velocity in Revolutions per Minute
Converted to Radians per Second

Angular Velocity in Radians per Second

R.P.M. 0 1 2 3 4 5 6 7 8 9

0 0.00 0.10 0.21 0.31 0.42 0.52 0.63 0.73 0.84 0.94
10 1.05 1.15 1.26 1.36 1.47 1.57 1.67 1.78 1.88 1.99
20 2.09 2.20 2.30 241 2.51 2.62 2.72 2.83 2.93 3.04
30 3.14 3.25 3.35 3.46 3.56 3.66 3.77 3.87 3.98 4.08
40 4.19 4.29 4.40 4.50 4.61 4.71 4.82 4.92 5.03 5.13
50 5.24 5.34 5.44 5.55 5.65 5.76 5.86 5.97 6.07 6.18
60 6.28 6.39 6.49 6.60 6.70 6.81 6.91 7.02 7.12 7.23
70 7.33 7.43 7.54 7.64 7.75 7.85 7.96 8.06 8.17 8.27
80 8.38 8.48 8.59 8.69 8.80 8.90 9.01 9.11 9.21 9.32
90 9.42 9.53 9.63 9.74 9.84 9.95 10.05 10.16 10.26 10.37

100 10.47 10.58 10.68 10.79 10.89 11.00 11.10 11.20 11.31 11.41
110 11.52 11.62 11.73 11.83 11.94 12.04 12.15 12.25 12.36 12.46
120 12.57 12.67 12.78 12.88 12.98 13.09 13.19 13.30 13.40 1351
130 13.61 13.72 13.82 13.93 14.03 14.14 14.24 14.35 14.45 14.56
140 14.66 14.76 14.87 14.97 15.08 15.18 15.29 15.39 15.50 15.60
150 15.71 15.81 15.92 16.02 16.13 16.23 16.34 16.44 16.55 16.65
160 16.75 16.86 16.96 17.07 17.17 17.28 17.38 17.49 17.59 17.70
170 17.80 17.91 18.01 18.12 18.22 18.33 18.43 18.53 18.64 18.74
180 18.85 18.95 19.06 19.16 19.27 19.37 19.48 19.58 19.69 19.79
190 19.90 20.00 20.11 20.21 20.32 20.42 20.52 20.63 20.73 20.84
200 20.94 21.05 21.15 21.26 21.36 21.47 21.57 21.68 21.78 21.89
210 21.99 22.10 22.20 22.30 2241 22.51 22.62 22.72 22.83 22.93
220 23.04 23.14 23.25 23.35 23.46 23.56 23.67 23.77 23.88 23.98
230 24.09 24.19 24.29 24.40 24.50 24.61 24.71 24.82 24.92 25.03

Example: To find the angular velocity in radians per second of a flywheel making 97 rev-
olutions per minute, locate 90 in the left-hand column and 7 at the top of the columns; at the
intersection of the two lines, the angular velocity is read off as equal to 10.16 radians per
second.

Linear Velocity of Points on a Rotating Body.—The linear velocity, v, of any pointona
rotating body expressed in feet per second may be found by multiplying the angular veloc-
ity of the body in radians per second, , by the radius, r, in feet from the center of rotation
to the point:

v = or )
The metric SI units are v = meters per second; ® = radians per second, r = meters.

Rotary Motion with Constant Acceleration.—The relations among angle of rotation,
angular velocity, and time for rotation with constant or uniform acceleration are given in
the accompanying Table 3.

In these formulas, the acceleration is assumed to be in the same direction as the initial
angular velocity; hence, if the acceleration in a particular problem should happento be ina
direction opposite that of the initial angular velocity, then o should be replaced by —a.
Thus, for example, the formula o,= w, + o becomes o,= w, — o when a.and o, are oppo-
site in direction.

Linear Acceleration of a Point on a Rotating Body: A point on a body rotating about a
fixed axis has a linear acceleration a that is the resultant of two component accelerations.
The first component is the centripetal or normal acceleration which is directed from the
point P toward the axis of rotation; its magnitude is rm? where r is the radius from the axis
to the point P and o is the angular velocity of the body at the time acceleration a is to be
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Table 3. Rotary Motion with Constant Acceleration

To To
Find Known Formula Find Known Formula
Motion Uniformly Accelerated From Rest (w, = 0)
o, t 0 = o2 0, oy 1=20+ 0
0 o 1 9:3/2(0ft t 0, o t= J20+0
0, 0 0= wf+20 o, =0
o, t ;= ot 0,1 o0=20+17
o 0,1 0;=20+1 o 0, o, o= 0)/-2 +20
a, 6 (Of = J200 (Df) t o= (0f+[
Motion Uniformly Accelerated From Initial Velocity w,
o, 1,0, 0= w,+ Yo 0, 0,0 o= (0f-0,?)+20
o ®,, O t 0=(0+0,)t+2 ®,, O t o= (0-0,) =+t
‘ o ‘ ‘
©,, O, O 0= (0 -w,2)+20 ®,, 01 o=2(0-m,j) +1
oy, o, 1 0 = ot — You? w01 o=2(wt—0) + 1
®,, o, t 0=, + o Meanings of Symbols
,, 0,1 0= (20 +1) -,
@ ,, 0, 6 o = /mg +200 6 =angle of rotation, radians
o, =final angular velocity, radians per second
0, 0,1 = (8 +1) + Hou o, =initial angular velocity, radians per sec-
;0,6 0, = j0Z-200 ond
! ‘ / o =angular acceleration, radians per second,
o, 6,1 ®,= (20 +1) - o per second
(DO
O O, 1 o, = o~ o t =time in seconds
0, 0,1 ®,=(0+ 1) — Yo
.| o t= (0~ o,)+ o 1 degree = 0.01745 radians
®,, 0, 0 1=20+ (0 + ,) (See conversion table on page 103)

determined. The second component of a is the tangential acceleration which is equal to roc
where o is the angular acceleration of the body.

The acceleration of point P is the resultant of r@w? and rot and is given by the formula

a = J(ro?)?+(ra)?
When o = 0, this formula reduces to: a = r®?

Example: A flywheel on a press rotating at 120 rpm is slowed to 102 rpm during a punch-
ing operation that requires %, second for the punching portion of the cycle. What angular
deceleration does the flywheel experience?

From the table on page 177, the angular velocities corresponding to 120 rpm and 102
rpm, respectively, are 12.57 and 10.68 radians per second. Therefore, using the formula

o = ((Df— ®,)+t
o = (10.68-1257)+% = -1.89+9,
o = —2.52 radians per second per second

which is, from the table on page 177, — 24 rpm per second. The minus sign in the answer
indicates that the acceleration o acts to slow the flywheel, that is, the flywheel is being
decelerated.
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Force, Work, Energy, and Momentum

Accelerations Resulting from Unbalanced Forces.—In the section describing the reso-
lution and composition of forces it was stated that when the resultant of a system of forces
is zero, the system is in equilibrium, that is, the body on which the force system acts
remains at rest or continues to move with uniform velocity. If, however, the resultant of a
system of forces is not zero, the body on which the forces act will be accelerated in the
direction of the unbalanced force. To determine the relation between the unbalanced force
and the resulting acceleration, Newton's laws of motion must be applied. These laws may
be stated as follows:

First Law: Every body continues in a state of rest or in uniform motion in a straight line,
until it is compelled by a force to change its state of rest or motion.

Second Law: Change of motion is proportional to the force applied, and takes place along
the straight line in which the force acts. The “force applied” represents the resultant of all
the forces acting on the body. This law is sometimes worded: An unbalanced force acting
on a body causes an acceleration of the body in the direction of the force and of magnitude
proportional to the force and inversely proportional to the mass of the body. Stated as a for-
mula, R = Ma where R is the resultant of all the forces acting on the body, M is the mass of
the body (mass = weight W divided by acceleration due to gravity g), and « is the accelera-
tion of the body resulting from application of force R.

Third Law: To every action there is always an equal reaction, or, in other words, if a force
acts to change the state of motion of a body, the body offers a resistance equal and directly
opposite to the force.

Newton's second law may be used to calculate linear and angular accelerations of a body
produced by unbalanced forces and torques acting on the body; however, it is necessary
first to use the methods described under Algebraic Composition and Resolution of Force
Systems starting on page 156 to determine the magnitude and direction of the resultant of
all forces acting on the body. Then, for a body moving with pure translation,

where R is the resultant force in pounds acting on a body weighing W pounds; g is the grav-
itational constant, usually taken as 32.16 ft/sec?, approximately; and a is the resulting
acceleration in ft/sec? of the body due to R and in the same direction as R.

Using metric SI units, the formula is R = Ma, where R = force in newtons (N), M =
mass in kilograms, and a = acceleration in meters/second squared. It should be noted
that the weight of a body of mass M kg is Mg newtons, where g is approximately 9.81
m/s%

Free Body Diagram: In order to correctly determine the effect of forces on the motion of
abody it is necessary to resort to what is known as a free body diagram. This diagram
shows 1) the body removed or isolated from contact with all other bodies that exert force
on the body; and 2) all the forces acting on the body.

Thus, for example, in Fig. 1a the block being pulled up the plane is acted upon by certain
forces; the free body diagram of this block is shown at Fig. 1b. Note that all forces acting on
the block are indicated. These forces include: 1) the force of gravity (weight); 2) the pull
of the cable, P; 3) the normal component, W cos ¢, of the force exerted on the block by the
plane; and 4) the friction force, uW cos ¢, of the plane on the block.
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Fig. la. Fig. 1b.

In preparing a free body diagram, it is important to realize that only those forces exerted
on the body being considered are shown; forces exerted by the body on other bodies are
disregarded. This feature makes the free body diagram an invaluable aid in the solution of
problems in mechanics.

Example: A 100-pound body is being hoisted by a winch, the tension in the hoisting cable
being kept constant at 110 pounds. At what rate is the body accelerated?
Two forces are acting on the body, its weight, 100 pounds downward, and the pull of the

cable, 110 pounds upward. The resultant force R, from a free body diagram, is therefore
110-100. Thus, applying Newton's second law,

_ 100
110-100 = 3—2.16a
a = 3216 X130 _ 3516 fysec? upward
100

It should be noted that since in this problem the resultant force R was positive (110 — 100
=+ 10), the acceleration a is also positive, that is, a is in the same direction as R, which isin
accord with Newton's second law.

Example using SI metric units: A body of mass 50 kilograms is being hoisted by a
winch, and the tension in the cable is 600 newtons. What is the acceleration? The
weight of the 50 kg body is 50g newtons, where g = approximately 9.81 m/s? (see Note
on page 187). Applying the formula R = Ma, the calculation is: (600 — 50g) = 50a.
Thus,

q = 800-50g _ 600-(50x9.81) _ 549 /2
50 50

Formulas Relating Torque and Angular Acceleration: For a body rotating about a fixed
axis the relation between the unbalanced torque acting to produce rotation and the resulting
angular acceleration may be determined from any one of the following formulas, each
based on Newton's second law:

. = JMoc
- 2
T, = Mk;o
2 2
7= Wkio _ Wkio

0 g 32.16

where T, is the unbalanced torque in pounds-feet; J,, in ft-Ibs-sec? is the moment of inertia
of the body about the axis of rotation; k, in feet is the radius of gyration of the body with
respect to the axis of rotation, and o in radians per second, per second is the angular accel-
eration of the body.

Example: A flywheel has a diameter of 3 feet and weighs 1000 pounds. What torque must
be applied, neglecting bearing friction, to accelerate the flywheel at the rate of 100 revolu-
tions per minute, per second?
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From page 246 the moment of inertia of a solid cylinder with respect to a gravity axis at
right angles to the circular cross-section is given as % Mr2. From page 177, 100 rpm =

10.47 radians per second, hence an acceleration of 100 rpm per second = 10.47 radians per
second, per second. Therefore, using the first of the preceding formulas,

_ - llQO_Q@)Z - -
T, = Jyo = (3) 508 (3) x 1047 = 366 fu-lbs

o
Using metric SI units, the formulas are: T, = J,,0. = Mk,?c, where T, = torque in
newton-meters; J,, = the moment of inertia in kg - m?, and o = the angular accelera-
tion in radians per second squared.
Example: A flywheel has a diameter of 1.5 m, and a mass of 800 kg. What torque is
needed to produce an angular acceleration of 100 revolutions per minute, per sec-
ond? As in the preceding example, o. = 10.47 rad/s2. Thus:

Jy = BMr? = % x800x0.752 = 225 kg - m?
Therefore: T, = J,,00=225%10.47 =2356 N - m.
Energy.—A body is said to possess energy when it is capable of doing work or overcom-
ing resistance. The energy may be either mechanical or non-mechanical, the latter includ-
ing chemical, electrical, thermal, and atomic energy.
Mechanical energy includes kinetic energy (energy possessed by a body because of its

motion) and potential energy (energy possessed by a body because of its position in a field
of force and/or its elastic deformation).

Kinetic Energy: The motion of a body may be one of pure translation, pure rotation, or a
combination of rotation and translation. By translation is meant motion in which every line
in the body remains parallel to its original position throughout the motion, that is, no rota-
tion is associated with the motion of the body.

The kinetic energy of a translating body is given by the formula

WV2

Kinetic Energy in ft-lbs due to translation = E,, = %MV? = (33)

where M = mass of body (= W= g); V = velocity of the center of gravity of the body in feet
per second; W = weight of body in pounds; and g = acceleration due to gravity = 32.16 feet
per second, per second.

The kinetic energy of a body rotating about a fixed axis O is expressed by the formula:
Kinetic Energy in ft-Ibs due to rotation = Ey, = %J,,,0? (3b)

where J,,,, is the moment of inertia of the body about the fixed axis O in pounds-feet-
seconds?, and m = angular velocity in radians per second.

For a body that is moving with both translation and rotation, the total kinetic energy is
given by the following formula as the sum of the kinetic energy due to translation of the
center of gravity and the kinetic energy due to rotation about the center of gravity:

Total Kinetic Energy in ft-lbs = E; = %MV?+%J,,-o?
(3¢)

2 2 22
= % +%J,c0° = % + %Wkgco
where J,,; is the moment of inertia of the body about its gravity axis in pounds-feet-
seconds?, k is the radius of gyration in feet with respect to an axis through the center of
gravity, and the other quantities are as previously defined.

In the metric SI system, energy is expressed as the joule (J). One joule = 1 newton-
meter. The Kinetic energy of a translating body is given by the formula E ;. = MV?2,

= _V[_/(VZ + k20)2)
28
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where M = mass in kilograms, and V = velocity in meters per second. Kinetic energy
due to rotation is expressed by the formula Eg, = %, J,,,0?% where J,,, = moment of
inertia in kg - m2, and ® = the angular velocity in radians per second. Total kinetic
energy ET =Y%MV + Y% J,,,0?* joules = ,M(V? + k*0?) joules, where k = radius of gyra-
tion in meters.

Potential Energy: The most common example of a body having potential energy because
of its position in a field of force is that of a body elevated to some height above the earth.
Here the field of force is the gravitational field of the earth and the potential energy E . of
a body weighing W pounds elevated to some height S in feet above the surface of the earth
is WS foot-pounds. If the body is permitted to drop from this height its potential energy Epp
will be converted to kinetic energy. Thus, after falling through height S the kinetic energy
of the body will be WS ft-Ibs.

In metric SI units, the potential energy E - of a body of mass M kilograms elevated
to a height of S meters, is MgS joules. After it has fallen a distance S, the kinetic energy
gained will thus be MgS$ joules.

Another type of potential energy is elastic potential energy, such as possessed by a spring
that has been compressed or extended. The amount of work in ft Ibs done in compressing
the spring S feet is equal to KS2/2, where K is the spring constant in pounds per foot. Thus,
when the spring is released to act against some resistance, it can perform K$2/2 ft-lbs of
work which is the amount of elastic potential energy E; stored in the spring.

Using metric SI units, the amount of work done in compressing the spring a dis-
tance S meters is KS?/2 joules, where K is the spring constant in newtons per meter.

Work Performed by Forces and Couples.— The work U done by a force F in moving an
object along some path is the product of the distance S the body is moved and the compo-
nent F cos o, of the force Fin the direction of S.

U = FScosa

where U = work in ft-1bs; S = distance moved in feet; F = force in Ibs; and o = angle
between line of action of force and the path of S.

If the force is in the same direction as the motion, then cos o= cos 0 = 1 and this formula
reduces to:

U=FS
Similarly, the work done by a couple T'turning an object through an angle 6 is:
U=1T6

where T'=torque of couple in pounds-feet and 6 = the angular rotation in radians.

The above formulas can be used with metric SI units: U isin joules; S is in meters; F
is in newtons, and 7 is in newton-meters.

Relation between Work and Energy.— Theoretically, when work is performed on a
body and there are no energy losses (such as due to friction, air resistance, etc.), the energy
acquired by the body is equal to the work performed on the body; this energy may be either
potential, kinetic, or a combination of both.

In actual situations, however, there may be energy losses that must be taken into account.
Thus, the relation between work done on a body, energy losses, and the energy acquired by
the body can be stated as:

Work Performed — Losses
U - Losses

Energy Acquired
Er
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Example 1: A 12-inch cube of steel weighing 490 pounds is being moved on a horizontal
conveyor belt at a speed of 6 miles per hour (8.8 feet per second). What is the kinetic energy
of the cube?

Since the block is not rotating, Formula (3a) for the kinetic energy of a body moving with

pure translation applies:
2 2
Kinetic Energy = Wye - 490x(8.8)° _ 590 ft-lbs
2g 2x32.16

A similar example using metric SI units is as follows: If a cube of mass 200 kg is
being moved on a conveyor belt at a speed of 3 meters per second, what is the kinetic
energy of the cube? It is:

Kinetic Energy = %MV2 = 1 x 200 x 32 = 900 joules

Example 2: 1f the conveyor in Example 1 is brought to an abrupt stop, how long would it
take for the steel block to come to a stop and how far along the belt would it slide before
stopping if the coefficient of friction u between the block and the conveyor belt is 0.2 and
the block slides without tipping over?

The only force acting to slow the motion of the block is the friction force between the
block and the belt. This force F is equal to the weight of the block, W, multiplied by the
coefficient of friction; F = uW=0.2 x490 =98 Ibs.

The time required to bring the block to a stop can be determined from the impulse-
momentum Formula (4¢) on page 184.

W — _ 490 _
Rxt = g(Vf V,)) = (-98)t = 3———2.16X(0 8.8)
t = A490x8.8 _ 1.37 seconds
98 x 32.16

The distance the block slides before stopping can be determined by equating the kinetic
energy of the block and the work done by friction in stopping it:

Kinetic energy of block(WV 2/2g) = Work done by friction(F x S)

590 = 98x S
590
S = == = 6.0 feet
98

If metric SI units are used, the calculation is as follows (for the cube of 200 kg mass):
The friction force = L multiplied by the weight Mg where g = approximately 9.81 m/s2.
Thus, uMg = 0.2 x 200g = 392.4 newtons. The time 7 required to bring the block to a
stop is (— 392.4)t = 200(0 — 3). Therefore,

(= 200x 3
392.4

The kinetic energy of the block is equal to the work done by friction, that is 392.4 x
S =900 joules. Thus, the distance S which the block moves before stopping is

S = 200 = 2.29 meters

3924
Force of a Blow.—A body that weighs W pounds and falls S feet from an initial position of
rest is capable of doing WS foot-pounds of work. The work performed during its fall may
be, for example, that necessary to drive a pile a distance d into the ground. Neglecting
losses in the form of dissipated heat and strain energy, the work done in driving the pile is
equal to the product of the impact force acting on the pile and the distance d which the pile
is driven. Since the impact force is not accurately known, an average value, called the

= 1.53 seconds
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“average force of the blow,” may be assumed. Equating the work done on the pile and the
work done by the falling body, which in this case is a pile driver:

Average force of blow xd = WS

Average force of blow =

where, S =total height in feet through which the driver falls, including the distance d that
the pile is driven

W =weight of driver in pounds
d =distance in feet which pile is driven

When using metric SI units, it should be noted that a body of mass M kilograms has
a weight of Mg newtons, where g = approximately 9.81 m/s2. If the body falls a dis-
tance S meters, it can do work equal to MgS joules. The average force of the blow is
MgS/d newtons, where d is the distance in meters that the pile is driven.

Example: A pile driver weighing 200 pounds strikes the top of the pile after having fallen
from a height of 20 feet. It forces the pile into the ground a distance of % foot. Before the
ram is brought to rest, it will 200 (20 + %) = 4100 foot-pounds of work, and as this energy
is expended in a distance of one-half foot, the average force of the blow equals 4100 + % =
8200 pounds.

A similar example using metric SI units is as follows: A pile driver of mass 100 kilo-
grams falls 10 meters and moves the pile a distance of 0.3 meters. The work done =
100g(10 + 0.3) joules, and it is expended in 0.3 meters. Thus, the average force is

IOOL(;;IOS = 33680 newtons or 33.68 kN

Impulse and Momentum.— The linear momentum of a body is defined as the product of
the mass M of the body and the velocity V of the center of gravity of the body:

Linear momentum = MV orsince M = W+ g
A% (4a)
8

It should be noted that linear momentum is a vector quantity, the momentum being in the
same directionas V.

Linear impulse is defined as the product of the resultant R of all the forces acting on a
body and the time ¢ that the resultant acts:

Linear Impulse = R¢ (4b)

The change in the linear momentum of a body is numerically equal to the linear impulse
that causes the change in momentum:

Linear Impulse = change in Linear Momentum

w w w
Re= V=g Ve = 5V Vo)
where V, the final velocity of the body after timez,and V , the initial velocity of the body,
are both in the same direction as the applied force R. If V,,, and Vare in opposite directions,
then the minus sign in the formula becomes a plus sign.

In metric SI units, the formulas are: Linear Momentum = MV kg - m/s, where M =
mass in kg, and V = velocity in meters per second; and Linear Impulse = Rf newton-
seconds, where R = force in newtons, and ¢ = time in seconds. In Formula (4¢) above,
Wl/g is replaced by M when SI units are used.

Linear momentum =

(4c)
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Example: A 1000-pound block is pulled up a 2-degree incline by a cable exerting a con-
stant force F of 600 pounds. If the coefficient of friction u between the block and the plane
is 0.5, how fast will the block be moving up the plane 10 seconds after the pull is applied?

The resultant force R causing the body to be accelerated up the plane is the difference
between F, the force acting up the plane, and P, the force acting to resist motion up the
plane. This latter force for a body on a plane is given by the formula at the top of page 169
as P =W (ucos a + sin o)) where o is the angle of the incline.

Thus, R =F-P=F-W(ucoso+sina)
=600 —1000(0.5 cos2” + sin 2°) = 600 — 1000(0.5 x 0.99939 + 0.03490)
R =600-535= 65 pounds.

Formula (4¢) can now be applied to determine the speed at which the body will be mov-
ing up the plane after 10 seconds.

w w

Ri = Zv,- 2y
g/ g
_ 1000, 1000
6510 = 55 Vi~ 302 X0
65 x 10 x 32.2 .
V,= ———_=22 = 20.9 ft per sec = 14.3 miles per hour
f 1000 P P

A similar example using metric SI units is as follows: A 500 kg block is pulled up a 2
degree incline by a constant force F of 4 kN. The coefficient of friction y between the
block and the plane is 0.5. How fast will the block be moving 10 seconds after the pull
is applied?

The resultant force R is:

R = F-Mg(ucoso + sinn)
= 4000 — 500 x 9.81(0.5 % 0.99939 + 0.03490) = 1378N or 1.378 kN

Formula (4¢) can now be applied to determine the speed at which the body will be
moving up the plane after 10 seconds. Replacing W/g by M in the formula, the calcu-
lation is:

Rt = MV,-MV,

1378 x 10 = 500(V,—0)
1378 x 10
v, = B78X10 _ 5y ¢
f 500 S

Angular Impulse and Momentum: In a manner similar to that for linear impulse and
moment, the formulas for angular impulse and momentum for a body rotating about a fixed
axis are:

Angular momentum = J,,® (5a)
Angular impulse = Tt (5b)

where J,, is the moment of inertia of the body about the axis of rotation in pounds-feet-
seconds?, w is the angular velocity in radians per second, T, is the torque in pounds-feet
about the axis of rotation, and ¢ is the time in seconds that 7, acts.

The change in angular momentum of a body is numerically equal to the angular impulse
that causes the change in angular momentum:
Angular Impulse = Change in Angular Momentum

5¢c
Tt = JM(Df_JM(Do = JM(u)f— ®,) (50)
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where wand w, are the final and initial angular velocities, respectively.

Example: A flywheel having a moment of inertia of 25 lbs-ft-sec? is revolving with an
angular velocity of 10 radians per second when a constant torque of 20 lbs-ft is applied to
reverse its direction of rotation. For what length of time must this constant torque act to
stop the flywheel and bring it up to a reverse speed of 5 radians per second?

Applying Formula (5¢),
Tt
20t
t

JM(oof— ®,)
25(10-[-5]) = 250 + 125
375+ 20 = 18.8 seconds

A similar example using metric SI units is as follows: A flywheel with a moment of
inertia of 20 kilogram-meters? is revolving with an angular velocity of 10 radians per
second when a constant torque of 30 newton-meters is applied to reverse its direction
of rotation. For what length of time must this constant torque act to stop the flywheel
and bring it up to a reverse speed of 5 radians per second? Applying Formula (5¢), the
calculation is:

T,t = Jy(0p=,),
30¢ = 20(10 - [-5]).
Thus, t = 20;)15 = 10 seconds

Formulas for Work and Power.— The formulas in the accompanying Table 4 may be
used to determine work and power in terms of the applied force and the velocity at the point
of application of the force.

Table 4. Formulas? for Work and Power

To Find| Known Formula To Find| Known Formula
Pt F S=Pxt+F F, S K=FxS
S K, F S=K+F % Pt K=Pxt
t,F, hp S=550xtxhp+F F,V,t K=FXxXVxt
P, F V=P+F t, hp K=550x1xhp
V | K F,t V=K=+(Fx1i) F, St hp = Fx S+ (550 X 1)
F, hp V=550xhp +F hp P hp = P + 550
F,S P t=FxXS+P F,V hp = F x V550
t K, F,V t=K+(FxV) K, t hp = K + (550 x £)
F. S, hp | t=FxS+ (550 x hp) ] .
PV FePeV Meanings of Symbols: (metric units see note 2)
F K S F=K~+S S =distance in feet
K, V¢ F=K+(Vx1) V =constant or average velocity in feet per
Vi hp F=50xhp+V zztii;::?: seconds
EV P=FxV F =constant or average force in pounds
F, St P=FxS§+t P =power in foot-pounds per second
Pl Kt P=K-=+t Ip =horsepower

K =work in foot-pounds
hp P =550 X% hp
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a Note: The metric SI unit of work is the joule (one joule = 1 newton-meter), and the unit of
power is the watt (one watt =1 joule per second = 1 N - m/s). The term horsepower is not used.
Thus, those formulas above that involve horsepower and the factor 550 are not applicable when
working in SI units. The remaining formulas can be used, and the units are: S = distance in
meters; V = constant or average velocity in meters per second; ¢ = time in seconds; F = force in
newtons; P = power in watts; K = work in joules.

Example: A casting weighing 300 pounds is to be lifted by means of an overhead crane.
The casting is lifted 10 feet in 12 seconds. What is the horsepower developed? Here F =
300; §=10;r=12.

hp = Fx§ _ 300x10 _ (s

550¢  550x 12
A similar example using metric SI units is as follows: A casting of mass 150 kg is
lifted 4 meters in 15 seconds by means of a crane. What is the power? Here F = 150g
N,S=4m,and¢=15s. Thus:

1_’;5 - 1501%5 x4 _ 150 X19é81 X4 _ 392 watts or 0.392 kW

Power =

Centrifugal Force

Centrifugal Force.—When a body rotates about any axis other than one at its center of
mass, it exerts an outward radial force called centrifugal force upon the axis or any arm or
cord from the axis that restrains it from moving in a straight (tangential) line. In the follow-
ing formulas:
F =centrifugal force in pounds
W =weight of revolving body in pounds
v =velocity at radius R on body in feet per second
n =number of revolutions per minute
g =acceleration due to gravity = 32.16 feet per second per second
R =perpendicular distance in feet from axis of rotation to center of mass, or for
practical use, to center of gravity of revolving body
Note: If abody rotates about its own center of mass, R equals zero and v equals zero. This
means that the resultant of the centrifugal forces of all the elements of the body is equal to
zero or, in other words, no centrifugal force is exerted on the axis of rotation. The centrifu-
gal force of any part or element of such a body is found by the equations given below,
where R is the radius to the center of gravity of the part or element. In a flywheel rim, R is
the mean radius of the rim because it is the radius to the center of gravity of a thin radial
section.

2 2 2,2 2
Wve _ Wve _ AWRnn? _ WRn® _ (000341 WRn?

F = = = =
gR 32.16R 60 x 60g 2933

w = FRg _ 2933F , = [FRg
v2 Rn? w

R = Wy? _ 2933F "= 2933F
Fg Wn? N WR

(If n is the number of revolutions per second instead of per minute, then F = 1227WRn?.)

If metric SI units are used in the foregoing formulas, W/g is replaced by M, which is
the mass in kilograms; F = centrifugal force in newtons; v = velocity in meters per sec-
ond; n = number of revolutions per minute; and R = the radius in meters. Thus:
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Mn2(2nR?)
602R
If the rate of rotation is expressed as n; = revolutions per second, then F = 39.48
MRn?; if it is expressed as o radians per second, then F = MR

F = Mv2/R = = 0.01097 MRn?

Calculating Centrifugal Force.—In the ordinary formula for centrifugal force, F =
0.000341 WRn?; the mean radius R of the flywheel or pulley rim is given in feet. For small
dimensions, it is more convenient to have the formula in the form:

F = 0.2842x10™ Wrn2

inwhich F = centrifugal force, in pounds; W =weight of rim, in pounds; » = mean radius of
rim, in inches; n = number of revolutions per minute.

In this formula let C = 0.000028416#2. This, then, is the centrifugal force of one pound,
one inch from the axis. The formula can now be written in the form,

F = WrC

C is calculated for various values of the revolutions per minute », and the calculated val-
ues of C are given in Table 5. To find the centrifugal force in any given case, simply find
the value of Cin the table and multiply it by the product of Wand r, the four multiplications
in the original formula given thus having been reduced to two.

Example: A cast-iron flywheel with a mean rim radius of 9 inches, is rotated at a speed of
800 revolutions per minute. If the weight of the rim is 20 pounds, what is the centrifugal
force?

From Table 5, for n =800 revolutions per minute, the value of C is 18.1862.
Thus,

F = WrC = 20 x9x18.1862 = 3273.52 pounds

Using metric SI units, 0.0109772 is the centrifugal force acting on a body of 1 kilo-
gram mass rotating at n revolutions per minute at a distance of 1 meter from the axis.
If this value is designated C,, then the centrifugal force of mass M kilograms rotating
at this speed at a distance from the axis of R meters, is C;MR newtons. To simplify cal-
culations, values for C, are given in Table 6. If it is required to work in terms of milli-
meters, the force is 0.001 C;MR, newtons, where R, is the radius in millimeters.

Example: A steel pulley with a mean rim radius of 120 millimeters is rotated at a
speed of 1100 revolutions per minute. If the mass of the rim is 5 kilograms, what is the
centrifugal force?

From Table 6, for n = 1100 revolutions per minute, the value of C, is 13,269.1.
Thus,

F = 0.001 C;MR; = 0.001 x 13,269.1 x5 x 120 = 7961.50 newtons

Centrifugal Casting.— The centrifugal casting of metals is an old art. This process has
become important in such work as the manufacture of paper-mill rolls, railroad car wheels,
and cast-iron pipe. The centrifugal casting process has been successfully applied in the
production of non-metallic tubes, such as concrete pipe, in the production of solid castings
by locating the molds around the rim of a spinning wheel, and to a limited extent in the pro-
duction of solid ingots by a largely similar process. Hollow objects such as cast-iron pipe
are cast by introducing molten metal into a spinning mold. If the chilling of the metal is
extremely rapid, for example in casting cast-iron pipe against a water-cooled chilled mold,
it is imperative to use a movable spout. The particular feature that determines the field of
application of hot-mold centrifugal casting is the ability to produce long cast shapes of
comparatively thin metal.
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Table 5. Factors C for Calculating Centrifugal Force (English units)

n C n C n C n C

50 0.07104 100 0.28416 470 6.2770 5200 768.369
51 0.07391 101 0.28987 480 6.5470 5300 798.205
52 0.07684 102 0.29564 490 6.8227 5400 828.611
53 0.07982 103 0.30147 500 7.1040 5500 859.584
54 0.08286 104 0.30735 600 10.2298 5600 891.126
55 0.08596 105 0.31328 700 13.9238 5700 923.236
56 0.08911 106 0.31928 800 18.1862 5800 955.914
57 0.09232 107 0.32533 900 23.0170 5900 989.161
58 0.09559 108 0.33144 1000 28.4160 6000 1022.980
59 0.09892 109 0.33761 1100 34.3834 6100 1057.360
60 0.10230 110 0.34383 1200 40.9190 6200 1092.310
61 0.10573 115 0.37580 1300 48.0230 6300 1127.830
62 0.10923 120 0.40921 1400 55.6954 6400 1163.920
63 0.11278 125 0.44400 1500 63.9360 6500 1200.580
64 0.11639 130 0.48023 1600 72.7450 6600 1237.800
65 0.12006 135 0.51788 1700 82.1222 6700 1275.590
66 0.12378 140 0.55695 1800 92.0678 6800 1313.960
67 0.12756 145 0.59744 1900 102.5820 6900 1352.890
68 0.13140 150 0.63936 2000 113.6640 7000 1392.380
69 0.13529 160 0.72745 2100 125.3150 7100 1432.450
70 0.13924 170 0.82122 2200 137.5330 7200 1473.090
71 0.14325 180 0.92067 2300 150.3210 7300 1514.290
72 0.14731 190 1.02590 2400 163.6760 7400 1556.060
73 0.15143 200 1.1367 2500 177.6000 7500 1598.400
74 0.15561 210 1.2531 2600 192.0920 7600 1641.310
75 0.15984 220 1.3753 2700 207.1530 7700 1684.780
76 0.16413 230 1.5032 2800 222.7810 7800 1728.830
77 0.16848 240 1.6358 2900 238.9790 7900 1773.440
78 0.17288 250 1.7760 3000 255.7400 8000 1818.620
79 0.17734 260 1.9209 3100 273.0780 8100 1864.370
80 0.18186 270 2.0715 3200 290.9800 8200 1910.690
81 0.18644 280 2.2278 3300 309.4500 8300 1957.580
82 0.19107 290 2.3898 3400 328.4890 8400 2005.030
83 0.19576 300 2.5574 3500 348.0960 8500 2053.060
84 0.20050 310 2.7308 3600 368.2710 8600 2101.650
85 0.20530 320 2.9098 3700 389.0150 8700 2150.810
86 0.21016 330 3.0945 3800 410.3270 8800 2200.540
87 0.21508 340 3.2849 3900 432.2070 8900 2250.830
88 0.22005 350 3.4809 4000 454.6560 9000 2301.700
89 0.22508 360 3.6823 4100 477.6730 9100 2353.130
90 0.23017 370 3.8901 4200 501.2580 9200 2405.130
91 0.23531 380 41032 4300 525.4120 9300 2457.700
92 0.24051 390 4.3220 4400 550.1340 9400 2510.840
93 0.24577 400 4.5466 4500 575.4240 9500 2564.540
94 0.25108 410 4.7767 4600 601.2830 9600 2618.820
95 0.25645 420 5.0126 4700 627.7090 9700 2673.660
96 0.26188 430 5.2541 4800 654.7050 9800 2729.070
97 0.26737 440 5.5013 4900 682.2680 9900 2785.050
98 0.27291 450 5.7542 5000 710.4000 10000 2841.600
99 0.27851 460 6.0128 5100 739.1000




190

CENTRIFUGAL FORCE

Table 6. Factors C, for Calculating Centrifugal Force (Metric SI units)

n G n G n G n G

50 27.4156 100 109.662 470 2,422.44 5200 296,527
51 28.5232 101 111.867 480 2,526.62 5300 308,041
52 29.6527 102 114.093 490 2,632.99 5400 319,775
53 30.8041 103 116.341 500 2,741.56 5500 331,728
54 31.9775 104 118.611 600 3,947.84 5600 343,901
55 33.1728 105 120.903 700 5,373.45 5700 356,293
56 34.3901 106 123.217 800 7,018.39 5800 368,904
57 35.6293 107 125.552 900 8,882.64 5900 381,734
58 36.8904 108 127.910 1000 10,966.2 6000 394,784
59 38.1734 109 130.290 1100 13,269.1 6100 408,053
60 39.4784 110 132.691 1200 15,791.4 6200 421,542
61 40.8053 115 145.028 1300 18,532.9 6300 435,250
62 42.1542 120 157.914 1400 21,493.8 6400 449,177
63 43.5250 125 171.347 1500 24,674.0 6500 463,323
64 449177 130 185.329 1600 28,073.5 6600 477,689
65 46.3323 135 199.860 1700 31,692.4 6700 492,274
66 47.7689 140 214.938 1800 35,530.6 6800 507,078
67 49.2274 145 230.565 1900 39,588.1 6900 522,102
68 50.7078 150 246.740 2000 43,864.9 7000 537,345
69 52.2102 160 280.735 2100 48,361.1 7100 552,808
70 53.7345 170 316.924 2200 53,076.5 7200 568,489
71 55.2808 180 355.306 2300 58,011.3 7300 584,390
72 56.8489 190 395.881 2400 63,165.5 7400 600,511
73 58.4390 200 438.649 2500 68,538.9 7500 616,850
74 60.0511 210 483.611 2600 74,131.7 7600 633,409
75 61.6850 220 530.765 2700 79,943.8 7700 650,188
76 63.3409 230 580.113 2800 85,975.2 7800 667,185
77 65.0188 240 631.655 2900 92,226.0 7900 684,402
78 66.7185 250 685.389 3000 98,696.0 8000 701,839
79 68.4402 260 741.317 3100 105,385 8100 719,494
80 70.1839 270 799.438 3200 112,294 8200 737,369
81 71.9494 280 859.752 3300 119,422 8300 755,463
82 73.7369 290 922.260 3400 126,770 8400 773,777
83 75.5463 300 986.960 3500 134,336 8500 792,310
84 77.3777 310 | 1,053.85 3600 142,122 8600 811,062
85 79.2310 320 | 1,122.94 3700 150,128 8700 830,034
86 81.1062 330 | 1,194.22 3800 158,352 8800 849,225
87 83.0034 340 | 1,267.70 3900 166,796 8900 868,635
88 84.9225 350 | 1,343.36 4000 175,460 9000 888,264
89 86.8635 360 | 1,421.22 4100 184,342 9100 908,113
90 88.8264 370 | 1,501.28 4200 193,444 9200 928,182
91 90.8113 380 | 1,583.52 4300 202,766 9300 948,469
92 92.8182 390 | 1,667.96 4400 212,306 9400 968,976
93 94.8469 400 | 1,754.60 4500 222,066 9500 989,702
94 96.8976 410 | 1,843.42 4600 232,045 9600 1,010,650
95 98.9702 420 | 1,934.44 4700 242,244 9700 1,031,810
96 101.065 430 | 2,027.66 4800 252,662 9800 1,053,200
97 103.181 440 | 2,123.06 4900 263,299 9900 1,074,800
98 105.320 450 | 2,220.66 5000 274,156 10000 1,096,620
99 107.480 460 | 2,320.45 5100 285,232
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Balancing Rotating Parts

Static Balancing.— There are several methods of testing the standing or static balance of
arotating part. A simple method that is sometimes used for flywheels, etc., is illustrated by
the diagram, Fig. 1. An accurate shaft is inserted through the bore of the finished wheel,
which is then mounted on carefully leveled “parallels™ A. If the wheel is in an unbalanced
state, it will turn until the heavy side is downward. When it will stand in any position as the
result of counterbalancing and reducing the heavy portions, it is said to be in standing or
static balance. Another test which is used for disk-shaped parts is shown in Fig. 2. The disk
D ismounted on a vertical arbor attached to an adjustable cross-slide B. The latter is carried
by a table C, which is supported by a knife-edged bearing. A pendulum having an adjust-
able screw-weight W at the lower end is suspended from cross-slide B. To test the static
balance of disk D, slide B is adjusted until pointer E of the pendulum coincides with the
center of a stationary scale F. Disk D is then turned halfway around without moving the
slide, and if the indicator remains stationary, it shows that the disk is in balance for this par-
ticular position. The test is then repeated for ten or twelve other positions, and the heavy
sides are reduced, usually by drilling out the required amount of metal. Several other
devices for testing static balance are designed on this same principle.

Fig. 1. Fig. 2. Fig. 3.

Running or Dynamic Balance.—A cylindrical body may be in perfect static balance and
not be in a balanced state when rotating at high speed. If the part is in the form of a thin disk,
static balancing, if carefully done, may be accurate enough for high speeds, but if the rotat-
ing part is long in proportion to its diameter, and the unbalanced portions are at opposite
ends or in different planes, the balancing must be done so as to counteract the centrifugal
force of these heavy parts when they are rotating rapidly. This process is known as a run-
ning balance or dynamic balancing. To illustrate, if a heavy section is located at H (Fig. 3),
and another correspondingly heavy section at H,, one may exactly counterbalance the
other when the cylinder is stationary, and this static balance may be sufficient for a partrig-
idly mounted and rotating at a comparatively slow speed; but when the speed is very high,
as in turbine rotors, etc., the heavy masses H and H;, being in different planes, are in an
unbalanced state owing to the effect of centrifugal force, which results in excessive strains
and injurious vibrations. Theoretically, to obtain a perfect running balance, the exact posi-
tions of the heavy sections should be located and the balancing effected either by reducing
their weight or by adding counterweights opposite each section and in the same plane at the
proper radius; but if the rotating part is rigidly mounted on a stiff shaft, a running balance
that is sufficiently accurate for practical purposes can be obtained by means of compara-
tively few counterbalancing weights located with reference to the unbalanced parts.

Balancing Calculations.—As indicated previously, centrifugal forces caused by an
unbalanced mass or masses in a rotating machine member cause additional loads on the
bearings which are transmitted to the housing or frame and to other machine members.
Such dynamically unbalanced conditions can occur even though static balance (balance at
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zero speed) exists. Dynamic balance can be achieved by the addition of one or two masses
rotating about the same axis and at the same speed as the unbalanced masses. A single
unbalanced mass can be balanced by one counterbalancing mass located 180 degrees
opposite and in the same plane of rotation as the unbalanced mass, if the product of their
respective radii and masses are equal; i.e., Myr; = M,r,. Two or more unbalanced masses
rotating in the same plane can be balanced by a single mass rotating in the same plane, or
by two masses rotating about the same axis in two separate planes. Likewise, two or more
unbalanced masses rotating in different planes about a common axis can be balanced by
two masses rotating about the same axis in separate planes. When the unbalanced masses
are in separate planes they may be in static balance but not in dynamic balance; i.e., they
may be balanced when not rotating but unbalanced when rotating. If a system is in dynamic
balance, it will remain in balance at all speeds, although this is not strictly true at the critical
speed of the system. (See Critical Speeds on page 197.)

In all the equations that follow, the symbol M denotes either mass in kilograms or in
slugs, or weight in pounds. Either mass or weight units may be used and the equations may
be used with metric or with customary English units without change; however, in a given
problem the units must be all metric or all customary English.

Counterbalancing Several Masses Located in a Single Plane.—In all balancing prob-
lems, itis the product of counterbalancing mass (or weight) and its radius that is calculated;
itis thus necessary to select either the mass or the radius and then calculate the other value
from the product of the two quantities. Design considerations usually make this decision
self-evident. The angular position of the counterbalancing mass must also be calculated.
Referring to Fig. 4:

Myry = J(EMrcos6)2 + (SMrsing)2 @)
tan6, = :@_A_/_[I_S_'Q@l =2 (2)
B _(=Mrcose) x

Fig. 4.
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Table 1. Relationship of the Signs of the Functions of the Angle
with Respect to the Quadrant in Which They Occur

Angle 6

0° to 90° | 90° to 180° | 180° to 270° \ 270° to 360°
Signs of the Functions

tan ty ry =Y =Y
+x —X —X +x
sine ry Y =Y =Y
+r +r +r +r
i X = = *x
cosine g T T T

where:
M,;,M,, M, ... M, = any unbalanced mass or weight, kg or Ib

M, =counterbalancing mass or weight, kg or Ib
r =radius to center of gravity of any unbalanced mass or weight, mm or
inch
rg =radius to center of gravity of counterbalancing mass or weight, mm
orinch
6 =angular position of r of any unbalanced mass or weight, degrees
6, =angular position of r; of counterbalancing mass or weight, degrees

x and y = see Table 1

Table 1 is helpful in finding the angular position of the counterbalancing mass or weight.
It indicates the range of the angles within which this angular position occurs by noting the
plus and minus signs of the numerator and the denominator of the terms in Equation (2). In
a like manner, Table 1 is helpful in determining the sign of the sine or cosine functions for
angles ranging from 0 to 360 degrees. Balancing problems are usually solved most conve-
niently by arranging the arithmetical calculations in a tabular form.

Example: Referring to Fig. 4, the particular values of the unbalanced weights have been
entered in the table below. Calculate the magnitude of the counterbalancing weight if its
radius is to be 10 inches.

M T 0 cos sino Mrcos © Mrsin®
No. | Ib in. | deg
1 10 10 30 0.8660 0.5000 86.6 50.0
2 5 20 120 —0.5000 0.8660 -50.0 86.6
3 15 15 200 -0.9397 | -0.3420 -211.4 —77.0
~174.8 =YMrcos @ "59.6 =X Mrsin®

M. = J(EMrcos®)2 + (EMrsin®)? _ J(=174.8)% + (59.6)2
B

g 10
My, = 1851b
tan@, = —(EMrsin®) _ —(59.6) _ . 0, = 341°10’
—(ZMrcos®) —(-1748) +x
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Fig. 5.
Counterbalancing Masses Located in Two or More Planes.—Unbalanced masses or
weights rotating about a common axis in two separate planes of rotation form a couple,
which must be counterbalanced by masses or weights, also located in two separate planes,
call them planes A and B, and rotating about the same common axis (see Couples on page
155). In addition, they must be balanced in the direction perpendicular to the axis, as
before. Since two counterbalancing masses are required, two separate equations are
required to calculate the product of each mass or weight and its radius, and two additional
equations are required to calculate the angular positions. The planes A and B selected as
balancing planes may be any two planes separated by any convenient distance ¢, along the
axis of rotation. In Fig. 5:
For balancing plane A:

= J(EMrbcos8)®+ (EMrbsin®)?

M 3
ATA - ®3)
tan@, = —(EMrbsin®) _ y ()
—(EMrbcosO) x
For balancing plane B:
2 ing)2
Myry = J(ZMracose) c+ (ZMrasing) (5)
tano, = —(ZMrasin®) _y (6)

—(ZMracos®) x
Where: M, and M are the mass or weight of the counterbalancing masses in the balanc-
ing planes A and B, respectively; r, and ry are the radii; and 6, and 8 are the angular posi-
tions of the balancing masses in these planes. M, r, and 0 are the mass or weight, radius, and
angular positions of the unbalanced masses, with the subscripts defining the particular
mass to which the values are assigned. The length ¢, the distance between the balancing
planes, is always a positive value. The axial dimensions, a and b, may be either positive or

negative, depending upon their position relative to the balancing plane; for example, in
Fig. 5, the dimension b, would be negative.

Example: Referring to Fig. 5, a set of values for the masses and dimensions has been
selected and put into convenient table form below. The separation of balancing planes, c, is
assumed as being 15 inches. If in balancing plane A, the radius of the counterbalancing
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weight is selected to be 10 inches; calculate the magnitude of the counterbalancing mass
and its position. If in balancing plane B, the counterbalancing mass is selected to be 10 Ib;

calculate its radius and position.

For balancing plane A:

Balancing Plane A
M r 0 b
Plane Ib in. deg. in. Mrb Mrb cos 0 Mrbsin©
1 10 8 30 6 480 415.7 240.0
2 8 10 135 -6 —-480 339.4 -3394
3 12 9 270 12 1296 _00 -1296.0
A ? 10 ? 152 755.1 -1395.4
B 10 ? ? 0 =>Mrb cos 6 =>Mrbsin®

215 inches = distance ¢ between planes A and B.

J(EMrbcos©)? + (EMrbsing)?

_ JJ(755.1)2 + (-1305.4)2

M, =
rsC 10(15)
M, = 106 Ib
tang . = —(EMrbsin®) _ —(-1395.4) _ +y
A _(IMrbcos®)  —(755.1)  —x
0, = 118°25’
For balancing plane B:
Balancing Plane B
M r 0 a
Plane Ib | in. deg. in. Mra Mracos© Mrasin ©
1 10 8 30 9 720 623.5 360.0
2 8 | 10 135 21 1680 -1187.9 1187.9
3 12 9 270 3 324 0.0 —-324.0
A ? 10 ? 0 -564.4 1223.9
B 10 ? ? 152 =>Mra cos 6 =>Mrasin©

215 inches = distance ¢ between planes A and B.

]

tan6,

0 =

_ J(EMracos0)? + (EMrasin®)? _ J(=564.4)2 + (1223.9)2

Myc 10(15)
8.985 in.
—-(EMrasin®) _ —(1223.9) _ -y
—(ZMracos0) —(-564.4) +x
294°457

Balancing Lathe Fixtures.—Lathe fixtures rotating at a high speed require balancing.
Often it is assumed that the center of gravity of the workpiece and fixture, and of the coun-
terbalancing masses are in the same plane; however, this is not usually the case. Counter-
balancing masses are required in two separate planes to prevent excessive vibration or
bearing loads at high speeds.
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o CG /Workpiece

My Fixture My,
Lathe Fixture

Schematic View

Fig. 6.

Usually a single counterbalancing mass is placed in one plane selected to be 180 degrees
directly opposite the combined center of gravity of the workpiece and the fixture. Two
equal counterbalancing masses are then placed in the second counterbalancing plane,
equally spaced on each side of the fixture. Referring to Fig. 6, the two counterbalancing
masses M, and the two angles 6 are equal. For the design in this illustration, the following
formulas can be used to calculate the magnitude of the counterbalancing masses. Since
their angular positions are fixed by the design, they are not calculated.

erw(ll + ZZ)

my = Mulula t 1) ™
rgly
MA — MBrB_.Ierw (8)
2r,sin®

In these formulas M,, and r,, denote the mass or weight and the radius of the combined
center of gravity of the workpiece and the fixture.

Example: In Fig. 6 the combined weight of the workpiece and the fixture is 18.5 Ib. The
following dimensions were determined from the layout of the fixture and by calculating
the centers of gravity: r,=2in.; r, =6.25in.; r;=61in.;/; =3in.; [, =5in.; and 6 = 30°.
Calculate the weights of the counterbalancing masses.

- Myt ) | 185%2%8 - qe4aip

rgly 6x3

_ Mprg—M,r,, _ (16.44%6)-(185x2) _ g5y (each weight)

2r,sin® (2x6.25)sin30°
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Critical Speeds

Critical Speeds of Rotating Bodies and Shafts.—If a body or disk mounted upon a shaft
rotates about it, the center of gravity of the body or disk must be at the center of the shaft, if
a perfect running balance is to be obtained. In most cases, however, the center of gravity of
the disk will be slightly removed from the center of the shaft, owing to the difficulty of per-
fect balancing. Now, if the shaft and disk be rotated, the centrifugal force generated by the
heavier side will be greater than that generated by the lighter side geometrically opposite to
it, and the shaft will deflect toward the heavier side, causing the center of the disk to rotate
in a small circle. A rotating shaft without a body or disk mounted on it can also become
dynamically unstable, and the resulting vibrations and deflections can result in damage not
only to the shaft but to the machine of which it is a part. These conditions hold true up to a
comparatively high speed; but a point is eventually reached (at several thousand revolu-
tions per minute) when momentarily there will be excessive vibration, and then the parts
will run quietly again. The speed at which this occurs is called the critical speed of the
wheel or shaft, and the phenomenon itself for the shaft-mounted disk or body is called the
settling of the wheel. The explanation of the settling is that at this speed the axis of rotation
changes, and the wheel and shaft, instead of rotating about their geometrical center, begin
to rotate about an axis through their center of gravity. The shaft itself is then deflected so
that for every revolution its geometrical center traces a circle around the center of gravity
of the rotating mass.

Critical speeds depend upon the magnitude or location of the load or loads carried by the
shaft, the length of the shaft, its diameter and the kind of supporting bearings. The normal
operating speed of a machine may or may not be higher than the critical speed. For
instance, some steam turbines exceed the critical speed, although they do not run long
enough at the critical speed for the vibrations to build up to an excessive amplitude. The
practice of the General Electric Co. at Schenectady is to keep below the critical speeds. Itis
assumed that the maximum speed of a machine may be within 20 per cent high or low of the
critical speed without vibration troubles. Thus, in a design of steam turbine sets, critical
speed is a factor that determines the size of the shafts for both the generators and turbines.
Although a machine may run very close to the critical speed, the alignment and play of the
bearings, the balance and construction generally, will require extra care, resulting in a
more expensive machine; moreover, while such a machine may run smoothly for a consid-
erable time, any looseness or play that may develop later, causing a slight imbalance, will
immediately set up excessive vibrations.

The formulas commonly used to determine critical speeds are sufficiently accurate for
general purposes. There are cases, however, where the torque applied to a shaft has an
important effect on its critical speed. Investigations have shown that the critical speeds of
auniform shaft are decreased as the applied torque is increased, and that there exist critical
torques which will reduce the corresponding critical speed of the shaft to zero. A detailed
analysis of the effects of applied torques on critical speeds may be found in a paper, “Crit-
ical Speeds of Uniform Shafts under Axial Torque,” by Golumb and Rosenberg, presented
at the First U.S. National Congress of Applied Mechanics in 1951.

Formulas for Critical Speeds.—The critical speed formulas given in the accompanying
table (from the paper on Critical Speed Calculation presented before the ASME by S. H.
Weaver) apply to (1) shafts with single concentrated loads and (2) shafts carrying uni-
formly distributed loads. These formulas also cover different conditions as regards bear-
ings. If the bearings are self-aligning or very short, the shaft is considered supported at the
ends; whereas, if the bearings are long and rigid, the shaft is considered fixed. These for-
mulas, for both concentrated and distributed loads, apply to vertical shafts as well as hori-
zontal shafts, the critical speeds having the same value in both cases. The data required for
the solution of critical speed problems are the same as for shaft deflection. As the shaft is
usually of variable diameter and its stiffness is increased by a long hub, an ideal shaft of
uniform diameter and equal stiffness must be assumed.
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Critical Speed Formulas
Formulas for Single Concentrated Load
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Formulas for Distributed Loads—First Critical Speed

Total Load =W

P

Total Load =W

AAR2522222]

!

d2

1JWI
N, = 4,760,0004
!

N = 2,232,500

Bearings supported

)

N

a,2
N = 4,979,250 ——
IJWI

N, = 10,616, 7404
!

Bearings fixed

Total Load =W

RITIRIReY)

! 1

A\

d2

1JWI

N, = 1,695,500
I

N = 795,200

One fixed—One free end

N =critical speed, RPM

N, =critical speed of shaft alone

d =diameter of shaft, in inches

W =load applied to shaft, in pounds

[ =distance between centers of bearings, in inches

a and b = distances from bearings to load

In calculating critical speeds, the weight of the shaft is either neglected or, say, one-half
to two-thirds of the weight is added to the concentrated load. The formulas apply to steel
shafts having a modulus of elasticity E = 29,000,000. Although a shaft carrying a number
of loads or a distributed load may have an infinite number of critical speeds, ordinarily it is
the first critical speed that is of importance in engineering work. The first critical speed is
obtained by the formulas given in the distributed loads portion of the table Critical Speed

Formulas.
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STRENGTH OF MATERIALS

Introduction

Strength of materials deals with the relations between the external forces applied to elas-
tic bodies and the resulting deformations and stresses. In the design of structures and
machines, the application of the principles of strength of materials is necessary if satisfac-
tory materials are to be utilized and adequate proportions obtained to resist functional
forces.

Forces are produced by the action of gravity, by accelerations and impacts of moving
parts, by gasses and fluids under pressure, by the transmission of mechanical power, etc. In
order to analyze the stresses and deflections of a body, the magnitudes, directions and
points of application of forces acting on the body must be known. Information given in the
Mechanics section provides the basis for evaluating force systems.

The time element in the application of a force on a body is an important consideration.
Thus a force may be static or change so slowly that its maximum value can be treated as if
it were static; it may be suddenly applied, as with an impact; or it may have a repetitive or
cyclic behavior.

The environment in which forces act on a machine or part is also important. Such factors
as high and low temperatures; the presence of corrosive gases, vapors and liquids; radia-
tion, etc. may have a marked effect on how well parts are able to resist stresses.

Throughout the Strength of Materials section in this Handbook, both English and
metric SI data and formulas are given to cover the requirements of working in either
system of measurement. Formulas and text relating exclusively to SI units are given
in bold-face type.

Mechanical Properties of Materials.—Many mechanical properties of materials are
determined from tests, some of which give relationships between stresses and strains as
shown by the curves in the accompanying figures.

Stress is force per unit area and is usually expressed in pounds per square inch. If the
stress tends to stretch or lengthen the material, it is called tensile stress; if to compress or
shorten the material, a compressive stress; and if to shear the material, a shearing stress.
Tensile and compressive stresses always act at right-angles to (normal to) the area being
considered; shearing stresses are always in the plane of the area (at right-angles to com-
pressive or tensile stresses).

Yield point (2) -~ 3
/ T~ / /
Ultimate strength 42 Ultimate strength  » /
Elastic limit & Elastic limit 2/ Miela
Proportional limit 7 Proportional limit & / Strength
STRAIN
STRAIN STRAIN —] |~ offset

Fig. 1. Stress-strain curves

In the SI, the unit of stress is the pascal (Pa), the newton per meter squared (N/m?2).
The megapascal (newtons per millimeter squared) is often an appropriate sub-multi-
ple for use in practice.

Unit strain is the amount by which a dimension of a body changes when the body is sub-
jected to a load, divided by the original value of the dimension. The simpler term strain is
often used instead of unit strain.

Proportional limit is the point on a stress-strain curve at which it begins to deviate from
the straight-line relationship between stress and strain.
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Elastic limit is the maximum stress to which a test specimen may be subjected and still
return to its original length upon release of the load. A material is said to be stressed within
the elastic region when the working stress does not exceed the elastic limit, and to be
stressed in the plastic region when the working stress does exceed the elastic limit. The
elastic limit for steel is for all practical purposes the same as its proportional limit.

Yield point is a point on the stress-strain curve at which there isa sudden increase in strain
without a corresponding increase in stress. Not all materials have a yield point. Some rep-
resentative values of the yield point (in ksi and MPa) are as follows:

. Yield Point . Yield Point

Material i ViPa Material IS ViPa
Aluminum, wrought, 2014-T6 60 414 Titanium, pure 55-70 | 379-483
Aluminum, wrought, 6061-T6 35 241 Titanium, alloy, 5Al, 2.5Sn 110 758
Beryllium copper 140 965 Steel for bridges and buildings, ASTM A7-61T, 33 227
Brass, naval 25-50 | 172-345 ||  all shapes
Cast iron, malleable 32-45 | 221-310 || Steel, castings, high strength, for structural 40-145 | 276-1000
Castiron, nodular 45-65 | 311-448 purposes, ASTM A148.60 (seven grades)
Magnesium, AZ80A-T5 38 262 Steel, stainless (0.08-0.2C, 17Cr, 7Ni) ¥ hard 78 538

Yield strength, S, is the maximum stress that can be applied without permanent deforma-
tion of the test specimen. This is the value of the stress at the elastic limit for materials for
which there is an elastic limit. Because of the difficulty in determining the elastic limit, and
because many materials do not have an elastic region, yield strength is often determined by
the offset method as illustrated by the accompanying figure at (3). Yield strength in such a
case is the stress value on the stress-strain curve corresponding to a definite amount of per-
manent set or strain, usually 0.1 or 0.2 per cent of the original dimension. Yield strength
data for various materials are given in tables starting on pages 391, 393, 421, 422, 424,
426, 430, 513, 515, 519, 528, 529, 534, 534, 539, 547, 549, 550, and elsewhere.

Ultimate strength, S,, (also called rensile strength) is the maximum stress value obtained
on a stress-strain curve.

Modulus of elasticity, E, (also called Young's modulus) is the ratio of unit stress to unit
strain within the proportional limit of a material in tension or compression. Some represen-
tative values of Young's modulus in both US Customary and metric units are as follows:

Material Young’s Modulus Material Young’s Modulus
106 psi 109 Pa 106 psi 109 Pa

Aluminum, cast, pure 9 62.1 Magnesium, AZ80A-T5 6.5 44.8
Aluminum, wrought, 2014-T6 10.6 73.1 Titanium, pure 155 106.9
Beryllium copper 19 131 Titanium, alloy, 5 Al, 2.5 Sn 17 117.2
Brass, naval 15 103.4 Steel for bridges and buildings, 29 199.9
Bronze, phosphor, ASTM B159 15 103.4 ASTM A7-61T, all shapes
Cast iron, malleable 26 179.3 Steel, castings, high strength, 29 199.9
Cast iron, nodular 235 162 for structural purposes, ASTM A148-60

Modulus of elasticity in shear, G, isthe ratio of unit stress to unit strain within the propor-
tional limit of a material in shear.

Poisson's ratio, |, is the ratio of lateral strain to longitudinal strain for a given material
subjected to uniform longitudinal stresses within the proportional limit. The term is found
in certain equations associated with strength of materials. Values of Poisson's ratio for
common materials are as follows:

Aluminum 0.334 Nickel silver 0.322
Beryllium copper 0.285 Phosphor bronze 0.349
Brass 0.340 Rubber 0.500
Castiron, gray 0.211 Steel, cast 0.265
Copper 0.340 high carbon 0.295
Inconel 0.290 mild 0.303
Lead 0.431 nickel 0.291
Magnesium 0.350 Wrought iron 0.278

Monel metal 0.320 Zinc 0.331
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Compressive Properties.—From compression tests, compressive yield strength, S, and

cy?
compressive ultimate strength, S, are determined. Ductile materials under compression

loading merely swell or buckle without fracture, hence do not have a compressive ultimate
strength.

Shear Properties.— The properties of shear yield strength, S, shear ultimate strength,

S, and the modulus of rigidity, G, are determined by direct shear and torsional tests. The

modulus of rigidity is also known as the modulus of elasticity in shear. It is the ratio of the
shear stress, 1, to the shear strain, vy, in radians, within the proportional limit: G = t/y.

Creep.—Continuing changes in dimensions of a stressed material over time is called
creep, and it varies with different materials and periods under stress, also with temperature.
Creep tests may take some time as it is necessary to apply a constant tensile load to a spec-
imen under a selected temperature. Measurements are taken to record the resulting elonga-
tion at time periods sufficiently long for a relationship to be established. The data are then
plotted as elongation against time. The load is applied to the specimen only after it has
reached the testing temperature, and causes an initial elastic elongation that includes some
plastic deformation if the load is above the proportional limit for the material.

Some combinations of stress and temperature may cause failure of the specimen. Others
show initial high rates of deformation, followed by decreasing, then constant, rates over
long periods. Generally testing times to arrive at the constant rate of deformation are over
1000 hours.

Creep Rupture.— Tests for creep rupture are similar to creep tests but are prolonged until
the specimen fails. Further data to be obtained from these tests include time to rupture,
amount of elongation, and reduction of area. Stress-rupture tests are performed without
measuring the elongation, so that no strain data are recorded, time to failure, elongation
and reduction of area being sufficient. Sometimes, a VV-notch is cut in the specimen to
allow measurement of notch sensitivity under the testing conditions.

Stress Analysis.— Stresses, deflections, strains, and loads may be determined by applica-
tion of strain gages or lacquers to the surface of a part, then applying loads simulating those
to be encountered in service. Strain gages are commercially available in a variety of con-
figurations and are usually cemented to the part surface. The strain gages are then cali-
brated by application of a known moment, load, torque, or pressure. The electrical
characteristics of the strain gages change in proportion to the amount of strain, and the
magnitude of changes in these characteristics under loads to be applied in service indicate
changes caused by stress in the shape of the components being tested.

Lacquers are compounded especially for stress analysis and are applied to the entire part
surface. When the part is loaded, and the lacquer is viewed under light of specific wave-
length, stresses are indicated by color shading in the lacquer. The presence and intensity of
the strains can then be identified and measured on the part(s) or on photographs of the set-
up. From such images, it is possible to determine the need for thicker walls, strengthening
ribs and other modifications to component design that will enable the part to withstand
stresses in service.

Most of these tests have been standardized by the American Society for Testing and
Materials (ASTM), and are published in their Book of Standards in separate sections for
metals, plastics, rubber, and wood. Many of the test methods are also adopted by the Amer-
ican National Standards Institute (ANSI).

Fatigue Properties.—\When a material is subjected to many cycles of stress reversal or
fluctuation (variation in magnitude without reversal), failure may occur, even though the
maximum stress at any cycle is considerably less than the value at which failure would
occur if the stress were constant. Fatigue properties are determined by subjecting test spec-
imens to stress cycles and counting the number of cycles to failure. From a series of such
tests in which maximum stress values are progressively reduced, S-N diagrams can be
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plotted as illustrated by the accompanying figures. The S-N diagram Fig. 2a shows the
behavior of a material for which there is an endurance limit, S,,. Endurance limit is the
stress value at which the number of cycles to failure is infinite. Steels have endurance lim-
its that vary according to hardness, composition, and quality; but many non-ferrous metals
do not. The S-N diagram Fig. 2b does not have an endurance limit. For a metal that does not
have an endurance limit, it is standard practice to specify fatigue strength as the stress value
corresponding to a specific number of stress reversals, usually 100,000,000 or
500,000,000.

95}
(2]
o
3
v | Sen
N - number of cycles to failure N
Fig. 2a. S-N endurance limit Fig. 2b. S-N no endurance limit

The Influence of Mean Stress on Fatigue.—Most published data on the fatigue proper-
ties of metals are for completely reversed alternating stresses, that is, the mean stress of the
cycleisequal to zero. However, if a structure is subjected to stresses that fluctuate between
different values of tension and compression, then the mean stress is not zero.

When fatigue data for a specified mean stress and design life are not available for a mate-
rial, the influence of nonzero mean stress can be estimated from empirical relationships
that relate failure at a given life, under zero mean stress, to failure at the same life under
zero mean cyclic stress. One widely used formula is Goodman's linear relationship,

S, = S(1-S,/5,)

where S, is the alternating stress associated with some nonzero mean stress, S,,. S is the
alternating fatigue strength at zero mean stress. S, is the ultimate tensile strength.

Goodman's linear relationship is usually represented graphically on a so-called Good-
man Diagram, shown in Fig. 3a. The alternating fatigue strength or the alternating stress
for agiven number of endurance cycles is plotted on the ordinate (y-axis) and the static ten-
sile strength is plotted on the abscissa (x-axis). The straight line joining the alternating
fatigue strength, S, and the tensile strength, S, is the Goodman line.

The value of an alternating stress S, at a known value of mean stress S, is determined as
shown by the dashed lines on the diagram.

Alternating Fatigue Strength, S

— .
~ Ductile Metal
Goodman Line —~ ~ <

Goodman Line

Alternating Stress, S,
Altemating Stress, S,

Smx

Mean Tensile Stress, S,,, Z;'ensile Strength, S, S,
Fig. 3a. Goodman Diagram Fig. 3b. Mean Tensile Stress

For ductile materials, the Goodman law is usually conservative, since approximately 90
per cent of actual test data for most ferrous and nonferrous alloys fall above the Goodman
line, even at low endurance values where the yield strength is exceeded. For many brittle



FATIGUE 203

materials, however, actual test values can fall below the Goodman line, as illustrated in
Fig. 3b

As a rule of thumb, materials having an elongation of less than 5 per cent in a tensile test
may be regarded as brittle. Those having an elongation of 5 per cent or more may be
regarded as ductile.

Cumulative Fatigue Damage.—Most data are determined from tests at a constant stress
amplitude. This is easy to do experimentally, and the data can be presented in a straightfor-
ward manner. In actual engineering applications, however, the alternating stress amplitude
usually changes in some way during service operation. Such changes, referred to as “spec-
trum loading,” make the direct use of standard S-N fatigue curves inappropriate. A prob-
lem exists, therefore, in predicting the fatigue life under varying stress amplitude from
conventional, constant-amplitude S-N fatigue data.

The assumption in predicting spectrum loading effects is that operation at a given stress
amplitude and number of cycles will produce a certain amount of permanent fatigue dam-
age and that subsequent operation at different stress amplitude and number of cycles will
produce additional fatigue damage and a sequential accumulation of total damage, which
at a critical value will cause fatigue failure. Although the assumption appears simple, the
amount of damage incurred at any stress amplitude and number of cycles has proven diffi-
cult to determine, and several “cumulative damage” theories have been advanced.

One of the first and simplest methods for evaluating cumulative damage is known as
Miner's law or the linear damage rule, where it is assumed that », cycles at a stress of S;, for
which the average number of cycles to failure is N;, cause an amount of damage 7,/N;.
Failure is predicted to occur when

n/N =1

The term n/N is known as the “cycle ratio” or the damage fraction.

The greatest advantages of the Miner rule are its simplicity and prediction reliability,
which approximates that of more complex theories. For these reasons the rule is widely
used. It should be noted, however, that it does not account for all influences, and errors are
to be expected in failure prediction ability.

Modes of Fatigue Failure.—Several modes of fatigue failure are:

Low/High-Cycle Fatigue: This fatigue process covers cyclic loading in two significantly
different domains, with different physical mechanisms of failure. One domain is charac-
terized by relatively low cyclic loads, strain cycles confined largely to the elastic range,
and long lives or a high number of cycles to failure; traditionally, this has been called
“high-cycle fatigue.” The other domain has cyclic loads that are relatively high, significant
amounts of plastic strain induced during each cycle, and short lives or a low number of
cycles to failure. This domain has commonly been called “low-cycle fatigue” or cyclic
strain-controlled fatigue.

The transition from low- to high-cycle fatigue behavior occurs in the range from approx-
imately 10,000 to 100,000 cycles. Many define low-cycle fatigue as failure that occurs in
50,000 cycles or less.

Thermal Fatigue: Cyclic temperature changes in a machine part will produce cyclic
stresses and strains if natural thermal expansions and contractions are either wholly or par-
tially constrained. These cyclic strains produce fatigue failure just as though they were
produced by external mechanical loading. When strain cycling is produced by a fluctuat-
ing temperature field, the failure process is termed “thermal fatigue.”

While thermal fatigue and mechanical fatigue phenomena are very similar, and can be
mathematically expressed by the same types of equations, the use of mechanical fatigue
results to predict thermal fatigue performance must be done with care. For equal values of
plastic strain range, the number of cycles to failure is usually up to 2.5 times lower for ther-
mally cycled than for mechanically cycled samples.



204 SAFETY FACTORS

Corrosion Fatigue: Corrosion fatigue is a failure mode where cyclic stresses and a corro-
sion-producing environment combine to initiate and propagate cracks in fewer stress
cycles and at lower stress amplitudes than would be required in a more inert environment.
The corrosion process forms pits and surface discontinuities that act as stress raisers to
accelerate fatigue cracking. The cyclic loads may also cause cracking and flaking of the
corrosion layer, baring fresh metal to the corrosive environment. Each process accelerates
the other, making the cumulative result more serious.

Surface or Contact Fatigue: Surface fatigue failure is usually associated with rolling
surfaces in contact, and results in pitting, cracking, and spalling of the contacting surfaces
from cyclic Hertz contact stresses that cause the maximum values of cyclic shear stresses
to be slightly below the surface. The cyclic subsurface shear stresses generate cracks that
propagate to the contacting surface, dislodging particles in the process.

Combined Creep and Fatigue: In this failure mode, all of the conditions for both creep
failure and fatigue failure exist simultaneously. Each process influences the other in pro-
ducing failure, but this interaction is not well understood.

Factors of Safety.— There is always a risk that the working stress to which a member is
subjected will exceed the strength of its material. The purpose of a factor of safety is to
minimize this risk.

Factors of safety can be incorporated into design calculations in many ways. For most
calculations the following equation is used:

s = S,/ [ 1)
where , is the factor of safety, S, is the strength of the material in pounds per square inch,
and s,, is the allowable working stress, also in pounds per square inch. Since the factor of

safety is greater than 1, the allowable working stress will be less than the strength of the
material.

Ingeneral, S, is based on yield strength for ductile materials, ultimate strength for brittle
materials, and fatigue strength for parts subjected to cyclic stressing. Most strength values
are obtained by testing standard specimens at 68°F. in normal atmospheres. If, however,
the character of the stress or environment differs significantly from that used in obtaining
standard strength data, then special data must be obtained. If special data are not available,
standard data must be suitably modified.

General recommendations for values of factors of safety are given in the following list.
S Application
1.3-1.5 Foruse with highly reliable materials where loading and environmental conditions are not
severe, and where weight is an important consideration.
1.5-2 Forapplications using reliable materials where loading and environmental conditions are not
severe.
2-2.5  For use with ordinary materials where loading and environmental conditions are not severe.
2.5-3  For less tried and for brittle materials where loading and environmental conditions are not
severe.
3-4  Forapplications in which material properties are not reliable and where loading and environ-
mental conditions are not severe, or where reliable materials are to be used under difficult
loading and environmental conditions.

Working Stress.—Calculated working stresses are the products of calculated nominal
stress values and stress concentration factors. Calculated nominal stress values are based
on the assumption of idealized stress distributions. Such nominal stresses may be simple
stresses, combined stresses, or cyclic stresses. Depending on the nature of the nominal
stress, one of the following equations applies:

s, =Ko )] s, =Ko’ (4) s, =Ko (6)

cy

S, = Kt (3) Sy = Kt’ (5) Sy = KTcy (7)
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where K is a stress concentration factor; ¢ and t are, respectively, simple normal (tensile or
compressive) and shear stresses; ¢’ and ©” are combined normal and shear stresses; 6., and

T, are cyclic normal and shear stresses.

Where there is uneven stress distribution, as illustrated in the table (on page 209) of sim-
ple stresses for Cases 3, 4 and 6, the maximum stress is the one to which the stress concen-
tration factor is applied in computing working stresses. The location of the maximum
stress in each case is discussed under the section Simple Stresses and the formulas for these
maximum stresses are given in the Table of Simple Stresses On page 209.

Stress Concentration Factors.— Stress concentration is related to type of material, the
nature of the stress, environmental conditions, and the geometry of parts. When stress con-
centration factors that specifically match all of the foregoing conditions are not available,
the following equation may be used:

K =1+q(K,-1) (@)

K, is a theoretical stress concentration factor that is a function only of the geometry of a

part and the nature of the stress; g is the index of sensitivity of the material. If the geometry
is such as to provide no theoretical stress concentration, K, = 1.

Curves for evaluating K, are on pages 205 through 208. For constant stresses in cast iron
and in ductile materials, g = 0 (hence K = 1). For constant stresses in brittle materials such
as hardened steel, ¢ may be taken as 0.15; for very brittle materials such as steels that have
been quenched but not drawn, ¢ may be taken as 0.25. When stresses are suddenly applied
(impact stresses) ¢ ranges from 0.4 to 0.6 for ductile materials; for cast iron it is taken as
0.5; and, for brittle materials, 1.
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aSource: R. E. Peterson, Design Factors for Stress Concentration, Machine Design, vol. 23, 1951.
For other stress concentration charts, see Lipson and Juvinall, The Handbook of Stress and Strength,
The Macmillan Co., 1963.
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Simple Stresses.—Simple stresses are produced by constant conditions of loading on ele-
ments that can be represented as beams, rods, or bars. The table on page 209 summarizes
information pertaining to the calculation of simple stresses. Following is an explanation of
the symbols used in simple stress formulae: ¢ = simple normal (tensile or compressive)
stress in pounds per square inch; t = simple shear stress in pounds per square inch; F =
external force in pounds; V = shearing force in pounds; M = bending moment in inch-
pounds; T = torsional moment in inch-pounds; A = cross-sectional area in square inches; Z
= section modulus in inches3; Z = polar section modulus in inches?; 7 = moment of inertia
in inches?; J = polar moment of inertia in inches*; a = area of the web of wide flange and |
beams in square inches; y = perpendicular distance from axis through center of gravity of
cross-sectional area to stressed fiber in inches; ¢ = radial distance from center of gravity to
stressed fiber in inches.

Table 2. Table of Simple Stresses

Type of - Stress Stress
Case Loading Illustration Distribution Equations
Direct F F . _F
1 tension 4_5_, Uniform c I 9)
L

Direct F F . - _
2| compression B Uniform o 1 (10)

Fy R g

F
L

]
. . . M My
= +— =+
3 Bending Q J: M Zyy o 7 = (11)
X +0

Bending moment diagram | Neytral plane

For beams of rectangular
cross-section:

Fy P T = g—X 12)
| | | ] - T
RA T ‘ AR, For beams of solid circular

: ! ’ ! cross-section:
4 Shear
! - _ 4V
RIV IR 1 % T= ﬁ (13)
X
’:FZQJ:TRz For wide flange and | beams

Neutral plane (approximately):

T = 14 14
a
Direct . _F
5 shear Uniform T = a (15)

hS

T T%é T _ Tc
6 Torsi T=—=— 16
orsion %’\ Z 7 (16)

SI metric units can be applied in the calculations in place of the English units of
measurement without changes to the formulas. The SI units are the newton (N),
which is the unit of force; the meter; the meter squared; the pascal (Pa) which is the
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newton per meter squared (N/M?2); and the newton-meter (N - m) for moment of
force. Often in design work using the metric system, the millimeter is employed
rather than the meter. In such instances, the dimensions can be converted to meters
before the stress calculations are begun. Alternatively, the same formulas can be
applied using millimeters in place of the meter, providing the treatment is consistent
throughout. In such instances, stress and strength properties must be expressed in
megapascals (MPa), which is the same as newtons per millimeter squared (N/mm?),
and moments in newton-millimeters (N - mm?2). Note: 1 N/mm?2 = 1 N/10-°m? = 10¢
N/m?2 = 1 meganewton/m? = 1 megapascal.

For direct tension and direct compression loading, Cases 1 and 2 in the table on page 209,
the force F must act along a line through the center of gravity of the section at which the
stress is calculated. The equation for direct compression loading applies only to members
for which the ratio of length to least radius of gyration is relatively small, approximately
20, otherwise the member must be treated as a column.

Thetable Stresses and Deflections in Beams starting on page 257 give equations for cal-
culating stresses due to bending for common types of beams and conditions of loading.
Where these tables are not applicable, stress may be calculated using Equation (11) in the
table on page 209. In using this equation it is necessary to determine the value of the bend-
ing moment at the point where the stress is to be calculated. For beams of constant cross-
section, stress is ordinarily calculated at the point coinciding with the maximum value of
bending moment. Bending loading results in the characteristic stress distribution shown in
the table for Case 3. It will be noted that the maximum stress values are at the surfaces far-
thest from the neutral plane. One of the surfaces is stressed in tension and the other in com-
pression. It is for this reason that the + sign is used in Equation (11). Numerous tables for
evaluating section moduli are given in the section starting on page 232.

Shear stresses caused by bending have maximum values at neutral planes and zero values
at the surfaces farthest from the neutral axis, as indicated by the stress distribution diagram
shown for Case 4 in the Table of Simple Stresses. Values for Vin Equations (12), (13) and
(14) can be determined from shearing force diagrams. The shearing force diagram shown
in Case 4 corresponds to the bending moment diagram for Case 3. As shown in this dia-
gram, the value taken for V is represented by the greatest vertical distance from the x axis.
The shear stress caused by direct shear loading, Case 5, has a uniform distribution. How-
ever, the shear stress caused by torsion loading, Case 6, has a zero value at the axis and a
maximum value at the surface farthest from the axis.

Deflections.—For direct tension and direct compression loading on members with uni-
form cross sections, deflection can be calculated using Equation (17). For direct tension
loading, e is an elongation; for direct compression loading, e is a contraction. Deflection is
in inches when the load F is in pounds, the length L over which deflection occurs is in
inches, the cross-sectional area A is in square inches, and the modulus of elasticity E is in
pounds per square inch. The angular deflection of members with uniform circular cross
sections subject to torsion loading can be calculated with Equation (18).

e = FL/AE 17) 0 =TL/GJ (18)

The angular deflection 6 is in radians when the torsional moment 7'is in inch-pounds, the
length L over which the member is twisted is in inches, the modulus of rigidity G is in
pounds per square inch, and the polar moment of inertia J is in inches®.

Metric SI units can be used in Equations (17) and (18), where F = force in newtons
(N); L =length over which deflection or twisting occurs in meters; A = cross-sectional
area in meters squared; E = the modulus of elasticity in (newtons per meter squared);
0 = radians; T = the torsional moment in newton-meters (N-m); G = modulus of rigid-
ity, in pascals; and J = the polar moment of inertia in meters*. If the load (F) is applied
as a weight, it should be noted that the weight of a mass M kilograms is Mg newtons,
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where g = 9.81 m/s2. Millimeters can be used in the calculations in place of meters,
providing the treatment is consistent throughout.

Combined Stresses.— A member may be loaded in such a way that a combination of sim-
ple stresses acts at a point. Three general cases occur, examples of which are shown in the
accompanying illustration Fig. 11.

Superposition of Stresses: Fig. 11 at (1) illustrates acommon situation that results in sim-
ple stresses combining by superposition at points a and b. The equal and opposite forces F;
will cause a compressive stress 6, = — Fy/A. Force F, will cause a bending moment M to
exist in the plane of points a and b. The resulting stress ¢, =+ M/Z. The combined stress at
point a,

F F
’ 1 M ’ 1, M
0O = ——-—-— andatb, O, = ——+—
@ A Z 19 b A Z (20)
where the minus sign indicates a compressive stress and the plus sign a tensile stress. Thus,
the stress at a will be compressive and at b either tensile or compressive depending on

which term in the equation for 6,” has the greatest value.

Normal Stresses at Right Angles: This is shown in Fig. 11 at (2). This combination of
stresses occurs, for example, in tanks subjected to internal or external pressure. The princi-
ple normal stressesare 6, = F1/A;, 6, = F,/A,,and 6, = 0 inthis plane stress problem. Deter-

mine the values of these three stresses with their signs, order them algebraically, and then
calculate the maximum shear stress:

T= (Glargest_csmallest)/2 (21)

Normal and Shear Stresses: The example in Fig. 11 at (3) shows a member subjected to a
torsional shear stress, T = 7/Z,, and a direct compressive stress, ¢ = — F/A. At some point a
on the member the principal normal stresses are calculated using the equation,

2
/= g+ ((—5) + 2
c > 505 T (22)
The maximum shear stress is calculated by using the equation,
2
= ((2_5) + 1 (23)

The pointa should ordinarily be selected where stress is amaximum value. For the exam-
ple shown in the figure at (3), the point a can be anywhere on the cylindrical surface
because the combined stress has the same value anywhere on that surface.

2l o ! ( ~7
F Fi f*_._yiL_x_Fl &e -
b I,

(1) (2) (3)

Fig. 11. Types of Combined Loading

Tables of Combined Stresses.—Beginning on page 212, these tables list equations for
maximum nominal tensile or compressive (hormal) stresses, and maximum nominal shear
stresses for common machine elements. These equations were derived using general Equa-
tions (19), (20), (22),and (23). The equations apply to the critical points indicated on the
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figures. Cases 1, 2, 3, and 4 are cantilever beams. These may be loaded with a combination
of a vertical and horizontal force, or by a single oblique force. If the single oblique force F
and the angle 6 are given, then horizontal and vertical forces can be calculated using the
equations F, = F'cos 6 and F, = F'sin 0. In cases 9 and 10 of the table, the equations for 5,,”
can give a tensile and a compressive stress because of the + sign in front of the radical.
Equations involving direct compression are valid only if machine elements have relatively
short lengths with respect to their sections, otherwise column equations apply.

Calculation of Worst Stress Condition: Stress failure can occur at any critical point if
either the tensile, compressive, or shear stress properties of the material are exceeded by
the corresponding working stress. It is necessary to evaluate the factor of safety for each
possible failure condition.

The following rules apply to calculations using equations in the Table of Simple Stresses
on page 209, and to calculations based on Equations (19) and (20). Rule 1: For every cal-
culated normal stress there is a corresponding induced shear stress; the value of the shear
stress is equal to half that of the normal stress. Rule 2: For every calculated shear stress
there is a corresponding induced normal stress; the value of the normal stress is equal to
that of the shear stress. The tables of combined stress formulas, below, include equations
for calculating both maximum nominal tensile or compressive stresses, and maximum
nominal shear stresses.

Formulas for Combined Stresses
(1) Circular Cantilever Beam in Direct Compression and Bending:

Type of Beam Maximum Nominal Maximum Nominal
and Loading Tensile or Compressive Stress Shear Stress
a F F . _ 1.273(8LF . g
?:Ly 0$ Oy = —2(72"7) Ta = 059,
. d
Fy
, 8LF, , ,
i.b_L"’ ‘l ¢ 1‘ c, = ————1'273(———-2+FX) 1, = 050,
i N d

(2) Circular Cantilever Beam in Direct Tension and Bending:

Type of Beam Maximum Nominal Maximum Nominal

and Loading Tensile or Compressive Stress Shear Stress

o 5 = 1.273(F N 8LF,) , ,

—— Fx a = 2 \eT Ty 1, = 050,

N ;
b FJF . _ 1273 LF .o ,
P A d‘. Sy = = e T, = 050,
d
(3) Rectangular Cantilever Beam in Direct Compression and Bending:

Type of Beam Maximum Nominal Maximum Nominal

and Loading Tensile or Compressive Stress Shear Stress

F , 1 (6LF )
G —- — _X_F ’ ’
7} —i— a bh h X ’Ca = 0.5Ga

Fy T
, 1 (BLF . ,
~ = o= (G %, = 050,
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(4) Rectangular Cantilever Beam in Direct Tension and Bending:
Type of Beam Maximum Nominal Maximum Nominal
and Loading Tensile or Compressive Stress Shear Stress
, 6LF
4 _L = blh(F 2) Y = 056
% D h /’l a ) a
izb '_i( _6LF) o ,
o N " = 050,

(5) Circular Beam or Shaft in Direct Compression and Bending:

Type of Beam Maximum Nominal Maximum Nominal
and Loading Tensile or Compressive Stress Shear Stress
, 2LF
5 = _1.273( F) - ,
d2 d 1, = 050,
. _ 1.273(2LF - :
o, = 7(—dX—Fx) 1, = 0.50,

(6) Circular Beam or Shaft in Direct Tension and Bending:

Type of Beam Maximum Nominal Maximum Nominal
and Loading Tensile or Compressive Stress Shear Stress
F »_ 1273 2LF
a4ty - _ y , ,
s J’a&& %a 42 (Fx d ) 1, = 050,
L/2 b » _ 1.273 2LF - ,
N e v
(7) Rectangular Beam or Shaft in Direct Compression and Bending:
Type of Beam Maximum Nominal Maximum Nominal
and Loading Tensile or Compressive Stress Shear Stress
F 3LF
S
v F 6, =—-—|—=2+F r_ ’
I X%D a” Tpp\2p X 1, = 050,
b} T 3LF
L/2 r_ 1( ) [ ’
o, = | ———d_ 1, = 050
tj‘j b— L b7 pp\” 20 % b b

(8) Rectangular Beam or Shaft in Direct Tension and Bending:

Type of Beam Maximum Nominal Maximum Nominal
and Loading Tensile or Compressive Stress Shear Stress
, 3LF
o = 1 (F _X) r_ 05 ’
a bh 2h Ta - Y Ga
, 1 ( 3LF ) , ,
o, = F +—2 1, = 050
b~ ph 2h b b

(9) Circular Shaft in Direct Compression and Torsion:

Type of Beam
and Loading

Maximum Nominal
Tensile or Compressive Stress

Maximum Nominal
Shear Stress

=g

aanywhere on surface

o = 0337%r /F2+(8CDT

©_ 0637 [ (8_7)2
T, = T Fe+ p
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(10) Circular Shaft in Direct Tension and Torsion:

Type of Beam Maximum Nominal Maximum Nominal
and Loading Tensile or Compressive Stress Shear Stress
a
S ME 0.637 872 5
——=|Ft [F2+| — 0.637 8
a anywhere on surface 2 [ ( T) } =220 F2 4 (_T)
d d 7 p

(11) Offset Link, Circular Cross Section, in Direct Tension:

Type of Beam Maximum Nominal Maximum Nominal
and Loading Tensile or Compressive Stress Shear Stress
a4 o 1'273F(1—8—e) , ,
a2 d 1, = 050,
, 1.273F( 8(3) ’_ ’
o, = 1+=— 17, = 050

(12) Offset Link, Circular Cross Section, in Direct Compressi

Type of Beam Maximum Nominal Maximum Nominal
and Loading Tensile or Compressive Stress Shear Stress
; 1.273F(8_e B ) , ,
a = 52 \yq 1, = 0.50,
, _ 1.273F (86 ) r_ ’
o, = - —+1 17, = 050
b 72 P b b

(13) Offset Link, Rectangu

lar Section, in Direct Tension:

Type of Beam Maximum Nominal Maximum Nominal
and Loading Tensile or Compressive Stress Shear Stress
’ — E 66) , ,
Ca = bh(l‘f T = 050,
’ F ( 66) [ ’
o, = —|1+= t, = 0.50
b T ph\" T p b b

(14) Offset Link, Rectangu

lar Section, in Direct Compression:

Type of Beam Maximum Nominal Maximum Nominal
and Loading Tensile or Compressive Stress Shear Stress
;= F(6e , ,
Ca = bh(? - T, = 050,
’ F (66 ) [ ’
o, = ——|=+1 17, = 050
b7 Thh\h b b

Formulas from the simple and combined stress tables, as well as tension and shear
factors, can be applied without change in calculations using metric SI units. Stresses
are given in newtons per meter squared (N/m?) or in N/mm?2,
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Three-Dimensional Stress.— Three-dimensional or triaxial stress occurs in assemblies
such as a shaft press-fitted into a gear bore or in pipes and cylinders subjected to internal or
external fluid pressure. Triaxial stress also occurs in two-dimensional stress problems if
the loads produce normal stresses that are either both tensile or both compressive. In either
case the calculated maximum shear stress, based on the corresponding two-dimensional
theory, will be less than the true maximum value because of three-dimensional effects.
Therefore, if the stress analysis is to be based on the maximum-shear-stress theory of fail-
ure, the triaxial stress cubic equation should first be used to calculate the three principal
stresses and from these the true maximum shear stress. The following procedure provides
the principal maximum normal tensile and compressive stresses and the true maximum
shear stress at any point on a body subjected to any combination of loads.

The basis for the procedure is the stress cubic equation

S3—-AS2+BS—-C=0

in which:
A=S +S§ +S,
B=S5,+5,5+8.85.-S —S_VZZ—SM2

Xy

C=S,5,5.+25,,S,.5.,~5,5,2-S,5.,2-5.85,2

xMyMz xy=yz=zx
ands,, S, etc., are as shown in Fig. 12.

The coordinate system XYZ in Fig. 12 shows the positive directions of the normal and
shear stress components on an elementary cube of material. Only six of the nine compo-
nents shown are needed for the calculations: the normal stresses S, S, and S_ on three of

x My
the faces of the cube; and the three shear stresses S

w3y @nd S, The remaining three shear
stresses are known because S, =S, S, = S,,,and S,, = S,... The normal stresses S, S, and

S are shown as positive (tensne) stresses the opposne direction is negative (compresswe)

The first subscript of each shear stress identifies the coordinate axis perpendicular to the
plane of the shear stress; the second subscript identifies the axis to which the stress is par-
allel. Thus, S,,, is the shear stress in the YZ plane to which the X axis is perpendicular, and

the stress is parallel to the Yaxis.

Syz

Szx —— X

<

Fig. 12. XYZ Coordinate System Showing Positive Directions of Stresses

Step 1. Draw a diagram of the hardware to be analyzed, such as the shaft shown in Fig. 13,
and show the applied loads P, T, and any others.
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Step 2. For any point at which the stresses are to be analyzed, draw a coordinate diagram
similar to Fig. 12 and show the magnitudes of the stresses resulting from the applied loads
(these stresses may be calculated by using standard basic equations from strength of mate-
rials, and should include any stress concentration factors).

Step 3. Substitute the values of the six stresses S,, S,, S, S, S,., and S_,, including zero
values, into the formulas for the quantities A through K. The quantities 7, J, and K represent
the principal normal stresses at the point analyzed. As a check, if the algebraic sum 7 +J +
Kequals A, within rounding errors, then the calculations up to this point should be correct.

D=A%3—-B E=AXBI3—C-2xA%27

F= A/(D3/27) G =arccos(— E/(2 X F))

H=J(D/3) I=2xHXxcos(G/3)+Al3
J=2xHx[cos(G/3+120°)] +A/3 K=2xHx[cos(G/3+240°)]+A/3
Step 4. Calculate the true maximum shear stress, S,y Using the formula

Ss(max) = 0.5x (Slarge =S
inwhich Sy, Is equal to the algebraically largest of the calculated principal stresses 7, J, or
Kand S, is algebraically the smallest.

The maximum principal normal stresses and the maximum true shear stress calculated
above may be used with any of the various theories of failure.

small)

Element a

Sx

/

(.
g

Fig. 13. Example of Triaxial Stress on an Element a of Shaft Surface
Caused by Load P, Torque 7, and 5000 psi Hydraulic Pressure

Example: Atorque T on the shaft in Fig. 13 causes a shearing stress S, of 8000 psi in the
outer fibers of the shaft; and the loads P at the ends of the shaft produce a tensile stress S, of
4000 psi. The shaft passes through a hydraulic cylinder so that the shaft circumference is
subjected to the hydraulic pressure of 5000 psi in the cylinder, causing compressive
stresses S, and S, of — 5000 psi on the surface of the shaft. Find the maximum shear stress
at any point A on the surface of the shaft.

From the statement of the problem S, = + 4000 psi, S, =—5000 psi, S, =—5000 psi, S,, =
+8000 psi, S, =0psi,and S, =0 psi.

A =4000-5000-5000 =—6000

B =(4000 x —5000) + (— 5000 x — 5000) + (- 5000 x 4000) — 80002 — 02— 0% = —
7.9x 107

C =(4000 x — 5000 x — 5000) + 2 x 8000 x 0 x 0 — (4000 x 0?) — (— 5000 x 0%) — (—
5000 x 80002) = 4.2 x 1011

D=A%3-B=9.1x10" E=AXBI3-C—-2xA327=-2.46x1011

F= A/(D3/27) =1.6706x 1011 G =arccos(— E/(2 x F)) = 42.586 degrees
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H= ./(D/3) =5507.57 I=2xHxcos(G/3+A/3=8678.8,say, 8680 psi
J=2xHx[cos(G/I3+120°)] + A/I3=—9678.78, say, — 9680 psi
K =2 x H [cos(G/3 + 240°)] + A/3=—5000 psi
Check: 8680 + (— 9680) + (—5000) = — 6000 within rounding error.
Sy(max) = 0.5 x (8680 — (- 9680)) = 9180 psi
Sample Calculations.—The following examples illustrate some typical strength of
materials calculations, using both English and metric SI units of measurement.

Example 1(a): A round bar made from SAE 1025 low carbon steel is to support a direct
tension load of 50,000 pounds. Using a factor of safety of 4, and assuming that the stress
concentration factor K = 1, a suitable standard diameter is to be determined. Calculations
are to be based on a yield strength of 40,000 psi.

Because the factor of safety and strength of the material are known, the allowable work-
ing stress s,, may be calculated using Equation (1): 40,000/4 = 10,000 psi. The relationship
between working stress s,, and nominal stress ¢ is given by Equation (2). SinceK=1,6 =
10,000 psi. Applying Equation (9) inthe Table of Simple Stresses, the area of the bar can be
solved for: A =50,000710,000 or 5 square inches. The next largest standard diameter cor-
responding to this area is 2% inches.

Example 1(b): A similar example to that givenin 1(a), using metric SI units is as fol-
lows. A round steel bar of 300 meganewtons/meter 2 yield strength, is to withstand a
direct tension of 200 kilonewtons. Using a safety factor of 4, and assuming that the
stress concentration factor K = 1, a suitable diameter is to be determined.

Because the factor of safety and the strength of the material are known, the allow-
able working stress s,, may be calculated using Equation (1): 300/4 = 75 mega-new-
tons/meter2. The relationship between working stress and nominal stress ¢ is given
by Equation (2). Since K =1, 6 =75 MN/m?. Applying Equation (9) in the Table of Sim-
ple Stresses on page 209, the area of the bar can be determined from:

A= _200kN __ _ 200,000N  _ 000267m>

75 MN/m” 75,000,000 N/m’
The diameter corresponding to this area is 0.058 meters, or approximately 0.06 m.

Millimeters can be employed in the calculations in place of meters, providing the
treatment is consistent throughout. In this instance the diameter would be 60 mm.

Note: If the tension in the bar is produced by hanging a mass of M kilograms from
its end, the value is Mg newtons, where g = approximately 9.81 meters per second?.
Example 2(a): What would the total elongation of the bar in Example 1(a) be if its length
were 60 inches? Applying Equation (17),
o = 50,000 x 60
5.157 x 30,000,000
Example 2(b): What would be the total elongation of the bar in Example 1(b) if its
length were 1.5 meters? The problem is solved by applying Equation (17) in which F
=200 kilonewtons; L = 1.5 meters; A = 710.06%/4 = 0.00283 m?2. Assuming a modulus of
elasticity E of 200 giganewtons/meter2, then the calculation is:
¢ = 200,000 x 1.5
0.00283 x 200,000,000,000
The calculation is less unwieldy if carried out using millimeters in place of meters;
then F =200 kN; L = 1500 mm; A = 2830 mm?, and E = 200,000 N/mm?. Thus:
_ 200,000 x 1500
2830 x 200,000

= 0.019 inch

= 0.000530 m

= 0.530 mm
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Example 3(a): Determine the size for the section of a square bar which is to be held firmly
atoneendand isto supportaload of 3000 pounds at the outer end. The bar is to be 30 inches
long and is to be made from SAE 1045 medium carbon steel with a yield point of 60,000
psi. A factor of safety of 3 and a stress concentration factor of 1.3 are to be used.

From Equation (1) the allowable working stress s,, = 60,000/3 = 20,000 psi. The applica-
ble equation relating working stress and nominal stress is Equation (2); hence, ¢ =
20,000/1.3 = 15,400 psi. The member must be treated as a cantilever beam subject to a
bending moment of 30 x 3000 or 90,000 inch-pounds. Solving Equation (11) in the Table
of Simple Stresses for section modulus: Z = 90,000/15,400 = 5.85 inch3. The section mod-
ulus for a square section with neutral axis equidistant from either side is a3/6, where a is the

dimension of the square, so @ = 2/35.1 = 3.27 inches. The bar size can be 3%g4inches.

Example 3(b): A similar example to that given in Example 3(a), using metric SI units
is as follows. Determine the size for the section of a square bar which is to be held
firmly at one end and is to support a load of 1600 kilograms at the outer end. The bar
is to be 1 meter long, and is to be made from steel with a yield strength of 500 new-
tons/mm?2. A factor of safety of 3, and a stress concentration factor of 1.3 are to be
used. The calculation can be performed using millimeters throughout.

From Equation (1) the allowable working stress s,, = 500 N/mm?/3 = 167 N/mm?.
The formula relating working stress and nominal stress is Equation (2); hence ¢ =
167/1.3 = 128 N/mm?2. Since a mass of 1600 kg equals a weight of 1600 g newtons,
where g = 9.81 meters/second?, the force acting on the bar is 15,700 newtons. The
bending moment on the bar, which must be treated as a cantilever beam, is thus 1000
mm X 15,700 N = 15,700,000 N - mm. Solving Equation (11) in the Table of Simple
Stresses for section modulus: Z = M/c =15,700,000/128 = 123,000 mm?. Since the sec-
tion modulus for a square section with neutral axis equidistant from either side is
a3/6, where a is the dimension of the square,

a = 3/6x123,000 = 90.4 mm

Example 4(a): Find the working stress in a 2-inch diameter shaft through which a trans-
verse hole % inch in diameter has been drilled. The shaft is subject to a torsional moment of
80,000 inch-pounds and is made from hardened steel so that the index of sensitivity ¢ =0.2.

The polar section modulus is calculated using the equation shown in the stress concentra-
tion curve for a Round Shaft in Torsion with Transverse Hole, Fig. 7, page 207.
3 2
J _ 7 = X 2 2

= 1.4 inches3

c 77T 16 4x6
The nominal shear stress due to torsion loading is computed using Equation (16) in the
Table of Simple Stresses:t = 80,000/1.4 = 57,200 psi

Referring to the previously mentioned stress concentration curve on page 207, K, is 2.82
since d/D is 0.125. The stress concentration factor may now be calculated by means of
Equation (8): K=1+0.2(2.82 — 1) = 1.36. Working stress calculated with Equation (3) is
s,,=1.36 x57,200 = 77,800 psi.

Example 4(b): A similar example to that given in 4(a), using metric SI units is as fol-
lows. Find the working stress in a 50 mm diameter shaft through which a transverse
hole 6 mm in diameter has been drilled. The shaft is subject to a torsional moment of
8000 newton-meters, and has an index of sensitivity of ¢ = 0.2. If the calculation is
made in millimeters, the torsional moment is 8,000,000 N - mm.

The polar section modulus is calculated using the equation shown in the stress con-
centration curve for a Round Shaftin Torsion with Transverse Hole, Fig. 7, page 207:
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J_7 = X503 6x502
c p 16 6
The nominal shear stress due to torsion loading is computed using Equation (16) in
the Table of Simple Stresses:

T = 8,000,000/22,000 = 363 N/mm?2 = 363 megapascals

Referring to the previously mentioned stress concentration curve on page 207, K, is
2.85, since a/d = 6/50 = 0.12. The stress concentration factor may now be calculated by
means of Equation (8): K=1+0.2(2.85—-1) =1.37. From Equation (3), working stress
s,, = 1.37 X 363 = 497 N/mm? = 497 megapascals.

Example 5(a): For Case 3 inthe Tables of Combined Stresses, calculate the least factor of
safety for a 5052-H32 aluminum beam is 10 inches long, one inch wide, and 2 inches high.
Yield strengths are 23,000 psi tension; 21,000 psi compression; 13,000 psi shear. The
stress concentration factor is 1.5; F is 600 Ibs; F, 500 Ibs.

From Tables of Combined Stresses, Case 3:

6./ = 1 (6><10><600
b 1x2 2

The other formulas for Case 3 give ¢,,” = 8750 psi (in tension); t,” = 4375 psi, and 1,” =
4625 psi. Using Equation (4) for the nominal compressive stress of 9250 psi: S,, = 1.5 X
9250 = 13,900 psi. From Equation (1) f, =21,00013,900 = 1.51. Applying Equations (1),
(4)and (5) in appropriate fashion to the other calculated nominal stress values for tension

and shear will show that the factor of safety of 1.51, governed by the compressive stress at
b on the beam, is minimum.

Example 5(b): What maximum F can be applied in Case 3 if the aluminum beam is
200 mm long; 20 mm wide; 40 mm high; 6 = 30°; f, = 2, governing for compression, K

=1.5,and S,, = 144N/mm? for compression.
From Equation (1) S,, = — 144N/mm?>. Therefore, from Equation (4), 6,” =—72/1.5=
—48N/mm?. Since F, = F cos 30° = 0.866F, and F = F sin 30° = 0.5 F:

1 6 x 200 X O.SF)
20 x 40 40

Stresses and Deflections in a Loaded Ring.—For rhin rings, that is, rings in which the
dimension d shown in the accompanying diagram is small compared with D, the maximum
stress in the ring is due primarily to bending moments produced by the forces P. The max-
imum stress due to bending is:

¢ = PDd

4l

Foraring of circular cross section where d is the diame-
ter of the bar from which the ring is made,

_ 1621PD p = 0.6178d3
d? D

The increase in the vertical diameter of the ring due to

load P is:

= 24,544 - 2500= 22,044 mm3

+ 500) = —9250 psi (in compression)

—48 = (0.866F + F =2420 N

(24)

S (25)

3
Increase in vertical diameter = (% inches (26)
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The decrease in the horizontal diameter will be about 92% of the increase in the vertical
diameter given by Formula (26). In the above formulas, P = load on ring in pounds; D =
mean diameter of ring in inches; S = tensile stress in pounds per square inch, 7= moment of
inertia of section in inches*; and E = modulus of elasticity of material in pounds per square
inch.

Strength of Taper Pins.— The mean diameter of taper pin required to safely transmit a
known torque, may be found from the formulas:

d =113 [-L @7 and d = 283 |[HP (28a)
DS NDS

inwhich formulas T=torque in inch-pounds; S = safe unit stress in pounds per square inch;
HP = horsepower transmitted; N = number of revolutions per minute; and d and D denote
dimensions shown in the figure.

Formula (27) can be used with metric SI units where d and D denote dimensions
shown in the figure in millimeters; T = torque in newton-millimeters (N - mm); and S
= safe unit stress in newtons per millimeter? (N/mm?). Formula (28a) is replaced by:

d = 110.3 [Rower (28b)
\NDS

where d and D denote dimensions shown in the figure in millimeters; S = safe unit
stress in N/mm?2; N = number of revolutions per minute, and Power = power transmit-
ted in watts.

Example 6(a): A lever secured to a 2-inch round shaft by a steel tapered pin (dimension d
=% inch) has a pull of 50 pounds at a 30-inch radius from shaft center. Find S, the unit
working stress on the pin. By rearranging Formula (27):

_ 1277 _ 1.27x50% 30

2 2
ZENE
6770 pounds per square inch is a safe unit working stress for
machine steel in shear.

Let P =50 pounds, R = 30 inches, D = 2 inches, and S = 6000
pounds unit working stress. Using Formula (27) to find d:

d =113 |-L = 113 [20x30 _ 1.13[l = 0.4 inch
DS A2 x 6000 8

Example 6(b): A similar example using SI units is as follows: A lever secured to a 50
mm round shaft by a steel tapered pin (d = 10 mm) has a pull of 200 newtons at a
radius of 800 mm. Find S, the working stress on the pin. By rearranging Formula

(27):
S

S

= 6770 psi

_ 1277 _ 1.27 X200 x 800

Dd* 50 x 10>

If a shaft of 50 mm diameter is to transmit power of 12 Kkilowatts at a speed of 500
rpm, find the mean diameter of the pin for a material having a safe unit stress of 40
N/mm?. Using Equation (28b):

110.3 [BOYer  gend = 1103 |— 12000
N\ NDS \/500 x 50 x 40

110.3 X 0.1096 = 12.09 mm

= 40.6 N/mm” = 40.6 megapascals

d



CENTER OF GRAVITY 221

PROPERTIES OF BODIES

Center of Gravity

Center of Gravity.— The center of gravity of a body, volume, area, or line is that point at
which if the body, volume, area, or line were suspended it would be perfectly balanced in
all positions. For symmetrical bodies of uniform material it is at the geometric center. The
center of gravity of a uniform round rod, for example, is at the center of its diameter half-
way along its length; the center of gravity of a sphere is at the center of the sphere. For sol-
ids, areas, and arcs that are not symmetrical, the determination of the center of gravity may
be made experimentally or may be calculated by the use of formulas.

The tables that follow give such formulas for some of the more important shapes. For
more complicated and unsymmetrical shapes the methods outlined on page 227 may be
used.

Example: A piece of wire is bent into the form of a semi-circular arc of 10-inch (25.4 cm)
radius. How far from the center of the arc is the center of gravity located?

Accompanying the Circular Arc diagram on page 222 is a formula for the distance from
the center of gravity of an arc to the center of the arc: a = 2r + w. Therefore,

= 2x10 _ 6.366 inches = 2x254

- = 16.17
4= 31416 @ = 3qa16 - o7 em

Formulas for Center of Gravity

Triangle:

Perimeter

If A, Band C are the middle points of the sides of
the triangle, then the center of gravity is at the cen-
ter of the circle that can be inscribed in triangle
ABC. The distance d of the center of gravity from
sideais:

d = h(b+c)
2(a+b+c)

where £ is the height perpendicular to a.

Area

The center of gravity is at the intersection of
lines AD and BE, which bisect the sides BC and
AC. The perpendicular distance from the center of
gravity to any one of the sides is equal to one-third
the height perpendicular to that side. Hence,a = h

SN~ The center of gravity is at the intersection of the
~ diagonals.
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Area of Trapezoid:

CENTER OF GRAVITY

The center of gravity is on the line joining the
middle points of parallel lines AB and DE.
C:h!a+2b2 d:h!2a+b2
3(a+b) 3(a+b)
- a?+ab+ b2
3(a+b)
The trapezoid can also be divided into two trian-
gles. The center of gravity is at the intersection of

the line joining the centers of gravity of the trian-
gles, and the middle line FG.

Two cases are possible, as shown in the illustra-
tion. To find the center of gravity of the four-sided
figure ABCD, each of the sides is divided into three
equal parts. A line is then drawn through each pair
of division points next to the points of intersection
A, B, C,and D of the sides of the figure. These lines
form a parallelogram EFGH; the intersection of
the diagonals EG and FH locates center of gravity.

Circular Arc:

\

|

/{"’
/Y i1 C
¢ =9
| a b
|

|

|

X

/

The center of gravity is on the line that bisects

2 2
the arc, ata distance a = r—?—f = Eﬁi_é_}j_‘ll_l

from the center of the circle.
For an arc equal to one-half the periphery:

a =2r+mn = 0.6366r
For an arc equal to one-quarter of the periphery:
a = 2rJ2+m = 0.9003r
For an arc equal to one-sixth of the periphery:
a = 3r+m = 0.9549r

An approximate formula is very nearly exact for
all arcs less than one-quarter of the periphery is:

a = %h

The error is only about one per cent for a quarter
circle, and decreases for smaller arcs.

The distance of the center of gravity from the
center of the circle is:
_ 3 r3sindo
b= TR

in which A = area of segment.




Circle Sector :

CENTER OF GRAVITY

223

Distance b from center of gravity to center of cir-
cleis:
) .
p = 2LC = I°C _ ggq1g77SING
3/ 3A o

in which A = area of sector, and o is expressed in
degrees.

For the area of a half-circle:
b = 4r+3n = 0.4244r
For the area of a quarter circle:
b =42xr+3% = 0.6002r
For the area of a sixth of a circle:
b = 2r+m = 0.6366r

Part of Circle Ring :

Distance b from center of gravity to center of cir-
cleis:

b = 3&197@
(R2-r?)a.
Angle o is expressed in degrees.

Spandrel or Fillet :

= 0.2234R
y = 0.2234R

Area = 0.2146R2

The center of gravity of an elliptic segment ABC,
symmetrical about one of the axes, coincides with
the center of gravity of the segment DBF of a cir-
cle, the diameter of which is equal to that axis of
the ellipse about which the elliptic segment is sym-
metrical.

Spherical Surface of Segments and Zones of Spheres :

TN

[ s

\

___¢_..__

4
t

Distances a and b which determine the center of
gravity, are:

Q

11
NI

kNl

1]
INY e
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Area of a Parabola :

For the complete parabolic area, the center of
gravity is on the center line or axis, and

_3h
a =2
5
For one-half of the parabola:
a=3l and b = 3w
5 8

For the complement area ABC:
c¢=0.3rand d = 0.75w

Cylinder :
l, The center of gravity of a solid cylinder (or
—-— b — 1—-— prism) with parallel end surfaces, is located at the
i * middle of the line that joins the centers of gravity
: of the end surfaces.
[ a— The center of gravity of a cylindrical surface or
h shell, with the base or end surface in one end, is

found from:
_ 2h?
a =
4dh+d
The center of gravity of a cylinder cut off by an
inclined plane is located by:

r’tan®o. p = rana
8h 4h

h
=24
73

where o is the angle between the obliquely cut off
surface and the base surface.

Portion of Cylinder :

For a solid portion of a cylinder, as shown, the
center of gravity is determined by:

a = ¥ x3.1416r b = %,x3.1416h
For the cylindrical surface only:
a = % x3.1416r b = ¥%x3.1416h
If the cylinder is hollow, the center of gravity of
the solid shell is found by:
a = % x 3.14162—2}:—:
H*—h*
H3 -3

b = %,x3.1416
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Center of Gravity of Two Bodies :

If the weights of the bodies are P and Q, and the
distance between their centers of gravity is a, then:

p = LQa_ c = Pa_
P+Q P+Q

Pyramid :

Inasolid pyramid the center of gravity is located
onthe line joining the apex with the center of grav-
ity of the base surface, at a distance from the base
equal to one-quarter of the height; or a = % 4.

The center of gravity of the triangular surfaces
forming the pyramid is located on the line joining
the apex with the center of gravity of the base sur-
face, at a distance from the base equal to one-third
of the height; ora=%h.

Frustum of Pyramid :

Ay = AREA OF TOP

/‘] W
AL

A Aj = AREA OF BASE

The center of gravity is located on the line that
joins the centers of gravity of the end surfaces. If
A, = area of base surface, and A, area of top sur-

face,

h(Ay+2,JA] XA, +34,)
a =

4(A+ JAL XAy +Ay)

Cone :

|

The same rules apply as for the pyramid.
For the solid cone:

a = Y%h
For the conical surface:
a = %h

Frustum of Cone :

The same rules apply as for the frustum of a pyr-
amid. For a solid frustum of a circular cone the for-
mula below is also used:

a = h(R%+2Rr+3r%)
4(R2+ Rr+r?)

The location of the center of gravity of the coni-
cal surface of a frustum of a cone is determined by:

_ h(R+2r)
3(R+r)
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The center of gravity is on the line joining the
center of gravity of the base with the middle point
of the edge, and is located at:

a = h(b+c)
2(2b+c¢)

The center of gravity of a solid paraboloid of
rotation is at:

a = %h

The center of gravity is located at:

a = 3!R4—r4!
8(R3-13)

The center of gravity of a solid segment is deter-
mined by:
a = 3(2r=h)?
4(3r—h)

p = h4r=h)
4(3r—h)

For a half-sphere,a=b=3r

The center of gravity of a solid sector is at:
a = ¥%(1+coso)r = %(2r—h)

The center of gravity of a solid segment ABC,
symmetrical about the axis of rotation, coincides
with the center of gravity of the segment DBF of a
sphere, the diameter of which is equal to the axis of
rotation of the spheroid.
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Center of Gravity of Figures of any Outline.—If the figure is symmetrical about a cen-
ter line, asin Fig. 1, the center of gravity will be located on that line. To find the exact loca-
tion on that line, the simplest method is by taking moments with reference to any
convenient axis at right angles to this center line. Divide the area into geometrical figures,
the centers of gravity of which can be easily found. In the example shown, divide the figure
into three rectangles KLMN, EFGH and OPRS. Call the areas of these rectangles A, B and
C, respectively, and find the center of gravity of each. Then select any convenient axis, as
X-X, atrightangles to the center line Y-Y, and determine distances a, b and c. The distance
y of the center of gravity of the complete figure from the axis X-X is then found from the
equation:

_ Aa+Bb+Cc
A+B+C
Y
Y[ }4—(‘1—»
(¢ |
Co———f-—— _ _
ST7F T—F R ] _‘_:A ¢
B B
o ———y | —— -
1 .
T—K__—H“jf G N 1 T “T T}——m—» T
= I A?———__}.TQ = A >
ot L ; M?l < x e l «
Y Y
Fig. 1. Fig. 2.

Example 1: Assume that the area A is 24 square inches, B, 14 square inches, and C, 16
square inches, and that a = 3 inches, b = 7.5 inches, and ¢ = 12 inches. Then:

_ 24x3+14x75+16x12 _ 369
24 +14 + 16 54

= 6.83 inches

If the figure, the center of gravity of which is to be found, is not symmetrical about any
axis, as in Fig. 2, then moments must be taken with relation to two axes X-X and Y-Y, cen-
ters of gravity of which can be easily found, the same as before. The center of gravity is
determined by the equations:

_Aa;+Bby+ Ccy _ Aa+Bb+Cc
A+B+C YT TAYB+C

X

Example 2:InFig.2,letA =14 cm2, B =18 cm?,and C =20 cm2. Leta=3 cm,b =7 cm,
and ¢ =11.5 cm. Leta; = 6.5 cm, b, =8.5 cm, and ¢; =7 cm. Then:

_ 14x6.5+18x8.5+20x7 _ 384

X = — =738 cm
14 +18 + 20 52
14x3+18x7+20x11.5 _ 398

y = = =— = 7.65 cm
14 + 18 + 20 52

In other words, the center of gravity is located at a distance of 7.65 cm from the axis
X-X and 7.38 cm from the axis Y-Y.
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Radius of Gyration

The radius of gyration with reference to an axis is that distance from the axis at which the
entire mass of a body may be considered as concentrated, the moment of inertia, mean-
while, remaining unchanged. If W is the weight of a body; J,,, its moment of inertia with
respect to some axis; and k,, the radius of gyration with respect to the same axis, then:

J Wk2
k, = %g and  J, = —2
4

When using metric SI units, the formulas are:

Mm
k, = i and Jy = Mk?2

where k, = the radius of gyration in meters, J,, = moment of inertia in kilogram-

meter?, and M = mass in kilograms.

To find the radius of gyration of an area, such as for the cross-section of a beam, divide
the moment of inertia of the area by the area and extract the square root.

When the axis, the reference to which the radius of gyration is taken, passes through the
center of gravity, the radius of gyration is the least possible and is called the principal
radius of gyration. If k is the radius of gyration with respect to such an axis passing through
the center of gravity of a body, then the radius of gyration, k,, with respect to a parallel axis

atadistance d from the gravity axis is given by: k, = Jk? + d?

Tables of radii of gyration for various bodies and axes follows.

Formulas for Radius of Gyration

Bar of Small Diameter:
] -
| ! { k = 05773] ! : ) k = 0.2886!
AE =] k| 2 _ 1.2
PE— kz:%lz I**L K=
Axis atend Axis at center
Bar of Small Diameter Bent to Circular Shape:
A
A |
T
/‘;k
k = 0.7071r " k=r
2 2
K = %rz k= =r
A
Axis, a diameter of the ring Axis through center of ring
Parallelogram (Thin Flat Plate):
IS E k= 05773h | Ad i—i-——AE k= 02886k
¥ | B 2 1.2
A A 2 _ 1.2 ! k™ = —=h
k" ==h . . 12
Axis at base 3 Axis at mid-height




RADIUS OF GYRATION

229

Thin Circular Disk:
A sk
e :
| k = l
A k = 0.7071r 2"
2 12 2 12
k== 2r k= ==r
A
Axis through center Axis its diameter
Thin, Flat, Circular Ring :
k = Y,JD?%+ d?
kz — D2 + dZ
16
Axis its diameter
Cylinder:
A
|
_...lI & !4_..
| _ JI2+3r2
| k = 1 A A k m -
]
A 1/2 I-f- (2 = 12 . 2
“ =i e
A A
Axis through center Axis, diameter at mid-length
A
A A X -
k= JAI2+3r2 )
] J12 A k= JaZ+ Y
r‘__k—-’ k2_E+r_2 A k2:02+%r2
A oA @
Axis, diameter at end Axis at a distance
Parallelepiped:
A A A A
|
ok k= AL+ b? k—ro } 12+ 52
/ e b J12 ﬂb k = 4—11;b +a?+al
K2 = 472 + p2 0%1_’{ ’
A A ST A A
AXis at one end, central Axis at distance from end
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Rectangular Prism:
A Ex Ly —Nf
RS k = 0.577Jb2 + 2
l
F;Za——ﬁ '-20»{ k2 = %(bZ +¢2)
Axis through center
Thin Hollow Cylinder:
A A
]
L k = 0.289,/1+ 6,2
-1*——‘[4———»
1 2 2
I ! kz = l_ + rr
A A 12 2
Axis, diameter at mid-length
Hollow Cylinder:
A
o1
1] (6 = AEEaE ) Y
| T ] @ J12 A 2
w2 = 12 RE+r? k2 = %(R%2+r?)
A 12 4 k
Axis, diameter at mid-length Longitudinal Axis
Cone:
A A i 212 + 372
] AXis at base k= &2
ki 20
| 2 2
h — Axis at apex ki = [M
A A 20
A%/X k = 0.5477r
K = 03/
Axis through its center line
Frustum of Cone:
iA A
I
AT
K = IJ_E(RZ + 3Rr + 6r2) + _3_(R5—r5)
}«—hAJ 10\ R2+Rr+r2/ 20\R3 -3
A
Axis at large end
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Sphere:
A
A
k = 0.6325r X C’L k = /az.,_gg,,z
2 = érz e A k2 = a2 +%r?
A A
AXis its diameter Axis at a distance

Hollow Sphere and Thin Spherical Shell:

A
A
IRS —r5 k = 0.8165
k = 0.6325 [—— - r
R3-r3 2= 22
k2 - 2!R5—7’5! 3
A 3_.3
5(R°—-r?) A
Hollow Sphere
AXis its diameter Thin Spherical Shell

Ellipsoid and Paraboloid:

T
A P = m A A k = 0.5773r
¢ /5 K lr2
k2

3
%(b? +c?)

Paraboloid

Ellipsoid
Axis through center Axis through center

Center and Radius of Oscillation.—If a body oscillates about a horizontal axis which
does not pass through its center of gravity, there will be a point on the line drawn from the
center of gravity, perpendicular to the axis, the motion of which will be the same as if the
whole mass were concentrated at that point. This point is called the center of oscillation.
The radius of oscillation is the distance between the center of oscillation and the point of
suspension. Inastraight line, or in a bar of small diameter, suspended at one end and oscil-
lating about it, the center of oscillation is at two-thirds the length of the rod from the end by
which it is suspended.

When the vibrations are perpendicular to the plane of the figure, and the figure is sus-
pended by the vertex of an angle or its uppermost point, the radius of oscillation of an isos-
celes triangle is equal to %, of the height of the triangle; of a circle, % of the diameter; of a

parabola, % of the height.

If the vibrations are in the plane of the figure, then the radius of oscillation of a circle
equals %, of the diameter; of a rectangle, suspended at the vertex of one angle, % of the diag-
onal.

Center of Percussion.—For a body that moves without rotation, the resultant of all the
forces acting on the body passes through the center of gravity. On the other hand, for abody
that rotates about some fixed axis, the resultant of all the forces acting on it does not pass
through the center of gravity of the body but through a point called the center of percus-
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sion. The center of percussion is useful in determining the position of the resultant in
mechanics problems involving angular acceleration of bodies about a fixed axis.

Finding the Center of Percussion when the Radius of Gyration and the Location of the
Center of Gravity are Known: The center of percussion lies on a line drawn through the
center of rotation and the center of gravity. The distance from the axis of rotation to the cen-
ter of percussion may be calculated from the following formula

q=kZ+r

inwhich g = distance from the axis of rotation to the center of percussion; k, = the radius of

gyration of the body with respect to the axis of rotation; and r = the distance from the axis
of rotation to the center of gravity of the body.

Moment of Inertia

An important property of areas and solid bodies is the moment of inertia. Standard for-
mulas are derived by multiplying elementary particles of area or mass by the squares of
their distances from reference axes. Moments of inertia, therefore, depend on the location
of reference axes. Values are minimum when these axes pass through the centers of grav-
ity.

Three kinds of moments of inertia occur in engineering formulas:

1) Moments of inertia of plane area, I, in which the axis is in the plane of the area, are
found in formulas for calculating deflections and stresses in beams. When dimensions are
given in inches, the units of 7 are inches*. A table of formulas for calculating the 7 of com-
mon areas can be found beginning on page 234.

2) Polar moments of inertia of plane areas, J, in which the axis is at right angles to the
plane of the area, occur in formulas for the torsional strength of shafting. When dimensions
are given in inches, the units of J are inches?. If moments of inertia, 7, are known for a plane
area with respect to both x and y axes, then the polar moment for the z axis may be calcu-

lated using the equation,J, = I _+ 1,

A table of formulas for calculating J for common areas can be found on page 245 in this
section.

When metric SI units are used, the formulas referred to in (1) and (2) above, are
valid if the dimensions are given consistently in meters or millimeters. If meters are
used, the units of I and J are in meters?; if millimeters are used, these units are in
millimeters?.

3) Polar moments of inertia of masses, J,;", appear in dynamics equations involving rota-
tional motion. J,, bears the same relationship to angular acceleration as mass does to linear
acceleration. If units are in the foot-pound-second system, the units of J,, are ft-lbs-sec? or
slug-ft2. (1 slug = 1 pound second? per foot.) If units are in the inch-pound-second system,
the units of J,, are inch-lbs-sec?.

If metric SI values are used, the units of J,, are kilogram-meter squared. Formulas
for calculating J,, for various bodies are given beginning on page 246. If the polar moment
of inertia J is known for the area of a body of constant cross section, J,, may be calculated
using the equation,

L
I, = B2
Mg

where p is the density of the material, L the length of the part, and g the gravitational con-
stant. If dimensions are in the foot-pound-second system, p is in Ibs per ft3, Lisin ft, g is

*In some books the symbol 7 denotes the polar moment of inertia of masses; J,, is used in this handbook
to avoid confusion with moments of inertia of plane areas.
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32.16 ft per sec?, and J is in ft*. If dimensions are in the inch-pound-second system, p is in
Ibs per in3, Lis in inches, g is 386 inches per sec?, and J is in inches?.

Using metric SI units, the above formula becomes J,, = pLJ, where p = the density in

kilograms/meter3, L = the length in meters, and J = the polar moment of inertia in
meters*. The units of J,, are kg - m?2.

Moment of Inertia of Built-up Sections.— The usual method of calculating the moment
of inertia of a built-up section involves the calculations of the moment of inertia for each
element of the section about its own neutral axis, and the transferring of this moment of
inertia to the previously found neutral axis of the whole built-up section. A much simpler
method that can be used in the case of any section which can be divided into rectangular
elements bounded by lines parallel and perpendicular to the neutral axis is the so-called
tabular method based upon the formula: 7= b(h,2 - h%)/3 in which I =the moment of inertia

about axis DE, Fig. 1, and b, h and h, are dimensions as given in the same illustration.

//// ] x4 -
—— TT 7 7 deeslrd [Tow
= A
D t E : \ 0125 D [ 15 {E

Fig. 1. Fig. 2. Fig. 3.

Example: The method may be illustrated by applying it to the section shown in Fig. 2, and
for simplicity of calculation shown “massed” in Fig. 3. The calculation may then be tabu-
lated as shown in the accompanying table. The distance from the axis DE to the neutral axis
xx (whichwill be designated as d) is found by dividing the sum of the geometrical moments
by the area. The moment of inertia about the neutral axis is then found in the usual way by
subtracting the area multiplied by 42 from the moment of inertia about the axis DE.

Tabulated Calculation of Moment of Inertia

Moment I about axis DE
2
Breadth Height Area b(hi-1") b(hi - h3)
Section b hy b(hy - h) hy? 2 3 3
A 1.500 0.125 0.187 0.016 0.012 0.002 0.001
B 0.531 0.625 0.266 0.391 0.100 0.244 0.043
C 0.219 1.500 0.191 2.250 0.203 3.375 0.228
YA =0.644 XM =0.315 21, =0.272

The distance d from DE, the axis at the base of the configuration, to the neutral axis xx is:

The moment of inertia of the entire section with reference to the neutral axis xx is:

2
Ipp-Ad

Iy

0.272 — 0.644 x 0.49°
0.117
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Formulas for Moments of Inertia, Section Moduli, etc.—On the following pages are

given formulas for the moments of inertia and other properties of forty-two different cross-
sections. The formulas give the area of the section A, and the distance y from the neutral

axis to the extreme fiber, for each example. Where the formulas for the section modulus

and radius of gyration are very lengthy, the formula for the section modulus, for example,
has been simply given as I+ y . The radius of gyration is sometimes given as I+ A to

save space.
Moments of Inertia, Section Moduli, and Radii of Gyration
Section ' Radius of Gyration
A = area Moment of Section Modulus M
y = distance from axis to Inertia z=1 k= |1
extreme fiber I y A
Square and Rectangular Sections
3 a
at a_ —2 = 0.289a
1 6 1
4 3
a a L = 0577a
3 3 J3
4 3
a 4 - 0.1184° -4 = 0.2894
12 6./2 J12
2,2
4 4 A la_+b
a b = 12
12 a
= 0.289a° +b°
4 4
J2(a”=b") 2,2
a4 _ b4 12a T
12 4 4
= 0.118%— - = 0.2894/a” +b°
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Moments of Inertia, Section Moduli, and Radii of Gyration

Section
A =area
y = distance from axis to
extreme fiber

Moment of
Inertia
1

Section Modulus

Z:!

y

Radius of Gyration

=
A

Square and Rectangular Sections

3 2
bd” bd” d_ - 02894
12 6 J12
bd? d _
bd3 = — = 0.577d
3 3 NE
bd
b3d® b2d? J607 + &)
6(b2 + d?) 6./b2 + 2 - 0.408—bd__
Jb2 + g2
o b W
E(dzcoszoc 5 = B
+b2sinZo) (dzcoszowb?sinzoc) = 0.289 x
dcoso, + bsina m
y=%(d cos o+ b sin o)
Y%
i
s /d" T L s
‘l_%hé_z bd® — hi3 bd° - hk 12(bd - hk)
: 12 6d = 0.289 [bd2=hi
s e bd - hk
A =bd- hk

y=%
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Moments of Inertia, Section Moduli, and Radii of Gyration (Continued)

Area of Section,

Distance from Neutral

Moment of Inertia,

Section Modulus,

Radius of Gyration,
k = JI/A

Section A Axis to Extreme Fiber, y I Z=1y
Triangular Sections
iy
2 d _
) S Y% bd %d bd® bd* £ = 0.236d
l 24 18
R 36
el
1‘ = bd® bd? 4 = 0.4084
J_ _L % bd d 12 1 G
l—p—+
Polygon Sections
o
>
il dea+h déﬂ) &*(a’ +4ab+b%) &*(a®+ 4ab +b%) d’(a* +4ab+b%)
L 4—12 (a+D) 36(a+b) 12(a + 2b) 18(a + b)?
e—p—|
T 2 o o
m d A[d s 22052030 } %[di_)l; 2 CZO;SEO } d°(1 + 2cos”30°
~ 2 é 12 4 c0s-30 Cos 48C052300
J__ = 0.8664° = 0.064" = 0.124° = 0.264d
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Moments of Inertia, Section Moduli, and Radii of Gyration (Continued)

SNr._ _IN NOIL

Area of Section, Distance from Neutral Moment of Inertia, Section Modulus, Radius of Gyration,
Section A Axis to Extreme Fiber, y I Z=1y k= JI/A
34°tan30° J f\_[d2£1+2€05230°2} &[d 1+2C20523°°} (1 +2c05°30°)
- 2300 . °
2 7 e0s30° 0.577d 12 4¢c0s230 4c0s430 48c0s230°
= 0.8664> = 0.064" = 0.1044° = 0.264d
L} ., A[dzgl * 2cos2221/2°1} A{dg 1+ 2C205222y2°2} d’(1+2c0s°22%°)
% L 2dPtan 22% = 0.82842 5 12 4c0s222% 6 4c0s°22%° 48c03222%§°
= 0.0554" - 0.1094° = 0.257d
Circular, Elliptical, and Circular Arc Sections
d d 4 4 3 d
2 ¢ T — I — ud
Td — 004 Td _ o,
’% = 0.78544" 2 64 9 3 - 0%8d 4
(3n-4)d (9r° - 64)d"* (9n° - 64)d’ J9n’ - 64)d°
2 _ o 3032 6n 11527 192(3n-4) Tom
8 = 0.288d = 0.007d" = 0.0244° = 0.132d
4 4
4 D -d)
22 n(D’ - d")
D =d) D 64 32D D +d’
4 2 . . D4—d4 4
= 0. - = 0.098————
= 0.7854(D* - d%) 0.049(D" -4 D
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Moments of Inertia, Section Moduli, and Radii of Gyration (Continued)

Area of Section,

Distance from Neutral

Moment of Inertia,

Section Modulus,

Radius of Gyration,

Section A Axis to Extreme Fiber, y I Z=1Yy k= JI/A
4gR3—r32
- L 2 2 2 2 0.1098(R4—r4)
- - n(R 1) 3n(R -71") I 1
o —?— 2 s 3 0.283R**(R 1) v 1
\e* P2 / R —-r —=
2 2 = 0424—— R+r
Ny = 15708(R* - %) RE_ 72
S EN
2
= 3 nab b = 2 a
nab = 3.1416ab a mzb = 0.78544% 2 0.7854a%b >
b
n[a3b—c3d!
n(ab — cd) T a3b - ¢3d) 4a a%h—c3d
y |a’b=c’d
= 3.1416(ab — cd) ¢ 4 _ 07as4h=cd 2 ab—ca
= 0.7854(a3b - c3d) ' a
I-Sections
|5 j—h—
T b 2sb3 + h3 2sb3 + ht3
< bd —h(b—t 2 b3 + hi3 ——h S
S 2 250"+ hi” 6b 2[bd-h(b-1)]

_L >
—La—f

12
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Moments of Inertia, Section Moduli, and Radii of Gyration (Continued)

Area of Section,

Distance from Neutral

Moment of Inertia,

Section Modulus,

Radius of Gyration,

40 IN3INO. .

—(@=00-9)°]

Section A Axis to Extreme Fiber, y I Z=1Yy k= JI/A
4
= %—T %{bcﬁ— 4—1g-(h4—14)]
> 1
T ? = dt + 2a(s + n) d in which g = slope of i[bd3_i(h4_]4):| %z[bd3—4—g(h4—l4)}
g l > flange = (h—DI(b—1) | 64 4g
L ~10g, dt+2a(s +n)
je—bp—>1 for standard 1-beams.
~ —-$4- —I bd®—h3(b-1) bd®—h¥(b—-1) bd®—h3(b-1)
bd — h(b —
i ’_{ (b-1) %1 12 6d 12[bd - h(b-1)]
LR -
e—b— T
T ! , "]'_:_ %2[b3(d—h)+lt3
= 17,3 3
€4 4 b3(d—h) + It
I~ L dt + 2a(s + n) b +4(b ! )} Gb[ /\/%
L a 2 in which g = slope of +§(b4—t4)}
fe— | 5| flange = (h — DI(b — 1) =%
- d for standard 1-beams.
P —
| .
7. d—[td®+s2(b—1) Albld = 3)*+ a7 1 i
< -—?*t—f bs + ht + as 5 (a—1) (2d— s)]+24 —(b-0)d-y-s)? 3 J%

SNINAON M.~ . 1D3S ‘VILN:
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Moments of Inertia, Section Moduli, and Radii of Gyration (Continued)

Area of Section,

Distance from Neutral

Moment of Inertia,

Section Modulus,

Radius of Gyration,

Section A Axis to Extreme Fiber, y 1 Z=1y k= JI/A
C-Sections
tea
r A b1
2
7 = 1
l 1_ Z.- ~ _.i dt+a(s + n) d g = slope of flange é[bds‘si(h“-l“)} \/1/12|:bd3_@(h4_l4):|
4| ‘ = Zoon " % ) dreatstm
fe— b—s] for standard channels.
[ 2 ht [ }
b—|b"s+=- Yl 2sb3 + 18 + (b4 - 1%
—~fsf—h— 2 : 2
%,r —Z _f +§(b—r)2 -A(b-y)? / S
st At T dr+a(s +n) = slope of flange " [—
/‘;///,A_i X(b+2t)}+A g hp—l 9 y A
—~n<—‘$——— g = slope of flange S 2b-n °
_ h-l for standard channels.
T 2(b-1)
T}; =K
. l~—t T bd — h(b 1) d bd3—h3!b—t! bd3—h3gb—12 bd3—h3gb—t)
= ___,i > 12 6d 12[bd - h(b-1)]
>
l v k772
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Moments of Inertia, Section Moduli, and Radii of Gyration (Continued)

Area of Section,

Distance from Neutral

Moment of Inertia,

Section Modulus,

Radius of Gyration,

40 ININOI

Section A Axis to Extreme Fiber, y ! Z=1Uy k=174
bd — h(b - 1) __2b%s+hi? gilﬁ;—hﬁ-f‘(b-y)z : J%
2bd-2h(b-1) g
T-Sections
Bt
T “ EZZZ; 2222 ___1____ 3 —_v)3
T'—%_- bs + ht d d?t+s%(b—1t) %lEtya’rz(d—y): ! Jg(bﬁht)m e
Lol 205+ ) ~ =0y =9 ’ “G-nid-y-57
l LA
§ b 4
= T T4 ﬂ 2
é 7 kY d-[3s°(b=T) Y [I3(T + 31) + 4bn® — i i
~ T Ur+n +Tn+a(s+n) +2am(m+3s) +3Td 2am®] — A (d -y — n)? y A
éi 2 ~(T-1)(3d—1)] + 6A Y
~{the
4 b
¥ - _T d —[3bs? + 3ht (d + 5) Yol4bs® + h3(3t + T)] I I
1 lj bs+ ﬂ%l + 1 (T = 1)(h + 35)]+6A —A(d-y-s)? y J/;
-t}
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Moments of Inertia, Section Moduli, and Radii of Gyration (Continued)

Area of Section,

Distance from Neutral

Moment of Inertia,

Section Modulus,

Radius of Gyration,

Section A Axis to Extreme Fiber, y I Z=1Uy k= JI/A
A
‘T—;;: h a shb3+mT3 + 113
Ry 12
< 7] 2 LTrD 47y b +am[2a® +(2a+377] I [!
l 'y K} 2 2 36 y A
i S +a(s+n) LT =0T =1)2+2(T+20)?]
"12{7, | —> 144
-—d
L-, Z-, and X-Sections
L Yo+ ala )
< n*+ala-y 1 1
ty—— (2a=1) _tar i - a-y—1y] y Jz:a
~ 2(2a-1)
le—a—s] t
e
= 3 a3 «/; 3+ alb—v)3
X1 7 N fla+b—1) p-t2dta)tdt —]/?c[zty_;(z(f f)z)a] ; Siarbop ey
e 2+ a) g a0y 171
7
fe— a—]
«—bd
. J 1
77 ~ 3 — )3 ————[ty3+b(a-y)3
T— 4 -A tla+b—1) t(2c+b)+c? Aty + bla =) ! 3t(a+b—t)[ty *ha-y)
Y < T 20+ b) —(b-na-y-1)] Y b nia—v—n7
LL.A_{ -(b-t(a-y-1)°]
ralias
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Moments of Inertia, Section Moduli, and Radii of Gyration (Continued)

Area of Section,

Distance from Neutral

Moment of Inertia,

Section Modulus,

Radius of Gyration,

Section A Axis to Extreme Fiber, y I Z=1Yy k= JI/A
L1702+ b2) - 122) )
)i
t(2a -t 24 qr—¢? - J:
(2a=1) Gl —2ab(a-b) y A

2(2a —t)cos45°

inwhich b = (a—1)

_ ab3—c[b—2123 ab3—c(b-213 ab®—c(b-21)8
1o+ 2(a —1)] g 12 6b 121[b +2(a—1)]
R 2227 _ : b(a+c)3=2c3d—6d%cd | b(a+c)3-2c3d—6a%cd b(a+c)3—2c3d—6acd
L Z g//—i i t[b + 2(a - 1)] ZaTt 2 6(2a—1) 2116+ 2(a—1)]
Il 7 K]
le——d ——] I
-1——-b—>
T
'i_ a) dr+s(b—1) d td+s%(b-1) S132 b-t td3 - ESdﬁb -1 l112d3 + s3‘£b —1)
2 [td+s(b—1)]
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Polar Area Moment of Inertia and Section Modulus.—The polar moment of inertia, J,
of a cross-section with respect to a polar axis, that is, an axis at right angles to the plane of
the cross-section, is defined as the moment of inertia of the cross-section with respect to the
point of intersection of the axis and the plane. The polar moment of inertia may be found by
taking the sum of the moments of inertia about two perpendicular axes lying in the plane of
the cross-section and passing through this point. Thus, for example, the polar moment of
inertia of a circular or a square area with respect to a polar axis through the center of gravity
is equal to two times the moment of inertia with respect to an axis lying in the plane of the
cross-section and passing through the center of gravity.

The polar moment of inertia with respect to a polar axis through the center of gravity is
required for problems involving the torsional strength of shafts since this axis is usually the
axis about which twisting of the shaft takes place.

The polar section modulus (also called section modulus of torsion), Z,, for circular sec-
tions may be found by dividing the polar moment of inertia, J, by the distance ¢ from the
center of gravity to the most remote fiber. This method may be used to find the approxi-
mate value of the polar section modulus of sections that are nearly round. For other than
circular cross-sections, however, the polar section modulus does not equal the polar
moment of inertia divided by the distance c.

The accompanying table Polar Moment of Inertia and Polar Section Modulus on page
245 gives formulas for the polar section modulus for several different cross-sections. The
polar section modulus multiplied by the allowable torsional shearing stress gives the
allowable twisting moment to which a shaft may be subjected, see Formula (7) on page
296.

Mass Moments of Inertia®, J,,.— Starting on page 246, formulas for mass moment of

inertia of various solids are given in a series of tables. The example that follows illustrates
the derivaion of J,, for one of the bodes given on page 246.

Example, Polar Mass Moment of Inertia of a Hollow Circular Section: Referring to the
figure Hollow Cylinder on page 246, consider a strip of width dr on a hollow circular sec-
tion, whose inner radius is » and outer radius is R.

The mass of the strip = 2rtrdrp, where p is the density of material. In order to get the mass
of an individual section, integrate the mass of the strip from rto R.

2_R
M = IRZRr(dr)p = 2np IRr(dr) = an[r—}
r r 2 |r
2 2
= R _r) - 2_ 2
- znp(z 2) np(R* = %)

The 2nd moment of the strip about the AA axis = 2nrdrp r2. To find the polar moment of
inertia about the AA axis, integrate the 2nd moment from r to R.

4_ R
Iy = [forranps® = 2np [ ar) = ZRpEIl

4
R 7Y _mp 2 2 .2 2
2np(4 D o (R =) (R +1)

2 2 2 2
2 2(R +r +
N ) - M(R"+ 1)
2 2
*In some books the symbol 7 denotes the polar moment of inertia of masses; J,, is used in this handbook
to avoid confusion with moments of inertia of plane areas.
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Polar Moment of Inertia and Polar Section Modulus

Section

Polar Moment of Inertia,
J

Polar Section Modulus,

Z,

;

d a

4 4
L = 0.1667a
6

0.2084% = 0.0744°

1
j
1

2

bd
bd(b> +d°) d
B 3+ 1.85
f—b—] (d is the shorter side)
nD* 4 D’ 3
2 - 0.098D — = 0.196D
D 32 16

(see also footnote, page 250)

(see also footnote, page 250)

T4 A
32(D -d)

= 0.098(D* - a*)

29
16\ D

4
_ D —d4)
= 0.196( =

5434 _ 1 0825
8 0.20F3
= 0.12F"
3 4
4 4 D s
Dt s s
T 16 3D

= 0.098D"-0.1675"

4
_ 3 S
= 0.196D 0.333D

nD' 5.3 4
—_— ==y
32 8

= 0.098D" - 1.08255"

D’ 543 4
16 4D
3 S4
= 0.196D" - 2.1655

NE 4
28° " 0.036s

3 3
5 = 0.05s
20
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Formulas for Polar Moment of Inertia of Masses, J,,

Prism:
A
i
| k]
[ B__t, R With reference toaxisA —A: J,, = %(h2 +b?)
I { 12 K2
A With reference to axis B~ B: J,, = M(— + —)

T 3 12
OA i B4+—--=1-B
o b

Cylinder:
A
‘ A
E B—*'-Xt B With reference toaxis A —A: J,, = %Mr?
| 2
A With referencetoaxisB—B: J,, = M(l— + r—Z)

M 3 4

i

Hollow Cylinder:
A
l L]
! ! } B——ILY— —i[——B With reference to axis A —A: J,, = %M(R? + r?)
I ' I 1L With reference to axis B — B:
1|1 vl
A

R
B B
R

12 R2+r2)
J =M(—+—
M 3 4

Pyramid, Rectangular Base:

A
e . . M
With reference to axis A —A: J,, = E(g2 +b2)
[
[ B 3 B _ With reference to axis B — B (through the center of grav-
' ity):
A
2
oo | £ g 15k 7 :M(§h2+b_o)
A j B1o$<—B M 80 5
f—a—f o
Sphere:
A With reference to any axis through the center:
A

Jy = %Mr?
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Spherical Sector:

P4
=T =

W u

NS ‘ With reference toaxisA—A: J,, = g(3rh—h2)
i
A

Spherical Segment:

Spherical Segment:. With reference to axis A — A:

= 2_3rh  3h%\_2h
Tm M(r 4 20/3r—h
2
With reference toaxisA - A: J,, = M(R? + 5%2)

With reference toaxis B~ B: J,, = M(R? +%,r?)

Paraboloid:
B
| With reference toaxisA —A: J,, = YUMr?
R
: a . With reference to axis B — B (through the center of grav-
A ‘_‘WL‘ SLAYN ity):
2 2
e Jy = M(r— + h—g)
6 1
B
Ellipsoid:

B
l With reference toaxisA - A: J,, = Ag/l(bz +c2)
—
- - g =M 5 2
A AC With reference to axis B—B: J,, = %-(a +c%)

C
l'_a ¢ r_ With reference to axis C—C: J,, = %(az + b2)
B
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Cone:
A
3M
T With reference to axisA —A: J,, = =—r?
3 M~ 10
B B With reference to axis B — B (through the center of grav-

ity):

_3M( 5 h
B@B I = G507+ %)

Frustrum of Cone:

X 5_,5
A A With reference toaxisA—A: J,, = SM(R> - 1)
R 10(R3-1r3)

Moments of Inertia of Complex Areas and Masses may be evaluated by the addition and
subtraction of elementary areas and masses. For example, the accompanying figure shows
a complex mass at (1); its mass polar moment of inertia can be determined by adding
together the moments of inertia of the bodies shown at (2) and (3), and subtracting that at
(4). Thus, Jy = Jyp0 + I3 — Iy All Of these moments of inertia are with respect to the axis
of rotation z — z. Formulas for J,,, and J,,5 can be obtained from the tables beginning on
page 246. The moment of inertia for the body at (4) can be evaluated by using the following
transfer-axis equation: J,,, = J,,," + d°M. The term J,,,” is the moment of inertia with
respectto axis z” —z’; it may be evaluated using the same equation that applies to J,,, where

d is the distance between the z — z and the z” — z” axes, and M is the mass of the body (=
weightin lbs + g).

1)

Moments of Inertia of Complex Masses

Similar calculations can be made when calculating 7 and J for complex areas using the
appropriate transfer-axis equations are I = I’ + d?A and J = J’ + d?A. The primed term, I or
J’, is with respect to the center of gravity of the corresponding area A; d is the distance
between the axis through the center of gravity and the axis to which 7 or J is referred.
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Moments of Inertia and Section Moduli
for Rectangles and Round Shafts

Moments of inertia and section modulus values shown here are for rectan-

249

1]
L

gles 1 millimeter wide (). To obtain moment of inertia or section modulus T
for rectangle of given side length (d), multiply appropriate table value by n
given width. (See the text starting on page 234 for basic formulas.) b p—|
Moments of Inertia and Section Moduli for Rectangles
(Metric Units)
Length Moment Length Moment Length Moment
of Side of Section of Side of Section of Side of Section
(mm) Inertia Modulus (mm) Inertia Modulus (mm) Inertia Modulus
5 10.4167 |  4.16667 56 14634.7 522.667 107 102087 1908.17
6 18.0000 |  6.00000 57 15432.8 541.500 108 104976 1944.00
7 28.5833 |  8.16667 58 16259.3 560.667 109 107919 1980.17
8 42,6667 | 10.6667 59 17114.9 580.167 110 110917 2016.67
9 60.7500 |  13.5000 60 18000.0 600.000 111 113969 2053.50
10 83.3333 |  16.6667 61 18915.1 620.167 112 117077 2090.67
11 110.917 20.1667 62 19860.7 640.667 113 120241 2128.17
12 144.000 24.0000 63 20837.3 661.500 114 123462 2166.00
13 183.083 28.1667 64 21845.3 682.667 115 126740 2204.17
14 228.667 32.6667 65 22885.4 704.167 116 130075 2242.67
15 281.250 37.5000 66 23958.0 726.000 117 133468 2281.50
16 341.333 42.6667 67 25063.6 748.167 118 136919 2320.67
17 409.417 48.1667 68 26202.7 770.667 119 140430 2360.17
18 486.000 54.0000 69 27375.8 793.500 120 144000 2400.00
19 571.583 60.1667 70 28583.3 816.667 121 147630 2440.17
20 666.667 66.6667 71 29825.9 840.167 122 151321 2480.67
21 771.750 73.5000 72 31104.0 864.000 123 155072 2521.50
22 887.333 80.6667 73 32418.1 888.167 124 158885 2562.67
23 | 1013.92 88.1667 74 33768.7 912.667 125 162760 2604.17
24 | 1152.00 96.0000 75 35156.3 937.500 126 166698 2646.00
25 | 1302.08 104.1667 76 36581.3 962.667 127 170699 2688.17
26 | 1464.67 112.6667 77 38044.4 988.167 128 174763 2730.67
27 | 1640.25 121.5000 78 39546.0 1014.00 130 183083 2816.67
28 | 1829.33 130.6667 79 41086.6 1040.17 132 191664 2904.00
29 | 2032.42 140.167 80 42666.7 1066.67 135 205031 3037.50
30 | 2250.00 150.000 81 44286.8 1093.50 138 219006 3174.00
31 | 248258 160.167 82 45947.3 1120.67 140 228667 3266.67
32 | 273067 170.667 83 47648.9 1148.17 143 243684 3408.17
33 | 2994.75 181.500 84 49392.0 1176.00 147 264710 3601.50
34 | 327533 192.667 85 51177.1 1204.17 150 281250 3750.00
35 | 3572.92 204.167 86 53004.7 1232.67 155 310323 4004.17
36 | 3888.00 216.000 87 54875.3 1261.50 160 341333 4266.67
37 | 4221.08 228.167 88 56789.3 1290.67 165 374344 4537.50
38 | 4572.67 240.667 89 58747.4 1320.17 170 409417 4816.67
39 | 494325 253.500 2 60750.0 1350.00 175 446615 5104.17
40 | 5333.33 266.667 91 62797.6 1380.17 180 486000 5400.00
41 | 5743.42 280.167 92 64890.7 1410.67 185 527635 5704.17
42 | 6174.00 294.000 93 67029.8 1441.50 190 571583 6016.67
43 | 662558 308.167 % 69215.3 1472.67 195 617906 6337.50
44 | 7098.67 322.667 95 71447.9 1504.17 200 666667 6666.67
45 | 7593.75 337.500 9% 73728.0 1536.00 210 771750 7350.00
46 | 8111.33 352.667 97 76056.1 1568.17 220 887333 8066.67
47 | 8651.92 368.167 98 78432.7 1600.67 230 | 1013917 8816.67
48 | 9216.00 384.000 99 80858.3 1633.50 240 | 1152000 9600.00
49 | 9804.08 400.167 100 83333.3 1666.67 250 | 1302083 10416.7
50 | 10416.7 416.667 101 85858.4 1700.17 260 | 1464667 11266.7
51 | 11054.3 433.500 102 88434.0 1734.00 270 | 1640250 12150.0
52 |11717.3 450.667 103 91060.6 1768.17 280 | 1829333 13066.7
53 | 12406.4 468.167 104 93738.7 1802.67 290 | 2032417 14016.7
54 | 13122.0 486.000 105 96468.8 1837.50 300 | 2250000 15000.0
55 | 13864.6 504.167 106 99251.3 1872.67
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Section Moduli for Rectangles

Length Section Length Section Length Section Length Section
of Side Modulus of Side Modulus of Side Modulus of Side Modulus

% 0.0026 2%, 1.26 12 24.00 25 104.2
%6 0.0059 3 1.50 12% 26.04 26 112.7
% 0.0104 3y 1.76 13 28.17 27 1215
% 0.0163 3% 2.04 13% 30.38 28 130.7
% 0.0234 3% 2.34 14 32.67 29 140.2
%6 0.032 4 2.67 14% 35.04 30 150.0
% 0.042 4% 3.38 15 375 32 170.7
% 0.065 5 4.17 15% 40.0 34 192.7
% 0.094 5% 5.04 16 42.7 36 216.0
% 0.128 6 6.00 16% 45.4 38 240.7
1 0.167 6% 7.04 17 48.2 40 266.7
1% 0.211 7 8.17 17% 51.0 42 294.0
1% 0.260 7% 9.38 18 54.0 44 322.7
1% 0.315 8 10.67 18% 57.0 46 352.7
1% 0.375 8% 12.04 19 60.2 48 384.0
1% 0.440 9 13.50 19% 63.4 50 416.7
1%, 0.510 9% 15.04 20 66.7 52 450.7
1% 0.586 10 16.67 21 735 54 486.0
2 0.67 10% 18.38 22 80.7 56 522.7
2% 0.84 11 20.17 23 88.2 58 560.7
2% 1.04 11% 22.04 24 96.0 60 600.0

Section modulus values are shown for rectangles 1 inch wide. To obtain section modulus for rect-
angle of given side length, multiply value in table by given width.

Section Moduli and Moments of Inertia for Round Shafts

Section Moment Section Moment Section Moment
Dia. Modulus of Inertia Dia. Modulus of Inertia Dia. Modulus of Inertia
% 0.00019 0.00001 % 0.00737 0.00155 3 0.03645 0.01310
% 0.00027 0.00002 "6 0.00822 0.00180 79 0.03888 0.01428
% 0.00037 0.00003 B 0.00913 0.00207 % 0.04142 0.01553
o 0.00050 0.00004 % 0.01011 0.00237 Y% 0.04406 0.01687
%6 0.00065 0.00006 A 0.01116 0.00270 % 0.04681 0.01829
% 0.00082 0.00008 % 0.01227 0.00307 e 0.04968 0.01979
%o 0.00103 0.00011 S 0.01346 0.00347 B 0.05266 0.02139
5% 0.00126 0.00015 % 0.01472 0.00391 S 0.05576 0.02309
% 0.00153 0.00019 D 0.01606 0.00439 / 0.05897 0.02488
Y 0.00184 0.00024 %6 0.01747 0.00491 B 0.06231 0.02677
% 0.00218 0.00031 & 0.01897 0.00548 % 0.06577 0.02877
%, 0.00257 0.00038 % 0.02055 0.00610 e 0.06936 0.03089
%6 0.00300 0.00047 D 0.02222 0.00677 % 0.07307 0.03311
2 0.00347 0.00057 % 0.02397 0.00749 % 0.07692 0.03545
%% 0.00399 0.00069 Y 0.02581 0.00827 s 0.08089 0.03792
& 0.00456 0.00082 2 0.02775 0.00910 % 0.08501 0.04051
% 0.00518 0.00097 A 0.02978 0.01000 £ 0.08926 0.04323
s 0.00585 0.00114 Y 0.03190 0.01097 8%, 0.09364 0.04609
3% 0.00658 0.00134 S 0.03413 0.01200

In this and succeeding tables, the Polar Section Modulus for a shaft of given diameter can be
obtained by multiplying its section modulus by 2. Similarly, its Polar Moment of Inertia can be
obtained by multiplying its moment of inertia by 2.
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Section Moduli and Moments of Inertia for Round Shafts (English or Metric Units)

Section Moment Section Moment Section Moment
Dia. Modulus | of Inertia Dia. Modulus | of Inertia Dia. Modulus | of Inertia
1.00 0.0982 0.0491 1.50 0.3313 0.2485 2.00 0.7854 0.7854
1.01 0.1011 0.0511 151 0.3380 0.2552 2.01 0.7972 0.8012
1.02 0.1042 0.0531 1.52 0.3448 0.2620 2.02 0.8092 0.8173
1.03 0.1073 0.0552 1.53 0.3516 0.2690 2.03 0.8213 0.8336
1.04 0.1104 0.0574 1.54 0.3586 0.2761 2.04 0.8335 0.8501
1.05 0.1136 0.0597 1.55 0.3656 0.2833 2.05 0.8458 0.8669
1.06 0.1169 0.0620 1.56 0.3727 0.2907 2.06 0.8582 0.8840
1.07 0.1203 0.0643 1.57 0.3799 0.2982 2.07 0.8708 0.9013
1.08 0.1237 0.0668 1.58 0.3872 0.3059 2.08 0.8835 0.9188
1.09 0.1271 0.0693 1.59 0.3946 0.3137 2.09 0.8963 0.9366
1.10 0.1307 0.0719 1.60 0.4021 0.3217 2.10 0.9092 0.9547
1.11 0.1343 0.0745 1.61 0.4097 0.3298 2.11 0.9222 0.9730
1.12 0.1379 0.0772 1.62 0.4174 0.3381 2.12 0.9354 0.9915
1.13 0.1417 0.0800 1.63 0.4252 0.3465 2.13 0.9487 1.0104
1.14 0.1455 0.0829 1.64 0.4330 0.3551 2.14 0.9621 1.0295
1.15 0.1493 0.0859 1.65 0.4410 0.3638 2.15 0.9757 1.0489
1.16 0.1532 0.0889 1.66 0.4491 0.3727 2.16 0.9894 1.0685
1.17 0.1572 0.0920 1.67 0.4572 0.3818 2.17 1.0032 1.0885
1.18 0.1613 0.0952 1.68 0.4655 0.3910 2.18 1.0171 1.1087
1.19 0.1654 0.0984 1.69 0.4739 0.4004 2.19 1.0312 1.1291
1.20 0.1696 0.1018 1.70 0.4823 0.4100 2.20 1.0454 1.1499
1.21 0.1739 0.1052 1.71 0.4909 0.4197 2.21 1.0597 1.1710
1.22 0.1783 0.1087 1.72 0.4996 0.4296 2.22 1.0741 1.1923
1.23 0.1827 0.1124 1.73 0.5083 0.4397 2.23 1.0887 1.2139
1.24 0.1872 0.1161 1.74 0.5172 0.4500 2.24 1.1034 1.2358
1.25 0.1917 0.1198 1.75 0.5262 0.4604 2.25 1.1183 1.2581
1.26 0.1964 0.1237 1.76 0.5352 0.4710 2.26 1.1332 1.2806
1.27 0.2011 0.1277 1.77 0.5444 0.4818 2.27 1.1484 1.3034
1.28 0.2059 0.1318 1.78 0.5537 0.4928 2.28 1.1636 1.3265
1.29 0.2108 0.1359 1.79 0.5631 0.5039 2.29 1.1790 1.3499
1.30 0.2157 0.1402 1.80 0.5726 0.5153 2.30 1.1945 1.3737
131 0.2207 0.1446 1.81 0.5822 0.5268 2.31 1.2101 1.3977
1.32 0.2258 0.1490 1.82 0.5919 0.5386 2.32 1.2259 1.4221
1.33 0.2310 0.1536 1.83 0.6017 0.5505 2.33 1.2418 1.4468
1.34 0.2362 0.1583 1.84 0.6116 0.5627 2.34 1.2579 1.4717
1.35 0.2415 0.1630 1.85 0.6216 0.5750 2.35 1.2741 1.4971
1.36 0.2470 0.1679 1.86 0.6317 0.5875 2.36 1.2904 1.5227
1.37 0.2524 0.1729 1.87 0.6420 0.6003 2.37 1.3069 1.5487
1.38 0.2580 0.1780 1.88 0.6523 0.6132 2.38 1.3235 1.5750
1.39 0.2637 0.1832 1.89 0.6628 0.6264 2.39 1.3403 1.6016
1.40 0.2694 0.1886 1.90 0.6734 0.6397 2.40 1.3572 1.6286
1.41 0.2752 0.1940 1.91 0.6841 0.6533 2.41 1.3742 1.6559
142 0.2811 0.1996 1.92 0.6949 0.6671 2.42 1.3914 1.6836
1.43 0.2871 0.2053 1.93 0.7058 0.6811 2.43 1.4087 1.7116
1.44 0.2931 0.2111 1.94 0.7168 0.6953 2.44 1.4262 1.7399
1.45 0.2993 0.2170 1.95 0.7280 0.7098 2.45 1.4438 1.7686
1.46 0.3055 0.2230 1.96 0.7392 0.7244 2.46 1.4615 1.7977
1.47 0.3119 0.2292 1.97 0.7506 0.7393 2.47 1.4794 1.8271
1.48 0.3183 0.2355 1.98 0.7621 0.7545 2.48 1.4975 1.8568
1.49 0.3248 0.2419 1.99 0.7737 0.7698 2.49 1.5156 1.8870
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Section Moduli and Moments of Inertia for Round Shafts (English or Metric Units)

Section Moment Section Moment Section Moment
Dia. Modulus | of Inertia Dia. Modulus | of Inertia Dia. Modulus | of Inertia
2.50 1.5340 1.9175 3.00 2.6507 3.9761 3.50 4.2092 7.3662
251 1.5525 1.9483 3.01 2.6773 4.0294 3.51 4.2454 7.4507
2.52 1.5711 1.9796 3.02 2.7041 4.0832 3.52 4.2818 7.5360
2.63 1.5899 2.0112 3.03 2.7310 4.1375 3.53 4.3184 7.6220
2.54 1.6088 2.0432 3.04 2.7582 4.1924 3.54 4.3552 7.7087
2.55 1.6279 2.0755 3.05 2.7855 4.2479 3.55 4.3922 7.7962
2.56 1.6471 2.1083 3.06 2.8130 4.3038 3.56 4.4295 7.8844
2.57 1.6665 2.1414 3.07 2.8406 4.3604 3.57 4.4669 7.9734
2.58 1.6860 2.1749 3.08 2.8685 4.4175 3.58 4.5054 8.0631
2.59 1.7057 2.2089 3.09 2.8965 4.4751 3.59 4.5424 8.1536
2.60 1.7255 2.2432 3.10 2.9247 4.5333 3.60 4.5804 8.2248
2.61 1.7455 2.2779 3.11 2.9531 45921 3.61 4.6187 8.3368
2.62 1.7656 2.3130 3.12 2.9817 4.6514 3.62 4.6572 8.4295
2.63 1.7859 2.3485 3.13 3.0105 4.7114 3.63 4.6959 8.5231
2.64 1.8064 2.3844 3.14 3.0394 4.7719 3.64 4.7348 8.6174
2.65 1.8270 2.4208 3.15 3.0685 4.8329 3.65 47740 8.7125
2.66 1.8478 2.4575 3.16 3.0979 4.8946 3.66 4.8133 8.8083
2.67 1.8687 2.4947 3.17 3.1274 4.9569 3.67 4.8529 8.9050
2.68 1.8897 2.5323 3.18 3.1570 5.0197 3.68 4.8926 9.0025
2.69 1.9110 2.5703 3.19 3.1869 5.0831 3.69 4.9326 9.1007
2.70 1.9324 2.6087 3.20 3.2170 5.1472 3.70 4.9728 9.1998
2.71 1.9539 2.6476 3.21 3.2472 5.2118 3.71 5.0133 9.2996
2.72 1.9756 2.6869 3.22 3.2777 5.2771 3.72 5.0539 9.4003
2.73 1.9975 2.7266 3.23 3.3083 5.3429 3.73 5.0948 9.5018
2.74 2.0195 2.7668 3.24 3.3391 5.4094 3.74 5.1359 9.6041
2.75 2.0417 2.8074 3.25 3.3702 5.4765 3.75 5.1772 9.7072
2.76 2.0641 2.8484 3.26 3.4014 5.5442 3.76 5.2187 9.8112
2.77 2.0866 2.8899 3.27 3.4328 5.6126 3.77 5.2605 9.9160
2.78 2.1093 2.9319 3.28 3.4643 5.6815 3.78 5.3024 10.0216
2.79 2.1321 2.9743 3.29 3.4961 5.7511 3.79 5.3446 10.1281
2.80 2.1551 3.0172 3.30 3.5281 5.8214 3.80 5.3870 10.2354
2.81 2.1783 3.0605 3.31 3.5603 5.8923 3.81 5.4297 10.3436
2.82 2.2016 3.1043 3.32 3.5926 5.9638 3.82 5.4726 10.4526
2.83 2.2251 3.1486 3.33 3.6252 6.0360 3.83 5.5156 10.5625
2.84 2.2488 3.1933 3.34 3.6580 6.1088 3.84 5.5590 10.6732
2.85 2.2727 3.2385 3.35 3.6909 6.1823 3.85 5.6025 10.7848
2.86 2.2967 3.2842 3.36 3.7241 6.2564 3.86 5.6463 10.8973
2.87 2.3208 3.3304 3.37 3.7574 6.3313 3.87 5.6903 11.0107
2.88 2.3452 3.3771 3.38 3.7910 6.4067 3.88 5.7345 11.1249
2.89 2.3697 3.4242 3.39 3.8247 6.4829 3.89 5.7789 11.2401
2.90 2.3944 3.4719 3.40 3.8587 6.5597 3.90 5.8236 11.3561
291 2.4192 3.5200 3.41 3.8928 6.6372 3.91 5.8685 11.4730
2.92 2.4443 3.5686 3.42 3.9272 6.7154 3.92 5.9137 11.5908
2.93 2.4695 3.6178 3.43 3.9617 6.7943 3.93 5.9591 11.7095
2.94 2.4948 3.6674 3.44 3.9965 6.8739 3.94 6.0047 11.8292
2.95 2.5204 3.7176 3.45 4.0314 6.9542 3.95 6.0505 11.9497
2.96 2.5461 3.7682 3.46 4.0666 7.0352 3.96 6.0966 12.0712
2.97 2.5720 3.8194 3.47 4.1019 7.1168 3.97 6.1429 12.1936
2.98 2.5981 3.8711 3.48 4.1375 7.1992 3.98 6.1894 12.3169
2.99 2.6243 3.9233 3.49 4.1733 7.2824 3.99 6.2362 12.4412
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Section Moduli and Moments of Inertia for Round Shafts (English or Metric Units)

Section Moment Section Moment Section Moment
Dia. Modulus | of Inertia Dia. Modulus | of Inertia Dia. Modulus | of Inertia
4.00 6.2832 12.566 4.50 8.946 20.129 5.00 12.272 30.680
4,01 6.3304 12.693 4.51 9.006 20.308 5.01 12.346 30.926
4.02 6.3779 12.820 4.52 9.066 20.489 5.02 12.420 31.173
4.03 6.4256 12.948 4.53 9.126 20.671 5.03 12.494 31.423
4.04 6.4736 13.077 454 9.187 20.854 5.04 12.569 31.673
4.05 6.5218 13.207 4.55 9.248 21.039 5.05 12.644 31.925
4.06 6.5702 13.337 4.56 9.309 21.224 5.06 12.719 32.179
4.07 6.6189 13.469 4.57 9.370 21411 5.07 12.795 32.434
4.08 6.6678 13.602 4.58 9.432 21.599 5.08 12.870 32.691
4.09 6.7169 13.736 4.59 9.494 21.788 5.09 12.947 32.949
4.10 6.7663 13.871 4.60 9.556 21.979 5.10 13.023 33.209
4.11 6.8159 14.007 4.61 9.618 22.170 5.11 13.100 33.470
4.12 6.8658 14.144 4.62 9.681 22.363 5.12 13.177 33.733
4.13 6.9159 14.281 4.63 9.744 22.558 5.13 13.254 33.997
4.14 6.9663 14.420 4.64 9.807 22.753 5.14 13.332 34.263
4.15 7.0169 14.560 4.65 9.871 22.950 5.15 13.410 34.530
4.16 7.0677 14.701 4.66 9.935 23.148 5.16 13.488 34.799
4.17 7.1188 14.843 4.67 9.999 23.347 5.17 13.567 35.070
4.18 7.1702 14.986 4.68 10.063 23.548 5.18 13.645 35.342
4.19 7.2217 15.130 4.69 10.128 23.750 5.19 13.725 35.616
4.20 7.2736 15.275 4.70 10.193 23.953 5.20 13.804 35.891
4.21 7.3257 15.420 4.71 10.258 24.158 5.21 13.884 36.168
4.22 7.3780 15.568 4.72 10.323 24.363 5.22 13.964 36.446
4.23 7.4306 15.716 4.73 10.389 24.571 5.23 14.044 36.726
4.24 7.4834 15.865 4.74 10.455 24.779 5.24 14.125 37.008
4.25 7.5364 16.015 4.75 10.522 24.989 5.25 14.206 37.291
4.26 7.5898 16.166 4.76 10.588 25.200 5.26 14.288 37.576
4.27 7.6433 16.319 4.77 10.655 25.412 5.27 14.369 37.863
4.28 7.6972 16.472 4.78 10.722 25.626 5.28 14.451 38.151
4.29 7.7513 16.626 4.79 10.790 25.841 5.29 14.533 38.441
4.30 7.8056 16.782 4.80 10.857 26.058 5.30 14.616 38.732
431 7.8602 16.939 481 10.925 26.275 5.31 14.699 39.025
4.32 7.9150 17.096 4.82 10.994 26.495 5.32 14,782 39.320
4.33 7.9701 17.255 4.83 11.062 26.715 5.33 14.866 39.617
4.34 8.0254 17.415 4.84 11.131 26.937 5.34 14.949 39.915
4.35 8.0810 17.576 4.85 11.200 27.160 5.35 15.034 40.215
4.36 8.1369 17.738 4.86 11.270 27.385 5.36 15.118 40.516
4.37 8.1930 17.902 4.87 11.339 27.611 5.37 15.203 40.819
4.38 8.2494 18.066 4.88 11.409 27.839 5.38 15.288 41.124
4.39 8.3060 18.232 4.89 11.480 28.068 5.39 15.373 41.431
4.40 8.3629 18.398 4.90 11.550 28.298 5.40 15.459 41.739
4.41 8.4201 18.566 491 11.621 28.530 5.41 15.545 42.049
4.42 8.4775 18.735 4.92 11.692 28.763 5.42 15.631 42.361
4.43 8.5351 18.905 4.93 11.764 28.997 5.43 15.718 42.675
4.44 8.5931 19.077 4,94 11.835 29.233 5.44 15.805 42.990
4.45 8.6513 19.249 4.95 11.907 29.471 5.45 15.892 43.307
4.46 8.7097 19.423 4.96 11.980 29.710 5.46 15.980 43.626
4.47 8.7684 19.597 4.97 12.052 29.950 5.47 16.068 43.946
4.48 8.8274 19.773 4.98 12.125 30.192 5.48 16.156 44.268
4.49 8.8867 19.951 4.99 12.198 30.435 5.49 16.245 44,592
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Section Moduli and Moments of Inertia for Round Shafts (English or Metric Units)

Section Moment Section Moment Section Moment
Dia. Modulus of Inertia Dia. Modulus of Inertia Dia. Modulus of Inertia
5.5 16.3338 44,9180 30 2650.72 39760.8 54.5 15892.4 433068
6 21.2058 63.6173 30.5 2785.48 42478.5 55 16333.8 449180
6.5 26.9612 87.6241 31 2924.72 45333.2 55.5 16783.4 465738
7 33.6739 | 117.859 31.5 3068.54 48329.5 56 17241.1 482750
7.5 41.4175 | 155.316 32 3216.99 51471.9 56.5 17707.0 500223
8 50.2655 | 201.062 325 3370.16 54765.0 57 18181.3 518166
8.5 60.2916 | 256.239 33 3528.11 58213.8 57.5 18663.9 536588
9 71.5694 | 322.062 335 3690.92 61822.9 58 19155.1 555497
9.5 84.1726 | 399.820 34 3858.66 65597.2 58.5 19654.7 574901
10 98.1748 | 490.874 345 4031.41 69541.9 59 20163.0 594810
10.5 113.650 596.660 35 4209.24 73661.8 59.5 20680.0 615230
11 130.671 718.688 355 4392.23 77962.1 60 21205.8 636173
115 149.312 858.541 36 4580.44 82448.0 60.5 21740.3 657645
12 169.646 | 1017.88 36.5 4773.96 87124.7 61 22283.8 679656
125 191.748 | 1198.42 37 4972.85 91997.7 61.5 22836.3 702215
13 215.690 | 1401.98 375 5177.19 97072.2 62 23397.8 725332
135 241547 | 1630.44 38 5387.05 | 102354 62.5 23968.4 749014
14 269.392 | 1885.74 38.5 5602.50 | 107848 63 24548.3 773272
14.5 299.298 | 2169.91 39 5823.63 | 113561 63.5 25137.4 798114
15 331.340 | 2485.05 39.5 6050.50 | 119497 64 25735.9 823550
15.5 365.591 | 2833.33 40 6283.19 | 125664 64.5 26343.8 849589
16 402.124 | 3216.99 40.5 6521.76 | 132066 65 26961.2 876241
16.5 441.013 | 3638.36 41 6766.30 | 138709 65.5 27588.2 903514
17 482.333 | 4099.83 415 7016.88 | 145600 66 28224.9 931420
175 526.155 | 4603.86 42 7273.57 | 152745 66.5 28871.2 959967
18 572.555 | 5153.00 425 7536.45 | 160150 67 29527.3 989166
18.5 621.606 | 5749.85 43 7805.58 | 167820 67.5 30193.3 1019025
19 673.381 | 6397.12 435 8081.05 | 175763 68 30869.3 1049556
19.5 727.954 | 7097.55 44 8362.92 | 183984 68.5 31555.2 1080767
20 785.398 | 7853.98 445 8651.27 | 192491 69 32251.3 1112670
20.5 845.788 | 8669.33 45 8946.18 | 201289 69.5 32957.5 1145273
21 909.197 | 9546.56 455 9247.71 | 210385 70 33673.9 1178588
215 975.698 |10488.8 46 9555.94 | 219787 70.5 34400.7 1212625
22 1045.36  |11499.0 46.5 9870.95 | 229499 71 35137.8 1247393
225 1118.27  |12580.6 47 10192.8 239531 715 35885.4 1282904
23 1194.49  |13736.7 475 10521.6 249887 72 36643.5 1319167
235 127410  |14970.7 48 10857.3 260576 725 37412.3 1356194
24 1357.17  |16286.0 48.5 11200.2 271604 73 38191.7 1393995
24.5 1443.77 |17686.2 49 11550.2 282979 735 38981.8 1432581
25 1533.98 |19174.8 495 11907.4 294707 74 39782.8 1471963
255 1627.87  |20755.4 50 12271.8 306796 74.5 40594.6 1512150
26 172552 |22431.8 50.5 12643.7 319253 75 414175 1553156
26.5 1827.00 |24207.7 51 13023.0 332086 75.5 42251.4 1594989
27 1932.37  |26087.0 51.5 13409.8 345302 76 43096.4 1637662
275 2041.73  |28073.8 52 13804.2 358908 76.5 43952.6 1681186
28 2155.13 |30171.9 52.5 14206.2 372913 77 44820.0 1725571
28.5 2272.66 |32385.4 53 14616.0 387323 775 45698.8 1770829
29 2394.38  |34718.6 53.5 15033.5 402147 78 46589.0 1816972
29.5 2520.38  |37175.6 54 15459.0 417393 785 47490.7 1864011
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Section Moduli and Moments of Inertia for Round Shafts (English or Metric Units)

Section Moment Section Moment Section Moment
Dia. Modulus of Inertia Dia. Modulus of Inertia Dia. Modulus of Inertia
79 48404.0 1911958 103.5 108848 5632890 128 205887 | 13176795
79.5 49328.9 1960823 104 110433 5742530 128.5 208310 | 13383892
80 50265.5 2010619 104.5 112034 5853762 129 210751 | 13593420
80.5 51213.9 2061358 105 113650 5966602 129.5 213211 | 13805399
81 52174.1 2113051 105.5 115281 6081066 130 215690 | 14019848
81.5 53146.3 2165710 106 116928 6197169 130.5 218188 | 14236786
82 54130.4 2219347 106.5 118590 6314927 131 220706 | 14456231
82.5 55126.7 2273975 107 120268 6434355 1315 223243 | 14678204
83 56135.1 2329605 107.5 121962 6555469 132 225799 | 14902723
83.5 57155.7 2386249 108 123672 6678285 132.5 228374 | 15129808
84 58188.6 2443920 108.5 125398 6802818 133 230970 | 15359478
84.5 59233.9 2502631 109 127139 6929085 1335 233584 | 15591754
85 60291.6 2562392 109.5 128897 7057102 134 236219 | 15826653
85.5 61361.8 2623218 110 130671 7186884 134.5 238873 | 16064198
86 62444.7 2685120 1105 132461 7318448 135 241547 | 16304406
86.5 63540.1 2748111 111 134267 7451811 135.5 244241 | 16547298
87 64648.4 2812205 1115 136089 7586987 136 246954 | 16792893
87.5 65769.4 2877412 112 137928 7723995 136.5 249688 | 17041213
88 66903.4 2943748 1125 139784 7862850 137 252442 | 17292276
88.5 68050.2 3011223 113 141656 8003569 1375 255216 | 17546104
89 69210.2 3079853 1135 143545 8146168 138 258010 | 17802715
89.5 70383.2 3149648 114 145450 8290664 138.5 260825 | 18062131
90 71569.4 3220623 1145 147372 8437074 139 263660 | 18324372
90.5 72768.9 3292791 115 149312 8585414 139.5 266516 | 18589458
91 73981.7 3366166 1155 151268 8735703 140 269392 | 18857410
91.5 75207.9 3440759 116 153241 8887955 140.5 272288 | 19128248
92 76447.5 3516586 116.5 155231 9042189 141 275206 | 19401993
925 77700.7 3593659 117 157238 9198422 1415 278144 | 19678666
93 78967.6 3671992 1175 159262 9356671 142 281103 | 19958288
93.5 80248.1 3751598 118 161304 9516953 142.5 284083 | 20240878
94 81542.4 3832492 118.5 163363 9679286 143 287083 | 20526460
94.5 82850.5 3914688 119 165440 9843686 1435 290105 | 20815052
95 84172.6 3998198 119.5 167534 | 10010172 144 293148 | 21106677
95.5 85508.6 4083038 120 169646 | 10178760 144.5 296213 | 21401356
96 86858.8 4169220 120.5 171775 | 10349469 145 299298 | 21699109
96.5 88223.0 4256760 121 173923 | 10522317 145.5 302405 | 21999959
97 89601.5 4345671 1215 176088 | 10697321 146 305533 | 22303926
97.5 90994.2 4435968 122 178270 | 10874498 146.5 308683 | 22611033
98 92401.3 4527664 1225 180471 | 11053867 147 311854 | 22921300
98.5 93822.8 4620775 123 182690 | 11235447 1475 315047 | 23234749
99 95258.9 4715315 1235 184927 | 11419254 148 318262 | 23551402
99.5 96709.5 4811298 124 187182 | 11605307 148.5 321499 | 23871280
100 98174.8 4908739 124.5 189456 | 11793625 149 324757 | 24194406
100.5 99654.8 5007652 125 191748 | 11984225 149.5 328037 | 24520802
101 101150 5108053 125.5 194058 | 12177126 150 331340 | 24850489
101.5 102659 5209956 126 196386 | 12372347
102 104184 5313376 126.5 198734 | 12569905
102.5 105723 5418329 127 201100 | 12769820
103 107278 5524828 1275 203484 | 12972110
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BEAMS

Beam Calculations

Reaction at the Supports.—\When abeam is loaded by vertical loads or forces, the sum of
the reactions at the supports equals the sum of the loads. In a simple beam, when the loads
are symmetrically placed with reference to the supports, or when the load is uniformly dis-
tributed, the reaction at each end will equal one-half of the sum of the loads. When the
loads are not symmetrically placed, the reaction at each support may be ascertained from
the fact that the algebraic sum of the moments must equal zero. In the accompanying illus-
tration, if moments are taken about the support to the left, then: R, x 40 — 8000 x 10 —
10,000 x 16 —20,000 x 20 = 0; R, = 16,000 pounds. In the same way, moments taken about
the support at the right give R, = 22,000 pounds.
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The sum of the reactions equals 38,000 pounds, which is also the sum of the loads. If part
of the load is uniformly distributed over the beam, this part is first equally divided between
the two supports, or the uniform load may be considered as concentrated at its center of
gravity.

If metric SI units are used for the calculations, distances may be expressed in meters
or millimeters, providing the treatment is consistent, and loads in newtons. Note: If
theload is given in kilograms, the value referred to is the mass. A mass of M kilograms
has a weight (applies a force) of Mg newtons, where g = approximately 9.81 meters
per second?.

Stresses and Deflections in Beams.—On the following pages Table 1 gives an extensive
list of formulas for stresses and deflections in beams, shafts, etc. It is assumed that all the
dimensions are in inches, all loads in pounds, and all stresses in pounds per square inch.
The formulas are also valid using metric SI units, with all dimensions in millimeters,
all loads in newtons, and stresses and moduli in newtons per millimeter? (N/mm?).
Note: A load due to the weight of a mass of M kilograms is Mg newtons, where g =
approximately 9.81 meters per second?. In the tables:
E =modulus of elasticity of the material
I'=moment of inertia of the cross-section of the beam

Z =section modulus of the cross-section of the beam = I + distance from neutral
axis to extreme fiber

W =load on beam

s =stress in extreme fiber, or maximum stress in the cross-section considered, due
to load W. A positive value of s denotes tension in the upper fibers and com-
pression in the lower ones (as in a cantilever). A negative value of s denotes the
reverse (as in abeam supported at the ends). The greatest safe load is that value
of Wwhich causes a maximum stress equal to, but not exceeding, the greatest
safe value of s

y =deflection measured from the position occupied if the load causing the deflec-
tion were removed. A positive value of y denotes deflection below this posi-
tion; a negative value, deflection upward

u, v, w, x = variable distances along the beam from a given support to any point

R,
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Table 1. Stresses and Deflections in Beams

Type of Beam

Stresses

Deflections

General Formula for Stress
at any Point

Stresses at Critical Points

General Formula for Deflection at any Point?

Deflections at Critical Points?

Case 1. — Supported at Both Ends, Uniform Load

=W
s = 2Zl)c(l X)

Stress at center,

= M[ZZ +x(l-x)]

Maximum deflection, at center,

TOTAL LOAD W _;_V_l . 24EH 2 ME
VA 384 EI
* ’ * * * If cross-section is constant,
w x— f w this is the maximum stress.
2 = I > 2
Case 2. — Supported at Both Ends, Load at Center
Between each support and load, Stress at center, Between each support and load, Maximum deflection, at load,
_ Wx wi _ Wx wid
7\\{“"/ A‘ s = _Z_Z- _IZ- . y = @(3[2—4)(2) M
Wiy, W tisis he mimum sess.
2 2

Case 3. — Supported at Both Ends, Load at any Point

For segment of length a,

- _Wbx
Zl
For segment of length b,
_ Wav
s = Zav
Zl

Stress at load,

_Wab
Zl

If cross-section is constant,

this is the maximum stress.

For segment of length a,

v = B2z 2y

For segment of length b,
_Wav, ., 5,
YA

Deflection at load,
Wa?b?
3EIl

Let a be the length of the shorter
segment and b of the longer one.
The maximum deflection

Wavf
3EIl

is in the longer segment, at

v=>b J/+@=v
TR
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Table 1. (Continued) Stresses and Deflections in Beams

Stresses

Deflections

General Formula for Stress

Type of Beam at any Point Stresses at Critical Points | General Formula for Deflection at any Point? Deflections at Critical Points?
Case 4. — Supported at Both Ends, Two Symmetrical Loads
Between each support and Stress at each load, and at Between each support and adjacent load, Maximum deflection at center,
adjacent load, Wa
all points between, ——— y = [3a(l a) —x2 (312 442)
\ |W ‘W/ = _Wx z 6EI 24EI
‘L_ 4 Between loads, Deflection at loads
X- Between loads,
v -X 2213y(1-v) - a? (31 4qa)
[~ a~ a~> = _Wa 6El N “
w I} lw = 6EI

Case 5. — Both Ends Overhanging Supports Symmetrically,

Uniform Load

TOTAL LOAD W

Between each support and
adjacent end,

2
K 2 Zl(c u)
Between supports,

N

= ﬁ[c -x(l-x)]

Stress at each support,

we?

2ZL
Stress at center,

ZZL(C

If cross-section is constant,
the greater of these is the
maximum stress.

If 1 is greater than 2c, the
stress is zero at points

NY%12 = ¢2 on both sides

of the center.

If cross-section is constant
and if / = 2.828c¢, the stresses
at supports and center are
equal and opposite, and are

WL
~46.627

Between each support and adjacent end,

2
24EIL[GL I+ u)

—u?(4c—u)-18]

Between supports,

- Wxll=x) 2 _ge2
y PAEIL [x({I-x)+14-6c?]

Deflection at ends,

2 _73
24E1L[3‘ (c+20)-13]

Deflection at center,

(512 24¢2)

384E1L

If 1 is between 2¢ and 2.449¢,
there are maximum upward deflec-

tions at points /3 (%72 — ¢2) on

both sides of the center, which are,

(6c2-12)2

96E1L
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Table 1. (Continued) Stresses and Deflections in Beams

Stresses Deflections
General Formula for Stress
Type of Beam at any Point Stresses at Critical Points | General Formula for Deflection at any Point? Deflections at Critical Points?
Case 6. — Both Ends Overhanging Supports Unsymmetrically, Uniform Load
For overhanging end of length ¢, Stress at support next to For overhanging end of length ¢, Deflection at end ¢,
Wc?
2 LA 2 2 2 2
N c—u end of length ¢, 21(ds + 2¢ 21(d? + 2¢
ZZL( ) M2z y = 24EIL[ ( ) 24E1L[ ( )
Between supports, Critical stress between +6c2u—u2(4e-u)-13] +3c3-13]
supports is at
s = Z‘gL{C (l lx) L= RP+c2—d? _ . Between supports, Deflection at end d,
TOTAL LOAD W - - M -
. i 21 y = W=Dy a7 121(c2+ 2d2)
¥ ¥ T 24EIL 24E1L
4 (2 -
usde—x— W +d2§‘xu—x)} andis 777 (c2 =) +12-2(d2 + c2) +3d3- 1]
o ! ~d Stress at support next to _ Z[dz +c2(]— This case is so complicated that
L i x+cf(l-x)]} ; .
1 For overhangmg end of length d, Wd? [ convenient general expressions for
end of length d, ——— : the critical deflections between
K (l —d+c) K (1+ d— C) s (d w)2 2ZL For overhangmg end of length d, supports cannot be obtained.
l 2/ ZZL If cross-section is constant, 24242)
the greatest of these three is y= 24 E IL
the maximum stress. ) ) 3
If x; > ¢, the stress is zero +6d°w—w(4d-w) - °]
at points /x% —¢2 onboth
sides of x = x;.
Case 7. — Both Ends Overhanging Supports, Load at any Point Between
Between supports: Stress at load, Between supports, same as Case 3. Between supports, same as Case
For segment of length a, Wab For overhanging end of length ¢, 3. )
— " - _Whx 0 L Wabuy, e e
- s = =
Ut X- v-JL-w Zl If cross-section is constant, 6EIL GZTIZC(I +b)
Corla— Q- b——ted For segment of length b, this is the maximum stress. For overhanging end of length d,
Wb I > % .- _Wav B _Wabw(l+a) Deflection at end d,
. (@+b=1) ] $ == 6EIl _Wabd | 4 4
6EIl

Beyond supports s = 0.
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Table 1. (Continued) Stresses and Deflections in Beams

Type of Beam

Stresses

Deflections

General Formula for Stress
at any Point

Stresses at Critical Points

General Formula for Deflection at any Point?

Deflections at Critical Points?

Case 8. — Both Ends Overhanging Supports, Single Overhanging Load

Between load and adjacent sup-
port,

Stress at support adjacent
to load,

Between load and adjacent support,

Deflection at load,

Wu Wc?
= —Bcu-u?+2cl) —(c+1
s = g(c_u) % Y T BEI 31t
Between supports, Maximum upward deflection is
Between supports, If cross-section is constant, W 2
We this is the maximum stress. y = -2 (-0 2i-x) at x = 422651, and is _Wel”
s = 7 (I-x) Stress is zero at other sup- 6EI 15.55E1
port. Between unloaded end and adjacent sup- Deflection at unloaded end,
Between unloaded end and
adjacent supports, s = 0. port, y = Welw Weld
6EI 6E]
Case 9. — Both Ends Overhanging Supports, Symmetrical Overhanging Loads
Between each load and adjacent|  Stress at supports and at all Between each load and adjacent support, Deflections at loads,
support, points between, W 2
u We
= —[3c(l+u)-u?] —(2¢+3I
o = %/(c—u) % Y = g3t 6E1" )
Between supports, Deflection at center,
Between supports, If cross-section is constant, W 2
this is the maximum stress. = _ﬂ(l -X) _Wel
We YT T2EI
s = - 8EI

The above expressions involve the usual approximations of the theory of flexure,
and hold only for small deflections. Exact expressions for deflections of any magni-

tude are as follows:

Between supports the curve is a circle of radius r = W

Deflection at any point x between supports

El
c

y = =% - 2 - (% -x)?

Deflection at center, /72 —%12—r
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Table 1. (Continued) Stresses and Deflections in Beams

Type of Beam

Stresses

Deflections

General Formula for Stress
at any Point

Stresses at Critical Points

General Formula for Deflection at any Point?

Deflections at Critical Points?

Case 10. — Fixed at One End, Uniform Load

w , Stress at support, W2 Maximum deflection, at end,
s = (U-x = 24+ (21-x)2
ZZZ( ) wi y 24E”[Zl (21-x)°] W_l3
, TOTAL LOAD W 2Z 8EI
Wi 2 If cross-section is constant,
7(/ this is the maximum stress.
e x—
A
/] { |
wt
Case 11. — Fixed at One End, Load at Other
w Stress at support, 2 Maximum deflection, at end,
s=%0-n v = 2X@31-x) 3
Z wi 6EI wE
VA 3EI
Wi (4 w If cross-section is constant,
/] this is the maximum stress.
g—x—
A
/l / i
w1
Case 12. — Fixed at One End, Intermediate Load
Between support and load, Stress at support, Between support and load, Deflection at load,
w wi Wx? w3
s = =(-x - = —(@3Il- Py
4 W zU™ z Y TA 3EI
Wil (4 4 Beyond load, s = 0. If cross-section is constant, Beyond load, Maximum deflection, at end,
Ao y— this is the maximum stress.
¢ WE 5, WE 5+ 35
' - Wi _ wie +
4 ; ; Y= gD 6E1¢ )
w
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Table 1. (Continued) Stresses and Deflections in Beams

Stresses

Deflections

General Formula for Stress

Type of Beam at any Point Stresses at Critical Points | General Formula for Deflection at any Point? Deflections at Critical Points?
Case 13. — Fixed at One End, Supported at the Other, Load at Center
Between point of fixture and load, Maximum stress at point Between point of fixture and load, Maximum deflectionisat v =
3 , w ] 3 Wi o we
B 3/-11 of fixture, % 0.44721, and is ===
16 Wl(é-\{ X y 162( %) 'z 96E1 - 11x) 107.33E1
__—/ . -
§‘<— xl— / — -] 5 Between support and load, Stress is zero at x = ¥,/ Between support and load, Deflection at load,
;4— / 2 —»r— /2 E w . _5/16 Wy Greatest n;?/altlve stress at v = 5.2 7 Wl3
11 } z center, —%,— 96EI 768 EI
. w Z
Case 14. — Fixed at One End, Supported at the Other, Load at any Point
Between point of fixture and load, Greatest positive stress, at Between point of fixture and load, Deflection at load,
point of fixture, 2
Wxb Wa3b?
(n mx) = (3n—mx) (31+b)
BPYAE ZVZ“E (1+b) 12EIB 12E13
Between support and load, Between support and load, If a < 0.58581, maximum deflec-
Wa v Greatest negative stress, at Wa2b b
m = (Il+a)(l+b)+al s = (31— ) load, y = Wa v ————[312b - v2(31-a)] tion is oo and
27 12E113 6EI N21+b
n = al(l+b) _Wa?b
2718 ——(@3l-a) located between load and support,
M—b) If a < 0.5858], the first is atv =1 b
2P 4 w the maximum stress. If a = 2l+b
(Zk ¥ /___1’ 058581, the two are equal If @ = 0.5858/, maximum deflec-
A x— —v wi e
7 andare £==oo— Ifa> tion is at load and is ————
0.58581, the second is the .
W[] - a (31 a)] Wa2(31—a) maximum stress. If @ > 0.5858/, maximum deflec-
28 2r ; n tion is = and located
Stress is zeroat x = — 213
m 3EIm?l
between load and point of fixture,
atx = =2n
m
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Table 1. (Continued) Stresses and Deflections in Beams

Type of Beam

Stresses

Deflections

General Formula for Stress
at any Point

Stresses at Critical Points

General Formula for Deflection at any Point?

Deflections at Critical Points?

Case 15. — Fixed at One

End, Supported at the Other, Uniform Load

s = Ml_—x)(%l—x)

Maximum stress at point

2(] -
= WXi(l=X) /9y

Maximum deflection is at x =

3
2zl of fixture, 8%1 48EII 0.57851, and is 1;VSZE -
TOTAL LOAD W y
, Stress is zero atx = %[ wi3
w ( ; t + + * Greatest negative stress is Deflection at center, ——>—
8 ; ¥ T 9 Wi 192E1
4 ! é w atx =% and is ——— 7 Deflection at point of greatest
9 |8 128 negative stress, at x = % is
5w
g W wi3
187E1
Case 16. — Fixed at One End, Free but Guided at the Other, Uniform Load
) Maximum stress, at sup- W2 ) Maximum deflection, at free end,
l = —_—
TOTAL LOAD W s = %{%—’—ﬁ%@) } oo, W1 Y = oagn 3= Wi
Vo 3z 24El
wi )
- ﬁ wi Stress is zero at x =
3\ Ge—x— ’,,, 042271
/ 6 Greatest negative stress, at
A wi
4 free end, ——
wi 62
Case 17. — Fixed at One End, Free but Guided at the Other, with Load
2 Maximum deflection, at free end,
s = g(%l—x) Stress at support, ZKZZ y = 1‘;/2](31— 2x) e
Wi 12E1
7 ( é w Stress at free end W
7 ! ’ 2 These are the maximum
! stresses and are equal and
w opposite.

Stress is zero at center.
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Table 1. (Continued) Stresses and Deflections in Beams

Stresses

Deflections

General Formula for Stress

Type of Beam at any Point Stresses at Critical Points | General Formula for Deflection at any Point? Deflections at Critical Points?
Case 18. — Fixed at Both Ends, Load at Center
Between each end and load, wi Maximum deflection, at load,
Stress at ends ==
=Wy 8z 48EI ~40) wid
Y ACEE 192E1
7,
m(f\ﬁ/—-x) M Stress at load —E-V—l
8 - X— 1/ 7,.— ¥ 8 87
2 /2 Y These are the maximum
w * tw stresses and are equal and
7 pAS opposite.
2 Stress is zero at x = ¥/
Case 19. — Fixed at Both Ends, Load at any Point
For segment of length a, Stress at end next to For segment of length «, _ 3p3
Wab? Deflection at load, 3
5 = Wb3 al-x(1+2a)] |segmentof length a, 2 y = Wx? b3 2a(l-x)+(a-x)] 3EIl
Zl 6EIl Let b be the length of the longer
For segment of length b, Stress at end next to For segment of length b, segment and a of the shorter one.
2 Wa2b Wv a2 The maximum deflection is in
s = Wa [bl—v(l+2b)] segment of length b, 712 y = — [2b(I=v) +1(b=V)] the longer segment, at
78 6EIl _ 2bl .
Wab? /- - Wab Maximum stress is at end VT T 2 and is
P2 £/_4 7 next to shorter segment.
X- . —y—] Stress is zero at 2 Wa2b3
a o _ _al 2
* / 4 X = T+ %a 3EI(l+2D)
4
wh? Wa? and
— +
r (+2a) P - (l+2b) Y
I+2b
Greatest negative stress, at
| 2Wa?b?
oad, ————
VAL
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Table 1. (Continued) Stresses and Deflections in Beams

Stresses

Deflections

General Formula for Stress

Type of Beam at any Point Stresses at Critical Points | General Formula for Deflection at any Point? Deflections at Critical Points?
Case 20. — Fixed at Both Ends, Uniform Load
Maximum stress, at ends, 2 Maximum deflection, at center,
Wi, x . (x\2 y = 222 s
- s =55 ]/e—;’r(;) Wi 24E11 Wi
TOTAL LOAD W 127 384E1

Wi 2
27 )
W/ { 12
Y
) ty

Stress is zero at
x=0.7887/ and at
x=0.2113/

Greatest negative stress, at

1

center, —1—
' 247

Case 21. — Continuous Beam, with Two Unequal Spans, Unequal, Uniform Loads

TOTAL LOAD W,

TOTAL LOAD W,

AQEEE1

1LW,(31,+4l,)— W,F

R
R LI )
/, —xo]

Y LR,
T

LW,3L+41) - WP

81,1, +1)

8L(1,+1,)

(WI+‘IVZ)+%(WI11

2

+Wzlz)\

Lo

N

N

Between R, and R,

L =x (L -x0)Wy
Tz 21,

Rl}
Between R, and R,

L= u((l—u)W, R
= — 5 ™2
z 21,

Stress at support R,
2 2
WL+ Wol3
8Z(I; +1y)
Greatest stress in the first
span is at

ll
X = Wl(wl_Rl)

RiLy
2ZW,

Greatest stress in the sec-
ond span is at

and is —

12
u = (o= Ry)

R3l,
2ZW,

and is, —

Between R; and R,

S D o) R, - w
y = 24E] ( 1_X)( 1~ 1)
Wl(ll—)c)2
Iy
Between R, and R,
B u(ly—u)
Yy {(212—14)(4R2—W2)
Wz(lz—u)2
L

This case is so complicated that
convenient general expressions for
the critical deflections cannot be
obtained.

Copyright 2012, Industrial Press Inc., New York, NY

http://industrialpress.com

S31aVv.L NOILO3T143d ANV SS341S INV3d

G9¢



Machinery's Handbook 29th Edition

Table 1. (Continued) Stresses and Deflections in Beams

Type of Beam

Stresses

Deflections

General Formula for Stress
at any Point

Stresses at Critical Points

General Formula for Deflection at any Point?

Deflections at Critical Points?

Case 22. — Continuous Beam, with Two Equal Spans, Uniform Load

s = Ml_—x)(%l—x)

Maximum stress at

2(] -
= WXi(l=X) 7oy

Maximum deflection is at

3
271 oint 4, 24 48EIl = 05785/, and is —%
poimt A 8z RS ACE 185 El
Stress is zero atx = ¥/ Deflection at center of span,
. o Greatest negative stress is wis
TOTAL LOAD ON EACH SPAN, W atx=%and is
A : 192E1
i { i i i i _i M Deflection at point of greatest
? I Y 128 Z negative stress, at x = %/ is
R, ! / 13 wi3
iw =
8 %W 8 W 187E1
Case 23. — Continuous Beam, with Two Equal Spans, Equal Loads at Center of Each
Between point A and load, Maximum stress at Between point A and load, Maximum deflection is at
w . 3 Wi W2 ) wi3
= i — ointA, —— = — =0.4472l,and IS T
s = 781110 |pointd, Je Y = ggg 010 v * 107.33E1
Between point B and load, Stress is zero at Between point B and load, 7 Wi
Deflection at load, ——=——
A A g=_SWy x= 2 y= W3 5 ' 768 EI
-+ \ 'S / 16 Z 96E1
be — 0] x—de—x |V Greatest negative stress at
/)2 ; 2 /2 * 12 center of span,
- - 1
5 Wi
5 1 5 2
" B s ™ RN7Z
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Table 1. (Continued) Stresses and Deflections in Beams

Stresses

Deflections

General Formula for Stress

Type of Beam at any Point Stresses at Critical Points | General Formula for Deflection at any Point? Deflections at Critical Points?
Case 24. — Continuous Beam, with Two Unequal Spans, Unequal Loads at any Point of Each
Between R, and W, Stress at load W, Between R, and W;, Deflection at load W,
wrq ary Wlb%
- -— Li=w)(l; +w)r, — 2a;b W
z z v 6E1{( L C R ! I, 6EIl o 171
Between R and W,, s = Stress at support R, Between R and Wj, “m(ly+ay)]
1 m
—[m(l,—u)—W,a,u =
T il)(‘“;¢101+ P+ 220 + ﬂ) Rz = Ml z Yo 6EH 6Em, 14t an) Dﬂhmhnmwwvﬁ
1742 1 Between R and W,, s = Stress at load W,, a,
W R W, —Wlalu -m(2ly—u)(ly—u)] [2“2b2W2
R, T R 1 L) 6EIL
2 —lm(ly —x) - Wya,x] -
w U X v IZZ V4 Between R and W, (1 +a)]
a>r<—ph b a . —m(i, *a,
o Getueen €, e o U |y 1 v
f b b 1 or : GE” 2a2b2(lz + 0, This case is so complicated that
/ \ =_2 convenient general expressions for
Wiby—m /Wiay +m Wzaz +m\Woby —m Z - Wyayx? —m(21, - x) (I, —x)] the maximum deflections cannot be
L L 1S I obtained.
Between R, and W,,
=r =r =r,

Wyb3
12

Y= 6E1{(l2 V(I +v)ry—

aThe deflections apply only to cases where the cross section of the beam is constant for its entire length.
In the diagrammatical illustrations of the beams and their loading, the values indicated near, but below, the supports are the “reactions” or upward forces at the sup-
ports. For Cases 1 to 12, inclusive, the reactions, as well as the formulas for the stresses, are the same whether the beam is of constant or variable cross-section. For the
other cases, the reactions and the stresses given are for constant cross-section beams only.

The bending moment at any point in inch-pounds (newton-meters if metric units are used) is s x Z and can be found by omitting the divisor Z in the formula for the
stress given in the tables. A positive value of the bending moment denotes tension in the upper fibers and compression in the lower ones. A negative value denotes the
reverse, The value of W corresponding to a given stress is found by transposition of the formula. For example, in Case 1, the stress at the critical pointis s = — Wi+ 8Z.
From this formula we find W =—8Zs + [. Of course, the negative sign of W may be ignored.
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RECTANGULAR AND ROUND SOLID BEAMS

In Table 1, if there are several kinds of loads, as, for instance, a uniform load and a load at
any point, or separate loads at different points, the total stress and the total deflection atany
point is found by adding together the various stresses or deflections at the point considered
due to each load acting by itself. If the stress or deflection due to any one of the loads is
negative, it must be subtracted instead of added.

Tables 2a and 2b give expressions for determining dimensions of rectangular and round
beams in terms of beam stresses and load.

Table 2a. Rectangular Solid Beams

Stress in
Breadth of Extreme
Style of Loading Beam, b Beam Height, 1 Fibers, f Beam Length, / | Total Load, W
and Support inch (mm) inch (mm) | Ib/in2 (N/mm2) | inch (mm) Ib (N)
% Beam fixed at one end, loaded at the other
f‘t ] 6IW 6IW _ h 6w =f bfh? =] bfh? =W
7 — =0 bf bh? 6W 6/
7/ Beam fixed at one end, uniformly loaded
= 3IW 3w _ bfh? _ bfh? _
3w — = —_— = =1 =W
7 =2 -b bf e T 3w 31
/e
O Beam supported at both ends, single load in middle
[ _¢= ] I ;
. l 2 2
, aw _, M:h 3Wz:f 2bfh® _ ;| 2bfh% _
45 i 2bf 2bh 3w 31
! l ' 2fh
Beam supported at both ends, uniformly loaded
. ,Q .
— L | 2 2
sw _, | B 3IW | AbfRE oy | ABfRE
afn? 4bf 4bh 3w 31
" Beam supported at both ends, single unsymmetrical load
T . 2
' i 6Wac _ 6Wac _ 6—W;“ =f ate=1 bhofl _
% ? 121 bfl bh©l 6ac
CB” a) Beam supported at both ends, two symmetrical loads
¥ 1, any length .
I_l t-& ] 3Wa:b ‘?’_W/a:h ?;)%:f th:a %I:W
% : fh2 v bf 3w a
!

Deflection of Beam Uniformly Loaded for Part of Its Length.—In the following for-
mulas, lengths are in inches, weights in pounds. W = total load; L = total length between
supports; E = modulus of elasticity; 7= moment of inertia of beam section; a = fraction of
length of beam at each end, that is not loaded = b + L; and f = deflection.

f:

WL3
384EI(1-2a)

(5-24a? + 16a%)

The expression for maximum bending moment is: M, = %WL (1 + 2a).
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Table 2b. Round Solid Beams
Stress in Extreme
Style of Loading Diameter of Beam, d Fibers, f Beam Length, [ Total Load, W
and Support inch (mm) Ib/in2 (N/mm?) inch (mm) Ib (N)
Beam fixed at one end, loaded at the other
A
< t O 10.18! 3 3
A8IW _ d>f d°f
~ —_ = = =
7 | oR0A8IW s 1| Dmw 10.181
/N
, Beam fixed at one end, uniformly loaded
//
5.092wi _ 43 d3
= 5002wl _ 2 oy _&f - & -
3 7 =d d 5.092wW 5.0921
N 1——
O Beam supported at both ends, single load in middle
[ §~ l 2.546W1 _ , & B3 _
Aé Zg 3¢2'546 LOE d? / 2546W 25461
. I . f
Beam supported at both ends, uniformly loaded
I ' E-a ! I
1.273WI1 _ 3 3
J 1.273WI _ 3 = f _dL = _dL =
3 =d d 1.273wW 1.2731
[—— f
Beam supported at both ends, single unsymmetrical load
o
+ 10.18Wac _ d3tl
i ~ —_— = =1 =
L, > 5[20:18Wac _ T are 10.18ac
N
Beam supported at both ends, two symmetrical loads
% 5_7 5.002 1, any length s
.092Wa _ g
L i~ JB09Wa _ | S| 2L = w
(ié f 5.092w '
/

These formulas apply to simple beams resting on supports at the ends.

—b—»]

le—b—

/2274

!

L

If the formulas are used with metric SI units, W = total load in newtons; L = total
length between supports in millimeters; E = modulus of elasticity in newtons per
millimeter2; I = moment of inertia of beam section in millimeters?; a = fraction of
length of beam at each end, that is not loaded =b + L; and f = deflection in millimeters.

The bending moment

M

max

is in newton-millimeters (N - mm).

Note: A load due to the weight of a mass of M kilograms is Mg newtons, where g =
approximately 9.81 meters per second 2.
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Bending Stress Due to an Oblique Transverse Force.—The following illustration
shows a beam and a channel being subjected to a transverse force acting at an angle ¢ to the
center of gravity. To find the bending stress, the moments of inertia 7 around axes 3-3 and
4-4 are computed from the following equations: /3 = /,sin% + I,cos?p, and I, = I,c0s?0 +
1sin%g.

The computed bending stress f,, is then found from f, = M(;y— sing + })5 cosq)) where M
x y
is the bending moment due to force F.

Beams of Uniform Strength Throughout Their Length.—The bending moment in a
beam is generally not uniform throughout its length, but varies. Therefore, a beam of uni-
form cross-section which is made strong enough at its most strained section, will have an
excess of material at every other section. Sometimes it may be desirable to have the cross-
section uniform, but at other times the metal can be more advantageously distributed if the
beam is so designed that its cross-section varies from point to point, so that it is at every
point just great enough to take care of the bending stresses at that point. Tables 3a and 3b
are given showing beams in which the load is applied in different ways and which are sup-
ported by different methods, and the shape of the beam required for uniform strength is
indicated. It should be noted that the shape given is the theoretical shape required to resist
bending only. It is apparent that sufficient cross-section of beam must also be added either
at the points of support (in beams supported at both ends), or at the point of application of
the load (in beams loaded at one end), to take care of the vertical shear.

It should be noted that the theoretical shapes of the beams given in the two tables that fol-
low are based on the stated assumptions of uniformity of width or depth of cross-section,
and unless these are observed in the design, the theoretical outlines do not apply without
modifications. For example, in a cantilever with the load at one end, the outline is a parab-
ola only when the width of the beam is uniform. It is not correct to use a strictly parabolic
shape when the thickness is not uniform, as, for instance, when the beam is made of an I- or
T-section. In such cases, some modification may be necessary; but it is evident that what-
ever the shape adopted, the correct depth of the section can be obtained by an investigation
of the bending moment and the shearing load at a number of points, and then a line can be
drawn through the points thus ascertained, which will provide for a beam of practically
uniform strength whether the cross-section be of uniform width or not.
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Table 3a. Beams of Uniform Strength Throughout Their Length

Type of Beam Description Formula?
11
2 Y Load at one end. Width of beam uniform.
ey E—— Depth of beam decreasing towards loaded end. p = Sbh?
] Outline of beam-shape, parabola with vertex at 61
[/ S loaded end.
/
A P
; L Load at one end. Width of beam uniform.

i Depth of beam decreasing towards loaded end. Shh?
A | ——] Outline of beam, one-half of a parabola with P =—
a vertex at loaded end. Beam may be reversed so 6/
2 = ; IP that upper edge is parabolic.

/]
/
; N Load at one end. Depth of beam uniform.
4 Width of beam decreasing towards loaded end. p = Sbh?
/ Outline of beam triangular, with apex at loaded 61
/ end.
4=
7 P
; LQ 1 Beam of approximately uniform strength.
de——— 77—+ 2" | Load at one end. Width of beam uniform. Depth p = Sbh?
A 1 of beam decreasing towards loaded end, but not 61
< q tapering to a sharp point.
7 P
/]
7/,
A4 tsa
i Uniformly distributed load. Width of beam
Ne— [ —] uniform. Depth of beam decreasing towards p = Sbh?
7 \AAAARAAA| outer end. Outline of beam, right-angled trian- 3]
; - gle.
4 Y TOTAL
A LOAD=P
2}— Uniformly distributed load. Depth of beam
; uniform. Width of beam gradually decreasing Shh?
l towards outer end. Outline of beam is formed by P = —
TOTAL LOAD =P two parabolas which tangent each other at their 3/
f* \AAAARAAR] vertexes at the outer end of the beam.
YRE

2In the formulas, P =load in pounds; S = safe stress in pounds per square inch; and a, b, ¢, h, and [ are
in inches. If metric SI units are used, P is in newtons; S = safe stress in N/mm?; and a, b, ¢, h, and
[ are in millimeters.
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Table 3b. Beams of Uniform Strength Throughout Their Length
Type of Beam Description Formula?
Beam supported at both ends. Load concentrated
at any point. Depth of beam uniform. Width of Sbh2l
beam maximum at point of loading. Outline of P = =
beam, two triangles with apexes at points of sup- 6ac
port.
Beam supported at both ends. Load concentrated
at any point. Width of beam uniform. Depth of Sbh2l
beam maximum at point of loading. Outline of P =
beam is formed by two parabolas with their ver- 6ac
texes at points of support.
Beam supported at both ends. Load concentrated
in the middle. Depth of beam uniform. Width of 2Sbhh?
beam maximum at point of loading. Outline of P =
beam, two triangles with apexes at points of sup- 31
port.
7 2
5 t = Beam supported at both ends. Load concentrated
/ 7 | at center. Width of beam uniform. Depth of beam p = 2Sbh?
> . 1 _ | maximum at point of loading. Outline of beam, 3]
F'w two parabolas with vertices at points of support.
I P
Beam supported at both ends. Load uniformly A )
fe—— 1— |distributed. Depth of beam uniform. Width of _ 4Sbh
beam maximum at center. Outline of beam, two P 3]
= parabolas with vertexes at middle of beam.
ZAAAR222221%
TOTAL LOAD= P
/
1 &= 7
4 1~ | Beam supported at both ends. Load uniformly
4 ! “ | distributed. Width of beam uniform. Depth of p = 4Sbh?
beam maximum at center. Outline of beam one- 3]

TOTAL LOAD=P

half of an ellipse.

aFor details of English and metric Sl units used in the formulas, see footnote on page 271.
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Deflection as a Limiting Factor in Beam Design.—For some applications, a beam must
be stronger than required by the maximum load it is to support, in order to prevent exces-
sive deflection. Maximum allowable deflections vary widely for different classes of ser-
vice, so a general formula for determining them cannot be given. When exceptionally stiff
girders are required, one rule is to limit the deflection to 1 inch per 100 feet of span; hence,
if 1= length of span in inches, deflection =+ 1200. According to another formula, deflec-
tion limit =7+ 360 where beams are adjacent to materials like plaster which would be bro-
ken by excessive beam deflection. Some machine parts of the beam type must be very rigid
to maintain alignment under load. For example, the deflection of a punch press column
may be limited to 0.010 inch or less. These examples merely illustrate variations in prac-
tice. It is impracticable to give general formulas for determining the allowable deflection
in any specific application, because the allowable amount depends on the conditions gov-
erning each class of work.

Procedure in Designing for Deflection: Assume that a deflection equal to 7 + 1200 is to
be the limiting factor in selecting a wide-flange (W-shape) beam having a span length of
144 inches. Supports are at both ends and load at center is 15,000 pounds. Deflection y is to
be limited to 144 + 1200 = 0.12 inch. According to the formula on page 257 (Case 2), in
which W = load on beam in pounds, ! = length of span in inches, E = modulus of elasticity
of material, 7 = moment of inertia of cross section:

3 3 3
Deflection y = W= hence, I = WEE 15,000 x 144 = 268.1
48E1 48yE 48 x0.12 x 29,000,000

A structural wide-flange beam, see Sreel Wide-Flange Sections on page 2596, having a
depth of 12 inches and weighing 35 pounds per foot has a moment of inertia 7 of 285 and a
section modulus (Z or S) of 45.6. Checking now for maximum stress s (Case 2, page 257):

4z 4%46.0

Although deflection is the limiting factor in this case, the maximum stress is checked to
make sure that it is within the allowable limit. As the limiting deflection is decreased, for a
given load and length of span, the beam strength and rigidity must be increased, and, con-
sequently, the maximum stress is decreased. Thus, in the preceding example, if the maxi-
mum deflection is 0.08 inch instead of 0.12 inch, then the calculated value for the moment
of inertia 7 will be 402; hence a W 12 x 53 beam having an I value of 426 could be used
(nearest value above 402). The maximum stress then would be reduced to 7640 pounds per
square inch and the calculated deflection is 0.076 inch.

A similar example using metric SI units is as follows. Assume that a deflection equal
to [+ 1000 millimeters is to be the limiting factor in selecting a W-beam having a span
length of 5 meters. Supports are at both ends and the load at the center is 30 kilonew-
tons. Deflection y is to be limited to 5000 + 1000 = 5 millimeters. The formula on
page 257 (Case 2) is applied, and W = load on beam in newtons; / = length of span in
mm; E = modulus of elasticity (assume 200,000 N/mm?2 in this example); and I =
moment of inertia of cross-section in millimeters?. Thus,

. wi3

Deflection y = 18El
hence

I = wi3 _ 30,000 x 50003

48yE 48 x 5x 200,000

Although deflection is the limiting factor in this case, the maximum stress is

checked to make sure that it is within the allowable limit, using the formula from

page 257 (Case 2):

= 78,125,000 mm*
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wi
5 = —
47

The units of s are newtons per square millimeter; W is the load in newtons; / is the
length in mm; and Z = section modulus of the cross-section of the beam =17 - distance
in mm from neutral axis to extreme fiber.

Curved Beams.— The formula S = Mc/I used to compute stresses due to bending of beams
is based on the assumption that the beams are straight before any loads are applied. In
beams having initial curvature, however, the stresses may be considerably higher than pre-
dicted by the ordinary straight-beam formula because the effect of initial curvature is to
shift the neutral axis of a curved member in from the gravity axis toward the center of cur-
vature (the concave side of the beam). This shift in the position of the neutral axis causes an
increase in the stress on the concave side of the beam and decreases the stress at the outside
fibers.

Hooks, press frames, and other machine members which as a rule have a rather pro-
nounced initial curvature may have a maximum stress at the inside fibers of up to about 3%
times that predicted by the ordinary straight-beam formula.

Stress Correction Factors for Curved Beams: A simple method for determining the
maximum fiber stress due to bending of curved members consists of 1) calculating the
maximum stress using the straight-beam formula S = Mc¢/I; and; and 2) multiplying the
calculated stress by a stress correction factor. Table 4 on page 275 gives stress correction
factors for some of the common cross-sections and proportions used in the design of
curved members.

An example in the application of the method using English units of measurement is given
at the bottom of the table. A similar example using metric ST units is as follows: The
fiber stresses of a curved rectangular beam are calculated as 40 newtons per
millimeter?, using the straight beam formula, S = Mc/I. If the beam is 150 mm deep
and its radius of curvature is 300 mm, what are the true stresses? R/c = 300/75 = 4.
From Table 4 on page 275, the K factors corresponding to R/c = 4 are 1.20 and 0.85.
Thus, the inside fiber stress is 40 x 1.20 = 48 N/mm? = 48 megapascals; and the outside
fiber stress is 40 x 0.85 = 34 N/mm? = 34 megapascals.

Approximate Formula for Stress Correction Factor: The stress correction factors given
in Table 4 on page 275 were determined by Wilson and Quereau and published in the Uni-
versity of Illinois Engineering Experiment Station Circular No. 16, “A Simple Method of
Determining Stress in Curved Flexural Members.” In this same publication the authors
indicate that the following empirical formula may be used to calculate the value of the
stress correction factor for the inside fibers of sections not covered by the tabular data to
within 5 per cent accuracy except in triangular sections where up to 10 per cent deviation
may be expected. However, for most engineering calculations, this formula should prove
satisfactory for general use in determining the factor for the inside fibers.

K= 1.00+0.5-’—[ 1 +1}
bc2lR-c¢ R
(Use 1.05 instead of 0.5 in this formula for circular and elliptical sections.)
I=Moment of inertia of section about centroidal axis
b =maximum width of section

¢ =distance from centroidal axis to inside fiber, i.e., to the extreme fiber nearest
the center of curvature

R =radius of curvature of centroidal axis of beam
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Table 4. Values of Stress Correction Factor K for Various Curved Beam Sections

Factor K Factor K
Inside | Outside Inside | Outside
Section % | Fiber | Fiber yod Section % | Fiber | Fiber Yot
1.2 | 341 54 224R 1.2 | 3.63 .58 A418R
R— | 14| 240 | 60 [.151R 4l 3 14 | 254 | 63 | .299R
16 | 1.96 | .65 |.108R 2° 2! 16 | 2.14 67 | .229R
M1 18| 18 | .70 |.183R

20| 162 | 71 |069R | |
30| 1.33 | .79 |.030R |t
40 | 123 | 84 |owr | |

20 | 1.73 172 .149R
1.41 .79 .069R
1.29 .83 .040R

Pt 1

!
l
!
‘ 18| 175 | .68 |.084R
[

60| 114 | .89 |.0070R cl—!]60]| 118 | 8 |.018R

@ 80| 110 | 91 |.0039R ALR——J 80| 113 | 91 |.010R
100 | 1.08 | 93 |.0025R 100 | 1.10 | .92 |.0065R

12| 289 | 57 [.305% 12| 355 | 67 | .409R

14| 213 | 63 |.204R 3t 14| 248 | 72 | 292R

16| 179 | 67 |.149R —-{t 2‘L—4 16| 207 | 76 | 224R

a-c~] l 18| 163 | .70 |.112R t (| 18| 18 | 78 |.178R
% 20| 152 | 73 |.09%r | ¥ 20| 169 | 80 | .144R
// I | 30| 130 | 81 |[.041r | 4t 6‘\ 30| 138 | .86 |.067R
_’l 40| 120 | 8 |o021R | L T ! _{ 40| 1.26 | .89 | .038R

R 60| 112 | 90 |.0093R ™~ "l 60| 115 | 92 | .0188

80| 109 | 92 |.0052R R-l | 80| 110 | 94 | .0108

100 | 1.07 | 94 |.0033R 100 | 1.08 | .95 |.0065R

12 301 | 54 |.336R 12| 252 | 67 | .408R

14| 218 .60 .229R 14| 190 71 .285R

b-c-L_ | 16| 187 .65 168R tledt+t 16| 163 .75 .208R
[ 1.8 | 1.69 .68 128R :;1 |<_ ’i ';_—}
\ 3 3t
|

1.8 | 150 a7 .160R

T T 20| 158 | 71 |10 | & L 20| Lar |79 | a27R
b 2 30| 133 | 80 |os6r | 344U | 30| 123 | 86 | oser
1 J_ 40 | 123 | 84 |024R el 40 | 116 | .89 |.030R
60| 113 | .88 |O1IR t I:—R-. 60| 110 | .92 |.013R

R—| | 80| 110 | 91 |.0060R 80| 1.07 | .94 |.0076R

100 | 108 | .93 |.0039R 100 | 105 | .95 | .0048R
12 309 | 56 |.336R 12 328 | 58 | 269R
14| 225 | 62 |.220R 14| 231 | 64 | .182R

l 16 | 1.89 .68 134R

| 18| 1.70 71 .104R
20| 161 .73 102R I 2.0 | 157 .73 .083R
|

3.0 | 137 81 .046R

;}_J 40| 126 | .86 |.024R

3b—_j 1.6 | 1.91 66 | .168R
l‘7 c Tl 18| 1.73 70 |.128R

2b! 30| 131 81 | .038R
40 | 121 85 | .020R
6.0 | 1.17 91 |.011R 6.0 | 1.13 90 | .0087R
8.0 | 113 94 | .0060R _,l 8.0 | 1.10 92 | .0049R
100 | 1.11 95 | .0039R 100 | 1.07 93 | .0031R

12| 314 .52 .352R ¢ 1.2 | 263 .68 .399R
14| 229 .54 .243R pﬁ‘“_" | 14| 197 .73 .280R

Sij || 16| 193 | 62 |179r |2 16| 166 | .76 | .205R
|| 18| 174 | 65 |38k | TPEZZZ) || 18| 151 | 78 | .150R
fil 20| 161 | 68 |110r | 4tpgt 20| 143 | 80 | .12R
4b’ 30| 134 | .76 |.050R I t IZt’ t “I 30| 123 | 86 | .058R
40 | 124 | 82 |.028R 40| 115 | 89 |.031R
‘L 'l 60| 115 | 87 |.012R 60| 1.09 | .92 |.014R
R

A
| 80| 112 | 91 |.0060R tof Jee __] 80 | 107 | .94 |.0076R
100 | 110 | .93 |.0039R 2 =R 100 | 1.06 95 | .0048R

—»Ic‘|<-—

12| 3.26 44 .361R

3 14| 239 | 50 |.251R
5 b 16 | 199 54 | 186R | Example: The fiber stresses of a curved rectangular beam

| are calculated as 5000 psi using the straight beam for-
¢ | ;g 1;2 23 ﬂgl[g mula, S = Mc/I. If the beam is 8 inches deep and its radius
—T' 3'0 1'37 '70 .052R of curvature is 12 inch_es, what are the true str_esses? Rlc=
b ‘ 4'0 1'27 '75 .029R 12/4 = 3. The factors in the table corresponding to R/c =
' : : ' 3 are 0.81 and 1.30. Outside fiber stress = 5000 x 0.81 =
J_ | g 8 1.16 82 013R | 4050 psi; inside fiber stress = 5000 x 1.30 = 6500 psi.
R

. 1.12 .86 .0060R
10.0 | 1.09 .88 .0039R

2y, is the distance from the centroidal axis to the neutral axis of curved beams subjected to pure
bending and is measured from the centroidal axis toward the center of curvature.
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Example: The accompanying diagram shows the dimensions of a clamp frame of rectan-
gular cross-section. Determine the maximum stress at points A and B due to a clamping
force of 1000 pounds.

1 1,000 LBS

L 1,000 LBS

The cross-sectional area = 2 x 4 = 8 square inches; the bending moment at section AB is
1000 (24 + 6 + 2) = 32,000 inch pounds; the distance from the center of gravity of the sec-
tionat AB to point B is ¢ = 2 inches; and using the formula on page 235, the moment of iner-
tia of the section is 2 x (4)3+ 12 = 10.667 inches®.

Using the straight-beam formula, page 274, the stress at points A and B due to the bend-
ing moment is:

I 10.667

The stress at A is a compressive stress of 6000 psi and that at B is a tensile stress of 6000
psi.

These values must be corrected to account for the curvature effect. In Table 4 on
page 275 for R/c = (6 + 2)/(2) = 4, the value of K is found to be 1.20 and 0.85 for points B
and A respectively. Thus, the actual stress due to bending at point B is 1.20 x 6000 = 7200
psi in tension and the stress at point A is 0.85 x 6000 = 5100 psi in compression.

To these stresses at A and B must be added, algebraically, the direct stress at section AB
due to the 1000-pound clamping force. The direct stress on section AB will be a tensile
stress equal to the clamping force divided by the section area. Thus 1000 + 8 = 125 psi in
tension.

The maximum unit stress at A is, therefore, 5100 — 125 = 4975 psi in compression and the
maximum unit stress at B is 7200 + 125 = 7325 psi in tension.

The following is a similar calculation using metric SI units, assuming that it is
required to determine the maximum stress at points A and B due to clamping force of
4 kilonewtons acting on the frame. The frame cross-section is 50 by 100 millimeters,
the radius R = 200 mm, and the length of the straight portions is 600 mm. Thus, the
cross-sectional area = 50 x 100 = 5000 mm?; the bending moment at AB is 4000(600 +
200) = 3,200,000 newton-millimeters; the distance from the center of gravity of the
section at A B to point B is ¢ = 50 mm; and the moment of inertia of the section is, using
the formula on page 235, 50 x (100)3 /12 = 4,170,000 mm*.

Using the straight-beam formula, page 274, the stress at points A and B due to the
bending moment is:

_ Mc _ 3,200,000 x 50
I 4,170,000
= 38.4 newtons per millimeter? = 38.4 megapascals

The stress at A is a compressive stress of 38.4 N/mm2, while that at B is a tensile
stress of 38.4 N/mm?2. These values must be corrected to account for the curvature
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effect. From the table on page 275, the K factors are 1.20 and 0.85 for points A and B
respectively, derived from R/c = 200/50 = 4. Thus, the actual stress due to bending at
point B is 1.20 x 38.4 = 46.1 N/mm? (46.1 megapascals) in tension; and the stress at
point A is 0.85 x 38.4 = 32.6 N/mm? (32.6 megapascals) in compression.

To these stresses at A and B must be added, algebraically, the direct stress at section
AB due to the 4 kKN clamping force. The direct stress on section AB will be a tensile
stress equal to the clamping force divided by the section area. Thus, 4000/5000 = 0.8
N/mm 2. The maximum unit stress at A is, therefore, 32.61 — 0.8 = 31.8 N/mm 2 (31.8
megapascals) in compression, and the maximum unit stress at B is 46.1 + 0.8 = 46.9
N/mm 2 (46.9 megapascals) in tension.

Size of Rail Necessary to Carry a Given Load.—The following formulas may be
employed for determining the size of rail and wheel suitable for carrying a given load. Let,
A =the width of the head of the rail in inches; B = width of the tread of the rail in inches; C
=the wheel-load in pounds; D = the diameter of the wheel in inches.

Then the width of the tread of the rail in inches is found from the formula:

B = _._g..__ (]_)
1250D
The width A of the head equals B + %inch. The diameter D of the smallest track wheel that

will safely carry the load is found from the formula:

- _C
AXK
in which K =600 to 800 for steel castings; K = 300 to 400 for cast iron.

As an example, assume that the wheel-load is 10,000 pounds; the diameter of the wheel
is 20 inches; and the material is cast steel. Determine the size of rail necessary to carry this
load. From Formula (1):

(2)

_ 10,000
1250 x 20

The width of the rail required equals 0.4 + % inch = 1.025 inch. Determine also whether a
wheel 20 inches in diameter is large enough to safely carry the load. From Formula (2):

_ 10,000
1.025 x 600

This is the smallest diameter of track wheel that will safely carry the load; hence a 20-
inch wheel is ample.

American Railway Engineering Association Formulas.—The American Railway
Engineering Association recommends for safe operation of steel cylinders rolling on steel
plates that the allowable load p in pounds per inch of length of the cylinder should not
exceed the value calculated from the formula

= 0.4 inch

= 16%, inches
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p = 525 ég’é)oo 600d for diameterd less than 25 inches

This formula is based on steel having a yield strength, y.s., of 32,000 pounds per square
inch. For roller or wheel diameters of up to 25 inches, the Hertz stress (contact stress)
resulting from the calculated load p will be approximately 76,000 pounds per square inch.

For a 10-inch diameter roller the safe load per inch of roller length is

_ 32,000 —13,000
20,000

Therefore, to support a 10,000 pound load the roller or wheel would need to be
10,000/5700 = 1.75 inches wide.

600 x 10 = 5700 Ibs per inch of length

Stresses Produced by Shocks

Stresses in Beams Produced by Shocks.—Any elastic structure subjected to a shock will
deflect until the product of the average resistance, developed by the deflection, and the dis-
tance through which it has been overcome, has reached a value equal to the energy of the
shock. It follows that for a given shock, the average resisting stresses are inversely propor-
tional to the deflection. If the structure were perfectly rigid, the deflection would be zero,
and the stress infinite. The effect of a shock is, therefore, to a great extent dependent upon
the elastic property (the springiness) of the structure subjected to the impact.

The energy of abody in motion, such as a falling body, may be spent in each of four ways:
1) In deforming the body struck as a whole.
2) In deforming the falling body as a whole.

3) In partial deformation of both bodies on the surface of contact (most of this energy will
be transformed into heat).

4) Part of the energy will be taken up by the supports, if these are not perfectly rigid and
inelastic.

How much energy is spent in the last three ways it is usually difficult to determine, and
for this reason it is safest to figure as if the whole amount were spent as in Case 1. If areli-
able judgment is possible as to what percentage of the energy is spent in other ways than the
first, a corresponding fraction of the total energy can be assumed as developing stresses in
the body subjected to shocks.

One investigation into the stresses produced by shocks led to the following conclusions:

1) A suddenly applied load will produce the same deflection, and, therefore, the same
stress as a static load twice as great; and 2) The unit stress p (see formulas in Table 1,
"Stresses Produced in Beams by Shocks") for a given load producing a shock, varies
directly as the square root of the modulus of elasticity E, and inversely as the square root of
the length L of the beam and the area of the section.

Thus, for instance, if the sectional area of a beam is increased by four times, the unit
stress will diminish only by half. This result is entirely different from those produced by
static loads where the stress would vary inversely with the area, and within certain limits be
practically independent of the modulus of elasticity.

In Table 1, the expression for the approximate value of p, which is applicable whenever
the deflection of the beam is small as compared with the total height / through which the
body producing the shock is dropped, is always the same for beams supported at both ends
and subjected to shock at any point between the supports. In the formulas all dimensions
are in inches and weights in pounds.
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Table 1. Stresses Produced in Beams by Shocks

Method of Support and
Point Struck by Falling | Fiber (Unit) Stress p produced by Weight Q
Body Dropped Through a Distance i Approximate Value of p

Supported at
both ends; struck QaL 1+ 1+ %hEl) p=a 60hE
in center. N QL3 N LI
Fixed at one
end; struck at the p = %(1 + 1+ %—El) p=a
other. I QL3
Fixed at both
ends; struck in p = QaL(l + 1+ 384hEI) p=a 60h
center. 81 N QL3 LI

I=moment of inertia of section; a = distance of extreme fiber from neutral axis; L = length of
beam; E = modulus of elasticity.

(o)
=

F <E

If metric SI units are used, p is in newtons per square millimeter; Q is in newtons; E
=modulus of elasticity in N/mm?2; I = moment of inertia of section in millimeters?*; and
h, a, and L in millimeters. Nofe: If Q is given in Kkilograms, the value referred to is
mass. The weight Q of a mass M kilograms is Mg newtons, where g = approximately
9.81 meters per second?.

Examples of How Formulas for Stresses Produced by Shocks are Derived: The general
formula from which specific formulas for shock stresses in beams, springs, and other
machine and structural members are derived is:

p = ps(1+ l1+27h) 1)

In this formula, p = stress in pounds per square inch due to shock caused by impact of a
moving load; p, = stress in pounds per square inch resulting when moving load is applied
statically; i = distance in inches that load falls before striking beam, spring, or other mem-
ber; y = deflection, in inches, resulting from static load.

As an example of how Formula (1) may be used to obtain a formula for a specific appli-
cation, suppose that the load W shown applied to the beam in Case 2 on page 257 were
dropped on the beam from a height of 4 inches instead of being gradually applied (static
loading). The maximum stress p, due to load W for Case 2 is given as Wi +4 Z and the max-

imum deflection y is given as Wi® + 48 EI. Substituting these values in Formula (1),

Wl( 2h ) _ wz( 96hEI)
1+/1 e ) = gy |4 2008 2
4z WiB+48EFY 4Z wi3 @)

If in Formula (2) the letter Q is used in place of W and if Z, the section modulus, is
replaced by its equivalent, 7 + distance a from neutral axis to extreme fiber of beam, then
Formula (2) becomes the first formula given in the accompanying Table 1, Stresses Pro-
duced in Beams by Shocks

Stresses in Helical Springs Produced by Shocks.—A load suddenly applied on a spring
will produce the same deflection, and, therefore, also the same unit stress, as a static load
twice as great. When the load drops from a height 4, the stresses are as given in the accom-
panying Table 2. The approximate values are applicable when the deflection is small as
compared with the height . The formulas show that the fiber stress for a given shock will
be greater in a spring made from a square bar than in one made from a round bar, if the
diameter of coil be the same and the side of the square bar equals the diameter of the round
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bar. It is, therefore, more economical to use round stock for springs which must withstand
shocks, due to the fact that the deflection for the same fiber stress for a square bar spring is
smaller than that for a round bar spring, the ratio being as 4 to 5. The round bar spring is
therefore capable of storing more energy than a square bar spring for the same stress.

Table 2. Stresses Produced in Springs by Shocks

Form of Bar from Fiber (Unit) Stress f Produced by
Which Spring is Weight O Dropped a Height £ Approximate Value
Made on a Helical Spring of f

4
Round f= 8—@(1 v 1+ %) £= 127 |06
nd® 40D%n Dd?n

4
Square f= 9Qi)(l + 1+ %) f=134 QhG
443 VT 0.9n0D3n N Dd2n

G = modulus of elasticity for torsion; d = diameter or side of bar; D = mean diameter of spring; n
= number of coils in spring.

Shocks from Bodies in Motion.—The formulas given can be applied, in general, to
shocks from bodies in motion. A body of weight W moving horizontally with the velocity
of v feet per second, has a stored-up energy:

2 2
E, = L V—ng— foot-pounds or QZZ)—V— inch-pounds

N

This expression may be substituted for Q% in the tables in the equations for unit stresses
containing this quantity, and the stresses produced by the energy of the moving body
thereby determined.

The formulas in the tables give the maximum value of the stresses, providing the designer
with some definitive guidance even where there may be justification for assuming that
only a part of the energy of the shock is taken up by the member under stress.

The formulas can also be applied using metric SI units. The stored-up energy of a
body of mass M kilograms moving horizontally with the velocity of v meters per sec-
ond is:

Ey = Y%Mpv?newton-meters

This expression may be substituted for Q& in the appropriate equations in the
tables. For calculation in millimeters, Oh = 1000 E; newton-millimeters.

Fatigue Stresses.— So-called "fatigue ruptures™ occur in parts that are subjected to con-
tinually repeated shocks or stresses of small magnitude. Machine parts that are subjected to
continual stresses in varying directions, or to repeated shocks, even if of comparatively
small magnitude, may fail ultimately if designed, from a mere knowledge of the behavior
of the material under a steady stress, such as is imposed upon it by ordinary tensile stress
testing machines. Examinations of numerous cases of machine parts, broken under actual
working conditions, indicate that at least 80 per cent of these ruptures are caused by fatigue
stresses. Most fatigue ruptures are caused by bending stresses, and frequently by a revolv-
ing bending stress. Hence, to test materials for this class of stress, the tests should be made
to stress the material in a manner similar to that in which it will be stressed under actual
working conditions. See Fatigue Properties on page 201 for more on this topic.
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COLUMNS

Strength of Columns or Struts

Structural members which are subject to compression may be so long in proportion to the
diameter or lateral dimensions that failure may be the result 1) of both compression and
bending; and 2) of bending or buckling to such a degree that compression stress may be
ignored.

In such cases, the slenderness ratio is important. This ratio equals the length  of the col-
umn in inches or millimeters, according to the unit system in use, divided by the least
radius of gyration r of the cross-section. Various formulas have been used for designing
columns which are too slender to be designed for compression only.

Rankine or Gordon Formula.—This formula is generally applied when slenderness
ratios range between 20 and 100, and sometimes for ratios up to 120. The notation, in
English and metric Sl units of measurement, is given on page 283.

S Ib N

= ultimate load, — or ——
2 .2 2

1+ K(!) in®  mm
p

p—

Factor K may be established by tests with a given material and end condition, and for the
probable range of //r. If determined by calculation, K = S/Cr2E. Factor C equals 1 for either
rounded or pivoted column ends, 4 for fixed ends, and 1 to 4 for square flat ends. The fac-
tors 25,000, 12,500, etc., in the Rankine formulas, arranged as on page 283, equal 1/K, and
have been used extensively.

Straight-line Formula.—This general type of formula is often used in designing com-
pression members for buildings, bridges, or similar structural work. It is convenient espe-
cially in designing a number of columns that are made of the same material but vary in size,
assuming that factor B is known. This factor is determined by tests.

p= Sy—BG) = ultimate load, Ibs. per sg. in.

S, equals yield point, Ibs. per square inch, and factor B ranges from 50 to 100. Safe unit
stress = p + factor of safety.

Formulas of American Railway Engineering Association.— The formulas that follow
apply to structural steel having an ultimate strength of 60,000 to 72,000 pounds per square
inch.

For building columns having I/r ratios not greater than 120, allowable unit stress =
17,000 — 0.485 [2/r2. For columns having I/r ratios greater than 120, allowable unit stress

18,000

allowable unit stress = —————
1+ 12/18,0002

For bridge compression members centrally loaded and with values of I/r not greater than
140:

Allowable unit stress, riveted ends = 15,000 -

Tl

~
N

Allowable unit stress, pin ends = 15,000 —

Wik Ml
N
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Euler Formula.—This formula is for columns that are so slender that bending or buckling
action predominates and compressive stresses are not taken into account.

Crn?IE
12

= total ultimate load, in pounds or newtons

The notation, in English and metric SI units of measurement, is given in the table Rank-
ine's and Euler's Formulas for Columns on page 283. Factors C for different end condi-
tions are included in the Euler formulas at the bottom of the table. According to a series of
experiments, Euler formulas should be used if the values of I/r exceed the following ratios:
Structural steel and flat ends, 195; hinged ends, 155; round ends, 120; cast iron with flat
ends, 120; hinged ends, 100; round ends, 75; oak with flat ends, 130. The critical slender-
ness ratio, which marks the dividing line between the shorter columns and those slender
enough to warrant using the Euler formula, depends upon the column material and its end
conditions. If the Euler formula is applied when the slenderness ratio is too small, the cal-
culated ultimate strength will exceed the yield point of the material and, obviously, will be
incorrect.

Eccentrically Loaded Columns.—In the application of the column formulas previously
referred to, it is assumed that the action of the load coincides with the axis of the column. If
the load is offset relative to the column axis, the column is said to be eccentrically loaded,
and its strength is then calculated by using a modification of the Rankine formula, the
quantity cz/r? being added to the denominator, as shown in the table on the next page. This
modified formula is applicable to columns having a slenderness ratio varying from 20 or
30to about 100.

Machine Elements Subjected to Compressive Loads.—As in structural compression
members, an unbraced machine member that is relatively slender (i.e., its length is more
than, say, six times the least dimension perpendicular to its longitudinal axis) is usually
designed as a column, because failure due to overloading (assuming a compressive load
centrally applied in an axial direction) may occur by buckling or acombination of buckling
and compression rather than by direct compression alone. In the design of unbraced steel
machine “columns” which are to carry compressive loads applied along their longitudinal
axes, two formulas are in general use:

S Ar?
(Euler) Pcr = _y__r_ 1)
0
2
(3.B. = ( _QJ _ S
Johnson) P, =AS |1 . (2 where 0 = % ©)

In these formulas, P,, = critical load in pounds that would result in failure of the column;
A = cross-sectional area, square inches; S, = yield point of material, pounds per square
inch; r=least radius of gyration of cross-section, inches; E = modulus of elasticity, pounds
per square inch; = column length, inches; and »n = coefficient for end conditions. For both
ends fixed, n = 4; for one end fixed, one end free, n = 0.25; for one end fixed and the other
end free but guided, n = 2; for round or pinned ends, free but guided, » = 1; and for flat ends,
n=1to4. Itshould be noted that these values of  represent ideal conditions that are seldom
attained in practice; for example, for both ends fixed, a value of n = 3 to 3.5 may be more
realisticthann =4.

If metric SI units are used in these formulas, P,, = critical load in newtons that
would result in failure of the column; A = cross-sectional area, square millimeters; Sy
= yield point of the material, newtons per square mm; r = least radius of gyration of
cross-section, mm; £ = modulus of elasticity, newtons per square mm; / = column
length, mm; and n = a coefficient for end conditions. The coefficients given are valid
for calculations in metric units.
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Rankine's and Euler's Formulas for Columns

Symbol Quantity English Unit Metric SI Units
p Ultimate unit load Lbs./sq. in. Newtons/sg. mm.
P Total ultimate load Pounds Newtons
S Ultimate compressive strength of material Lbs./sq. in. Newtons/sq. mm.
l Length of column or strut Inches Millimeters
r Least radius of gyration Inches Millimeters
I Least moment of inertia Inches* Millimeters?
2 Moment of inertia/area of section Inches? Millimeters?
E Modulus of elasticity of material Lbs./sqg. in. Newtons/sq. mm.
c Distance from neutral axis of cross-section to
side under compression Inches Millimeters
z Distance from axis of load to axis coinciding
with center of gravity of cross-section Inches Millimeters
Rankine's Formulas
Both Ends of One End Fixed and
Material Column Fixed One End Rounded Both Ends Rounded
b= S p = S p = S
2 2 2
Steel 1+ l 1+ [ + [
25,0002 12,5002 625072
D= S p= S p = S
Cast Iron 12 12 12
500072 250072 12502
p= S p= S p = S
Wrought Iron 14 12 14 2 12
35,0002 17,5002 875012
p S p S D= S
Timber + 12 N 12 12
300072 150072 75072
Formulas Modified for Eccentrically Loaded Columns
Both Ends of One End Fixed and
Material Column Fixed One End Rounded Both Ends Rounded
p= S p= S p= S
2 2 2
Steel 1+ 1 + €2 1+ 1L + 2 142 ycz
25,00072  r2 12,50072 r2 625072 2

For materials other than steel, such as cast iron, use the Rankine formulas given in the upper table
and add to the denominator the quantity cz/r2

Euler's Formula

s for Slender Columns

Both Ends of One End Fixed and Both Ends One End Fixed and
Column Fixed One End Rounded Rounded One End Free
P = M P = M = ﬂ = @

12 12 12 472

Allowable Working Loads for Columns: To find the total allowable working load for a given sec-
tion, divide the total ultimate load P (or p x area), as found by the appropriate formula above, by a
suitable factor of safety.
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Factor of Safety for Machine Columns: When the conditions of loading and the physical
qualities of the material used are accurately known, a factor of safety as low as 1.25 is
sometimes used when minimum weight is important. Usually, however, a factor of safety
of 2to 2.5 is applied for steady loads. The factor of safety represents the ratio of the critical
load P,, to the working load.

Application of Euler and Johnson Formulas: To determine whether the Euler or
Johnson formula is applicable in any particular case, it is necessary to determine the value
of the quantity Q + . If O + 2 is greater than 2, then the Euler Formula (1) should be used;
if O + r2 is less than 2, then the J. B. Johnson formula is applicable. Most compression
members in machine design are in the range of proportions covered by the Johnson for-
mula. For this reason a good procedure is to design machine elements on the basis of the
Johnson formula and then as a check calculate O + 2 to determine whether the Johnson for-
mula applies or the Euler formula should have been used.

Example 1, Compression Member Design: A rectangular machine member 24 inches
long and %x 1 inch in cross-section is to carry a compressive load of 4000 pounds along its

axis. What is the factor of safety for this load if the material is machinery steel having a
yield point of 40,000 pounds per square inch, the load is steady, and each end of the rod has
a ball connection so that n = 1?

From Formula (3)

40,000 x 24 x 24
1x 3.1416 x 3.1416 x 30,000,000

(The values 40,000 and 30,000,000 were obtained from the table Strength Data for Iron
and Steel on page 432.)

0 = = 0.0778

The radius of gyration r for a rectangular section (page 235) is 0.289 x the dimension in
the direction of bending. In columns, bending is most apt to occur in the direction in which
the section is the weakest, the %-inch dimension in this example. Hence, least radius of

gyration r=0.289 x % =0.145 inch.

Q _ 0.0778
r2  (0.145)2

which is more than 2 so that the Euler formula will be used.

= 3.70

_ s,Ar% 40,000 % x 1
cr 0 3.70
5400 pounds so that the factor of safety is 5400 + 4000 = 1.35

P

Example 2, Compression Member Design: In the preceding example, the column formu-
las were used to check the adequacy of a column of known dimensions. The more usual
problem involves determining what the dimensions should be to resist a specified load. For
example,:

A 24-inch long bar of rectangular cross-section with width w twice its depth d is to carry
a load of 4000 pounds. What must the width and depth be if a factor of safety of 1.35 is to
be used?

First determine the critical load P,

P . = working load x factor of safety

cr

= 4000 x 1.35 = 5400 pounds
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Next determine Q which, as in Example 1, will be 0.0778.

Assume Formula (2) applies:
= — 2
P, = Asy(l .

w X d X 40,000(1 -

242 x 40,000(1 - (191395)
.

5400

0.0778)

452

5400  _ dg(l _ 0.01945)
40,000 x 2 r2

As mentioned in Example 1 the least radius of gyration r of a rectangle is equal to 0.289
times the least dimension, d, in this case. Therefore, substituting for d the value »+ 0.289,

5400 _( r )2(1 0.01945)
- 5 _0.01945

20000x2 _ \0.28 2
5400 x 0.289 x 0.289 _
= 12-0.0194
40,000 x 2 r®— 001945
0.005638 = 12 —0.01945
2 = 0.0251

Checking to determine if Q + 2 is greater or less than 2,
Q _ 00778 _ 54
2 0.0251

therefore Formula (1) should have been used to determine »and dimensions w and d. Using
Formula (1),

2
40,000><2><( r) 2

T

2 2
5400 = 40.000x2d2x r2 _ 0.289
0 0.0778
L4 - 5400%0.0778 % 0.289x 0.289 _ 1 1004386
40,000 x 2
0.145 .

d = 219 - 950 inch
0.289 inc

and w = 2d =1 inch as in the previous example.

American Institute of Steel Construction.—For main or secondary compression mem-
bers with //r ratios up to 120, safe unit stress = 17,000 — 0.485/2/r2. For columns and brac-
ing or other secondary members with //r ratios above 120,

Safe unit stress, psi = 18000 for bracing and secondary members. For main

1+12/18,000/2
18000 (1_6 Uy

members, safe unit stress, psi = —————
1+ 12/18,00072 20

Pipe Columns: Allowable concentric loads for steel pipe columns based on the above
formulas are given in the table on page 286.
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Allowable Concentric Loads for Steel Pipe Columns

STANDARD STEEL PIPE
Nominal Diameter, Inches 12 10 8 6 5 4 3% 3
Wall Thickness, Inch| 0.375 | 0.365 | 0.322 | 0.280 | 0.258 | 0.237 | 0.226 | 0.216
Weight per Foot, Pounds | 49.56 40.48 28.55 18.97 14.62 10.79 9.11 7.58
Effective Length (KL), Feet? Allowable Concentric Loads in Thousands of Pounds
6 303 246 171 110 83 59 48 38
7 301 243 168 108 81 57 46 36
8 299 241 166 106 78 54 44 34
9 296 238 163 103 76 52 41 31
10 293 235 161 101 73 49 38 28
11 291 232 158 98 71 46 35 25
12 288 229 155 95 68 43 32 22
13 285 226 152 92 65 40 29 19
14 282 223 149 89 61 36 25 16
15 278 220 145 86 58 33 22 14
16 275 216 142 82 55 29 19 12
17 272 213 138 79 51 26 17 11
18 268 209 135 75 47 23 15 10
19 265 205 131 71 43 21 14 9
20 261 201 127 67 39 19 12
22 254 193 119 59 32 15 10
24 246 185 111 51 27 13
25 242 180 106 47 25 12
26 238 176 102 43 23
EXTRA STRONG STEEL PIPE
Nominal Diameter, Inches 12 10 8 6 5 4 3Y 3
Wall Thickness, Inch| 0.500 | 0.500 | 0.500 | 0.432 | 0.375 | 0.337 | 0.318 | 0.300
Weight per Foot, Pounds | 65.42 | 54.74 | 4339 | 2857 | 20.78 14.98 1250 | 10.25
Effective Length (KL), Feet? Allowable Concentric Loads in Thousands of Pounds
6 400 332 259 166 118 81 66 52
7 397 328 255 162 114 78 63 48
8 394 325 251 159 111 75 59 45
9 390 321 247 155 107 71 55 41
10 387 318 243 151 103 67 51 37
11 383 314 239 146 99 63 47 33
12 379 309 234 142 95 59 43 28
13 375 305 229 137 91 54 38 24
14 371 301 224 132 86 49 33 21
15 367 296 219 127 81 44 29 18
16 363 291 214 122 76 39 25 16
18 353 281 203 111 65 31 20 12
19 349 276 197 105 59 28 18 11
20 344 271 191 99 54 25 16
21 337 265 185 92 48 22 14
22 334 260 179 86 44 21
24 323 248 166 73 37 17
26 312 236 152 62 32
28 301 224 137 54 27

aWith respect to radius of gyration. The effective length (KL) is the actual unbraced length, L, in feet,
multiplied by the effective length factor (K) which is dependent upon the restraint at the ends of the
unbraced length and the means available to resist lateral movements. K may be determined by refer-
ring to the last portion of this table.
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Allowable Concentric Loads for Steel Pipe Columns (Continued)

DOUBLE-EXTRA STRONG STEEL PIPE

Nominal Diameter, Inches 8 6 5 4 3
Wall Thickness, Inch 0.875 0.864 0.750 0.674 0.600
Weight per Foot, Pounds 72.42 53.16 38.55 27.54 18.58
Effective Length (KL), Feet? Allowable Concentric Loads in Thousands of Pounds
6 431 306 216 147 91
7 424 299 209 140 84
8 417 292 202 133 77
9 410 284 195 126 69
10 403 275 187 118 60
11 395 266 178 109 51
12 387 257 170 100 43
13 378 247 160 91 37
14 369 237 151 81 32
15 360 227 141 70 28
16 351 216 130 62 24
17 341 205 119 55 22
18 331 193 108 49
19 321 181 97 44
20 310 168 87 40
22 288 142 72 33
24 264 119 61
26 240 102 52
28 213 88 44

EFFECTIVE LENGTH FACTORS (K) FOR VARIOUS COLUMN CONFIGURATIONS

(®) (b) (©) (d) (e) ®
(}: :%]
Buckled shape of column is shown i )
by dashed line / !
/ !
!
Il
Theoretical K value 0.5 1.0 2.0 2.0
Recommended design value when
ideal conditions are approximated 0.65 0.80 12 1.0 210 20
e Rotation fixed and translation fixed
%7 Rotation free and translation fixed
End condition code
Z2 Rotation fixed and translation free
? Rotation free and translation free

Load tables are given for 36 ksi yield stress steel. No load values are given below the heavy hori-
zontal lines, because the Ki/r ratios (where [ is the actual unbraced length in inches and r is the gov-
erning radius of gyration in inches) would exceed 200.

Data from “Manual of Steel Construction,” 8th ed., 1980, with permission of the American Insti-
tute of Steel Construction.
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PLATES, SHELLS, AND CYLINDERS

Flat Stayed Surfaces.—Large flat areas are often held against pressure by stays distrib-
uted at regular intervals over the surface. In boiler work, these stays are usually screwed
into the plate and the projecting end riveted over to insure steam tightness. The U.S. Board
of Supervising Inspectors and the American Boiler Makers Association rules give the fol-
lowing formula for flat stayed surfaces:

p = Cxt?
SZ
inwhich P =pressure in pounds per square inch

C =aconstant, which equals
112 for plates % inch and under

120, for plates over % inch thick
140, for plates with stays having a nut and bolt on the inside and outside
160, for plates with stays having washers of at least one-half the thickness of
the plate, and with a diameter at least one-half of the greatest pitch
¢ =thickness of plate in 16ths of an inch (thickness = %4, 1= 7)
S =greatest pitch of stays in inches

Strength and Deflection of Flat Plates.—Generally, the formulas used to determine
stresses and deflections in flat plates are based on certain assumptions that can be closely
approximated in practice. These assumptions are:

1) the thickness of the plate is not greater than one-quarter the least width of the plate;

2) the greatest deflection when the plate is loaded is less than one-half the plate thickness;

3) the maximum tensile stress resulting from the load does not exceed the elastic limit of

the material; and
4) all loads are perpendicular to the plane of the plate.

Plates of ductile materials fail when the maximum stress resulting from deflection under
load exceeds the yield strength; for brittle materials, failure occurs when the maximum
stress reaches the ultimate tensile strength of the material involved.

Square and Rectangular Flat Plates.—The formulas that follow give the maximum
stress and deflection of flat steel plates supported in various ways and subjected to the
loading indicated. These formulas are based upon a modulus of elasticity for steel of
30,000,000 pounds per square inch and a value of Poisson's ratio of 0.3. If the formulas for
maximum stress, S, are applied without modification to other materials such as cast iron,
aluminum, and brass for which the range of Poisson's ratio is about 0.26 to 0.34, the maxi-
mum stress calculations will be in error by not more than about 3 per cent. The deflection
formulas may also be applied to materials other than steel by substituting in these formulas
the appropriate value for E, the modulus of elasticity of the material (see pages 432 and
513). The deflections thus obtained will not be in error by more than about 3 per cent.

In the stress and deflection formulas that follow,
p =uniformly distributed load acting on plate, pounds per square inch
W =total load on plate, pounds; W = p x area of plate

L =distance between supports (length of plate), inches. For rectangular plates, L =
long side, I = short side

t =thickness of plate, inches
S =maximum tensile stress in plate, pounds per square inch
d =maximum deflection of plate, inches

E =modulus of elasticity in tension. £ = 30,000,000 pounds per square inch for
steel
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If metric SI units are used in the formulas, then,
W =total load on plate, newtons
L =distance between supports (length of plate), millimeters. For rectangular
plates, L =long side, / = short side

t =thickness of plate, millimeters

S =maximum tensile stress in plate, newtons per mm squared

d =maximum deflection of plate, mm

E =modulus of elasticity, newtons per mm squared

a) Square flat plate supported at top and bottom of all four edges and a uniformly distrib-
uted load over the surface of the plate.

2
_ 0.292) 14 M g = 0.0443WL

b) Square flat plate supported at the bottom only of all four edges and a uniformly distrib-
uted load over the surface of the plate.

S

@

2
S = @’ @) g = Q0443WLS
t Efd
c) Square flat plate with all edges firmly fixed and a uniformly distributed load over the
surface of the plate.

(4)

2
S = 0.3§W 5) g = 0.0138WL

d) Square flat plate with all edges firmly fixed and a uniform load over small circular area

at the center. In Equations (7) and (9), r, = radius of area to which load is applied. If ry <

1.7t,use rywhere r, = ,/1.6ry% + 12— 0.675¢ .

_0.62wW (L _ 0.0568WL2
= _t2 lo . 2r0) @) d = —Et3

e) Square flat plate with all edges supported above and below, or below only, and a con-
centrated load at the center. (See Item d), above, for definition of ry).

2
o= o.ezw[log (L) 0.577] o ;= 01266 WL 10)
12 A2r Ef

) Rectangular plate with all edges supported at top and bottom and a uniformly distrib-
uted load over the surface of the plate.

(6)

N ®)

g = 0.75W 1) J = 0142w 12)
L 12 L, 221
(ks 1615) £l + 22
l L2 I

g) Rectangular plate with all edges fixed and a uniformly distributed load over the sur-
face of the plate.

G- __05W 13) g = _ 00284W 14

tZ(E N 0.62315) Etg(é 4 10561
l L5 3 L4




290 PLATES, SHELLS, AND CYLINDERS

Circular Flat Plates.— In the following formulas, R = radius of plate to supporting edge
in inches; W =total load in pounds; and other symbols are the same as used for square and
rectangular plates.

If metric SI units are used, R = radius of plate to supporting edge in millimeters, and
the values of other symbols are the same as those used for square and rectangular
plates.

a) Edge supported around the circumference and a uniformly distributed load over the
surface of the plate.

s = 039 (15) g = Q221WR?
12 Er3
b) Edge fixed around circumference and a uniformly distributed load over the surface of
the plate.

(16)

g = 0.24W (17) 4 = 0.0543 WR?
12 Etd
¢) Edge supported around the circumference and a concentrated load at the center.

(18)

0.48W R 12 _ 0.55WR?
S = 1+13lo —0.0185—} 19 d = LRXWRT
2 [ 90,3251 ) ® £ (20)
d) Edge fixed around circumference and a concentrated load at the center.
0.62W R 12 _ 0.22WR?2
S = lo +0.0264—] 21 d = 222 WR 22
%555, gl @& e (22)

Strength of Cylinders Subjected to Internal Pressure.—In designing a cylinder to
withstand internal pressure, the choice of formula to be used dependson 1) the kind of
material of which the cylinder is made (whether brittle or ductile); 2) the construction of
the cylinder ends (whether open or closed); and 3) whether the cylinder is classed as a
thin- or a thick-walled cylinder.

Acylinder is considered to be thin-walled when the ratio of wall thickness to inside diam-
eteris 0.1 or less and thick-walled when this ratio is greater than 0.1. Materials such as cast
iron, hard steel, cast aluminum are considered to be brittle materials; low-carbon steel,
brass, bronze, etc. are considered to be ductile.

In the formulas that follow, p = internal pressure, pounds per square inch; D = inside
diameter of cylinder, inches; ¢ = wall thickness of cylinder, inches; p = Poisson’'s ratio, =
0.3 for steel, 0.26 for cast iron, 0.34 for aluminum and brass; and S = allowable tensile
stress, pounds per square inch.

Metric SI units can be used in Formulas (23), (25), (26), and (27), where p = internal
pressure in newtons per square millimeter; D = inside diameter of cylinder, millime-
ters; ¢ = wall thickness, mm; [ = Poisson's ratio, = 0.3 for steel, 0.26 for cast iron, and
0.34 for aluminum and brass; and S = allowable tensile stress, N/mm?2. For the use of
metric SI units in Formula (24), see below.

Thin-walled Cylinders: t = % (23)

For low-pressure cylinders of cast iron such as are used for certain engine and press
applications, a formula in common use is

= Dp 24
t 2206 0.3 (24)
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This formula is based on allowable stress of 1250 pounds per square inch and will give a
wall thickness 0.3 inch greater than Formula (23) to allow for variations in metal thickness
that may result from the casting process.

If metric SI units are used in Formula (24), f = cylinder wall thickness in millime-
ters; D = inside diameter of cylinder, mm; and the allowable stress is in newtons per
square millimeter. The value of 0.3 inches additional wall thickness is 7.62 mm, and
the next highest number in preferred metric basic sizes is 8 mm.

Thick-walled Cylinders of Brittle Material, Ends Open or Closed: Lamé's equation is
used when cylinders of this type are subjected to internal pressure.

- %’(E-Q (25)

The table Ratio of Outside Radius to Inside Radius, Thick Cylinders on page 292 is for
convenience in calculating the dimensions of cylinders under high internal pressure with-
out the use of Formula (25).

Example, Use of the Table: Assume that a cylinder of 10 inches inside diameter is to
withstand a pressure of 2500 pounds per square inch; the material is cast iron and the allow-
able stress is 6000 pounds per square inch. To solve the problem, locate the allowable
stress per square inch in the left-hand column of the table and the working pressure at the
top of the columns. Then find the ratio between the outside and inside radii in the body of
the table. In this example, the ratio is 1.558, and hence the outside diameter of the cylinder
should be 10 x 1.558, or about 15% inches. The thickness of the cylinder wall will therefore
be (15.58 — 10)/2 =2.79 inches.

Unless very high-grade material is used and sound castings assured, cast iron should not
be used for pressures exceeding 2000 pounds psi (13.75 N/mm?). It is well to leave more
metal in the bottom of a hydraulic cylinder than is indicated by the results of calculations,
because a hole of some size must be cored in the bottom to permit the entrance of a boring
bar when finishing the cylinder, and when this hole is subsequently tapped and plugged it
often gives trouble if there is too little thickness.

For steady or gradually applied stresses, the maximum allowable fiber stress S may be
assumed to be from 3500 to 4000 psi (24-27 N/mm?2)for cast iron; from 6000 to 7000 psi
(41-48 N/mm?) for brass; and 12,000 psi (82 N/mm?) for steel castings. For intermittent
stresses, such as in cylinders for steam and hydraulic work, 3000 psi (20 N/mm2) for cast
iron; 5000 psi (34 N/mm?) for brass; and 10,000 psi (69 N/mm2) for steel castings, is ordi-
narily used. These values give ample factors of safety.

Note: In metric SI units, 1000 pounds per square inch equals 6.895 newtons per
square millimeter. Also, one newtons per square millimeter equals one megapascal (1
N/mm? =1 MPa).

Thick-walled Cylinders of Ductile Material, Closed Ends: Clavarino's equation is used:

[ = 15)[ /S—S—J’_(ll—i—i—zdi))])ﬁ—l} (26)

Thick-walled Cylinders of Ductile Material, Open Ends: Birnie's equation is used:

Spherical Shells Subjected to Internal Pressure.—Let:
D =internal diameter of shell in inches
p =internal pressure in pounds per square inch
S =safe tensile stress per square inch
t =thickness of metal in the shell, ininches. Then, t = pD + 48 (28)
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Ratio of Outside Radius to Inside Radius, Thick Cylinders

Allowable Working Pressure in Cylinder, Pounds per Square Inch
Stress per Sq.
In. of Section | 1000 | 1500 | 2000 | 2500 | 3000 | 3500 | 4000 | 4500 | 5000 | 5500 | 6000 | 6500 | 7000

2000 1.732

2500 1.528 | 2.000

3000 1414 | 1.732 | 2.236

3500 1.342 | 1.581 | 1.915 | 2.449

4000 1.291 | 1.483 | 1.732 | 2.082 | 2.646

4500 1254 | 1414 | 1.612 | 1.871 | 2.236 | 2.828

5000 1.225 | 1.363 | 1.528 | 1.732 | 2.000 | 2.380 | 3.000

5500 1.202 | 1.323 | 1.464 | 1.633 | 1.844 | 2.121 | 2.517 | 3.162

6000 1183 | 1.291 | 1.414 | 1.558 | 1.732 | 1.949 | 2.236 | 2.646 | 3.317

6500 1.265 | 1.374 | 1.500 | 1.648 | 1.826 | 2.049 | 2.345 | 2.769 | 3.464

7000 1.243 | 1.342 | 1453 | 1.581 | 1.732 | 1.915 | 2.145 | 2.449 | 2.887 | 3.606

7500 1225 | 1.314 | 1.414 | 1528 | 1.658 | 1.813 | 2.000 | 2.236 | 2.550 | 3.000 | 3.742

8000 1.209 | 1.291 | 1.382 | 1.483 | 1.599 | 1.732 | 1.890 | 2.082 | 2.324 | 2.646 | 3.109 | 3.873

8500 1.195 | 1.271 | 1.354 | 1.446 | 1.549 | 1.667 | 1.803 | 1.964 | 2.160 | 2.408 | 2.739 | 3.215

9000 1183 | 1.254 | 1.330 | 1.414 | 1.508 | 1.612 | 1.732 | 1.871 | 2.035 | 2.236 | 2.490 | 2.828

9500 1.238 | 1.309 | 1.387 | 1.472 | 1.567 | 1.673 | 1.795 | 1.936 | 2.104 | 2.309 | 2.569
10,000 1.225 | 1.291 | 1.363 | 1.441 | 1.528 | 1.624 | 1.732 | 1.856 | 2.000 | 2.171 | 2.380
10,500 1213 | 1.275 | 1.342 | 1414 | 1.494 | 1581 | 1.679 | 1.789 | 1.915 | 2.062 | 2.236
11,000 1.202 | 1.260 | 1.323 | 1.390 | 1.464 | 1.544 | 1.633 | 1.732 | 1.844 | 1.972 | 2.121
11,500 1.192 | 1.247 | 1.306 | 1.369 | 1.438 | 1.512 | 1.593 | 1.683 | 1.784 | 1.897 | 2.028
12,000 1.183 | 1.235 | 1.291 | 1.350 | 1.414 | 1.483 | 1.558 | 1.641 | 1.732 | 1.834 | 1.949
12,500 1.225 | 1.277 | 1.333 | 1.393 | 1.458 | 1.528 | 1.604 | 1.687 | 1.780 | 1.883
13,000 1.215 | 1.265 | 1.318 | 1.374 | 1.435 | 1.500 | 1.571 | 1.648 | 1.732 | 1.826
13,500 1.206 | 1.254 | 1.304 | 1.357 | 1.414 | 1.475 | 1.541 | 1.612 | 1.690 | 1.776
14,000 1.198 | 1.243 | 1.291 | 1.342 | 1.395 | 1.453 | 1.515 | 1.581 | 1.653 | 1.732
14,500 1190 | 1.234 | 1.279 | 1.327 | 1.378 | 1.433 | 1.491 | 1.553 | 1.620 | 1.693
15,000 1.183 | 1.225 | 1.268 | 1.314 | 1.363 | 1.414 | 1.469 | 1.528 | 1.590 | 1.658
16,000 1.171 | 1.209 | 1.249 | 1.291 | 1.335 | 1.382 | 1.431 | 1.483 | 1.539 | 1.599

Formula (28) also applies to hemi-spherical shells, such as the hemi-spherical head of a
cylindrical container subjected to internal pressure, etc.

If metric SI units are used, then:
D =internal diameter of shell in millimeters
p =internal pressure in newtons per square millimeter

S =safe tensile stress in newtons per square millimeter

t =thickness of metal in the shell, in millimeters. Use Formula (28).

Meters can be used in the formula in place of millimeters, providing the treatment
is consistent throughout.
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Example: Find the thickness of metal required in the hemi-spherical end of a cylindrical
vessel, 2 feet in diameter, subjected to an internal pressure of 500 pounds per square inch.
The material is mild steel and a tensile stress of 10,000 pounds per square inch is allowable.

_ 500x2x12
4 x 10,000

Example: A similar example using metric SI units is as follows: find the thickness of
metal required in the hemi-spherical end of a cylindrical vessel, 750 mm in diameter,
subjected to an internal pressure of 3 newtons/mm?. The material is mild steel and a
tensile stress of 70 newtons/mm? is allowable.

¢ = 3 x 750
4x70

If the radius of curvature of the domed head of a boiler or container subjected to internal
pressure is made equal to the diameter of the boiler, the thickness of the cylindrical shell
and of the spherical head should be made the same. For example, if a boiler is 3 feet in
diameter, the radius of curvature of its head should also be 3 feet, if material of the same
thickness is to be used and the stresses are to be equal in both the head and cylindrical por-
tion.

Collapsing Pressure of Cylinders and Tubes Subjected to External Pressures.—The
following formulas may be used for finding the collapsing pressures of lap-welded Besse-
mer steel tubes:

= 0.3 inch

= 8.04 mm

p= 86,67011)-1386 (29)
¢ 3
P = 50,210,000(5) (30)

inwhich P = collapsing pressure in pounds per square inch; D = outside diameter of tube or
cylinder in inches; ¢ = thickness of wall in inches.

Formula (29) is for values of P greater than 580 pounds per square inch, and Formula (30)
is for values of P less than 580 pounds per square inch. These formulas are substantially
correct for all lengths of pipe greater than six diameters between transverse joints that tend
to hold the pipe to a circular form. The pressure P found is the actual collapsing pressure,
and a suitable factor of safety must be used. Ordinarily, a factor of safety of 5 is sufficient.
In cases where there are repeated fluctuations of the pressure, vibration, shocks and other
stresses, a factor of safety of from 6 to 12 should be used.

If metric SI units are used the formulas are:

P = 597.61% _9.556 31)
P = 346 200( ! )3 32
- 346.200(L (32)

where P = collapsing pressure in newtons per square millimeter; D = outside diame-
ter of tube or cylinder in millimeters; and ¢ = thickness of wall in millimeters. For-
mula (31) is for values of P greater than 4 N/mm?, and Formula (32) is for values of P
less than 4 N/mm?2.

The table Tubes Subjected to External Pressure is based upon the requirements of the
Steam Boat Inspection Service of the Department of Commerce and Labor and gives the
permissible working pressures and corresponding minimum wall thickness for long, plain,
lap-welded and seamless steel flues subjected to external pressure only. The table thick-
nesses have been calculated from the formula:
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_ [(Fxp)+1386]D
86,670

in which D = outside diameter of flue or tube in inches; ¢ = thickness of wall in inches; p =
working pressure in pounds per square inch; F' = factor of safety. The formulais applicable
to working pressures greater than 100 pounds per square inch, to outside diameters from 7
to 18 inches, and to temperatures less than 650°F.

The preceding Formulas (29) and (30) were determined by Prof. R. T. Stewart, Dean of
the Mechanical Engineering Department of the University of Pittsburgh, in a series of
experiments carried out at the plant of the National Tube Co., McKeesport, Pa.

The apparent fiber stress under which the different tubes failed varied from about 7000
pounds per square inch for the relatively thinnest to 35,000 pounds per square inch for the
relatively thickest walls. The average yield point of the material tested was 37,000 pounds
and the tensile strength 58,000 pounds per square inch, so it is evident that the strength of a
tube subjected to external fluid collapsing pressure is not dependent alone upon the elastic
limit or ultimate strength of the material from which it is made.

Tubes Subjected to External Pressure

Outside Working Pressure in Pounds per Square Inch
D'a{‘:ﬁ)‘:r of ™ 100 | 120 | 140 | 160 | 180 | 200 | 220

Inche’s Thickness of Tube in Inches. Safety Factor, 5
7 0.152 0.160 0.168 0.177 0.185 0.193 0.201
8 0.174 0.183 0.193 0.202 0.211 0.220 0.229
9 0.196 0.206 0.217 0.227 0.237 0.248 0.258
10 0.218 0.229 0.241 0.252 0.264 0.275 0.287
11 0.239 0.252 0.265 0.277 0.290 0.303 0.316
12 0.261 0.275 0.289 0.303 0.317 0.330 0.344
13 0.283 0.298 0.313 0.328 0.343 0.358 0.373
14 0.301 0.320 0.337 0.353 0.369 0.385 0.402
15 0.323 0.343 0.361 0.378 0.396 0.413 0.430
16 0.344 0.366 0.385 0.404 0.422 0.440 0.459
16 0.366 0.389 0.409 0.429 0.448 0.468 0.488
18 0.387 0.412 0.433 0.454 0.475 0.496 0.516

Dimensions and Maximum Allowable Pressure
of Tubes Subjected to External Pressure

Thess | _Max Thess | _Max Thewe || Max.
Outside of Zleg\fvuerg Outside of Zlec?\?vuerg Outside of Xifj\‘j’vlgg
Dia., Material, i ' Dia., Material, si ’ Dia., Material, si ’
Inches Inches P Inches Inches P Inches Inches p
2 0.095 427 3 0.109 327 4 0.134 303
2% 0.095 380 3% 0.120 332 4% 0.134 238
2% 0.109 392 3% 0.120 308 5 0.148 235
2%, 0.109 356 3% 0.120 282 6 0.165 199
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SHAFTS
Shaft Calculations
Torsional Strength of Shafting.—In the formulas that follow,
o =angular deflection of shaft in degrees
¢ =distance from center of gravity to extreme fiber
D =diameter of shaft in inches
G =torsional modulus of elasticity = 11,500,000 pounds per square inch for steel
J =polar moment of inertia of shaft cross-section (see table)
I =length of shaftin inches
N =angular velocity of shaft in revolutions per minute
P =power transmitted in horsepower
S, =allowable torsional shearing stress in pounds per square inch
T =torsional or twisting moment in inch-pounds
Z, =polar section modulus (see table page 245)

The allowable twisting moment for a shaft of any cross-section such as circular, square,
etc., is:

T =8xZ, D
For a shaft delivering P horsepower at N revolutions per minute the twisting moment T
being transmitted is:

_ 63,000P
N

The twisting moment T as determined by Formula (2) should be less than the value deter-
mined by using Formula (1) if the maximum allowable stress S, is not to be exceeded.

T 2

The diameter of a solid circular shaft required to transmit a given torque T'is:

5.1T 321,000P
D =, 3a D = 42 3b
5 (33) or 3N, (3b)

The allowable stresses that are generally used in practice are: 4000 pounds per square
inch for main power-transmitting shafts; 6000 pounds per square inch for lineshafts carry-
ing pulleys; and 8500 pounds per square inch for small, short shafts, countershafts, etc.
Using these allowable stresses, the horsepower P transmitted by a shaft of diameter D, or
the diameter D of a shaft to transmit a given horsepower P may be determined from the fol-
lowing formulas:

For main power-transmitting shafts:

p=L0N (4a) or D = 3/— (4b)

3
D°N _ [535P

p =<4 or D = %/7_ 5b
£3E (5a) N (5b)
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For small, short shafts:

3
DN _ ,|38P
P = or D = 3/[— 6b
38 (6a) f N (6b)

Shafts that are subjected to shocks, such as sudden starting and stopping, should be given
a greater factor of safety resulting in the use of lower allowable stresses than those just
mentioned.

Example:What should be the diameter of a lineshaft to transmit 10 horsepower if the
shaft is to make 150 revolutions per minute? Using Formula (5b),

D = 3/% = 1.53 or, say, 1% inches

Example:\What horsepower would be transmitted by a short shaft, 2 inches in diameter,
carrying two pulleys close to the bearings, if the shaft makes 300 revolutions per minute?
Using Formula (6a),

3
P = % = 63 horsepower

Torsional Strength of Shafting, Calculations in Metric SI Units.—The allowable
twisting moment for a shaft of any cross-section such as circular, square, etc., can be
calculated from:

T =S,xZ, @)
where T = torsional or twisting moment in newton-millimeters; S; = allowable tor-
sional shearing stress in newtons per square millimeter; and Z, = polar section mod-
ulus in millimeters3.

For a shaft delivering power of P kilowatts at /V revolutions per minute, the twisting
moment 7 being transmitted is:

6 6
T = 9.55x10 P ) or T = 10°P (8a)
N o
where T is in newton-millimeters, and ® = angular velocity in radians per second.

The diameter D of a solid circular shaft required to transmit a given torque 7'is:

51T 6
D = q (9a) or D=3 48.7x10 P (9b)
\ S NS,
5.1%x10°P
or D =522 x01 (9¢)
(ON

where D is in millimeters; 7 is in newton-millimeters; P is power in kilowatts; NV =rev-
olutions per minute; S; = allowable torsional shearing stress in newtons per square
millimeter, and ® = angular velocity in radians per second.

If 28 newtons/mm? and 59 newtons/mm? are taken as the generally allowed stresses
for main power-transmitting shafts and small short shafts, respectively, then using
these allowable stresses, the power P transmitted by a shaft of diameter D, or the
diameter D of a shaft to transmit a given power P may be determined from the follow-
ing formulas:
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For main power-transmitting shafts:

3 / 6
P = &6 (10a) or p = 3L77x10 P (10b)
1.77 x 10 N

For small, short shafts:

3 } 6
P = _._.P._._ZY_._6 (11a) or D=3 0.83x10 P (11b)
0.83 x10 N

where P is in kilowatts, D is in millimeters, and N = revolutions per minute.

Example: What should be the diameter of a power-transmitting shaft to transmit
150 kW at 500 rpm?

6
D =3 M’ = 81 millimeters
A 500

Example: What power would a short shaft, 50 millimeters in diameter, transmit at
400 rpm?

50° x 400

0.83 x 10°

Torsional Deflection of Circular Shafts.— Shafting must often be proportioned not only
to provide the strength required to transmit a given torque, but also to prevent torsional
deflection (twisting) through a greater angle than has been found satisfactory for a given
type of service.

Forasolid circular shaft the torsional deflection in degrees is given by:
58471
p'G
Example: Find the torsional deflection for a solid steel shaft 4 inches in diameter and 48
inches long, subjected to a twisting moment of 24,000 inch-pounds. By Formula (12),
o = 58:1 x24,000x48 _ 93 degree
4" % 11,500,000

Formula (12) can be used with metric SI units, where o, = angular deflection of shaft
in degrees; T = torsional moment in newton-millimeters; / = length of shaft in millime-
ters; D = diameter of shaft in millimeters; and G = torsional modulus of elasticity in
newtons per square millimeter.

P = = 60 kilowatts

o = (12)

Example: Find the torsional deflection of a solid steel shaft, 100 mm in diameter and
1300 mm long, subjected to a twisting moment of 3 x 10 ¢ newton-millimeters. The
torsional modulus of elasticity is 80,000 newtons/mm 2. By Formula (12)

_ 5843 x10°x 1300

100* x 80,000
The diameter of a shaft that is to have a maximum torsional deflection o is given by:

| Tl
D = 49x4[/— 13
4Goc (13)

Formula (13) can be used with metric SI units, where D = diameter of shaft in milli-
meters; 7' = torsional moment in newton-millimeters; / = length of shaft in millime-

o

= (0.285 degree
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ters; G = torsional modulus of elasticity in newtons per square millimeter; and o =
angular deflection of shaft in degrees.

According to some authorities, the allowable twist in steel transmission shafting should
not exceed 0.08 degree per foot length of the shaft. The diameter D of a shaft that will per-
mit a maximum angular deflection of 0.08 degree per foot of length for a given torque T or
for a given horsepower P can be determined from the formulas:

D = 0.294/T (14a) or D = 4,6xd§ (14b)

Using metric SI units and assuming an allowable twist in steel transmission shafting
of 0.26 degree per meter length, Formulas (14a) and (14b) become:

D = 2,.26‘1/7w or D = 125.7X4X/;%

where D = diameter of shaft in millimeters; T = torsional moment in newton-millime-
ters; P = power in kilowatts; and N = revolutions per minute.

Another rule that has been generally used in mill practice limits the deflection to 1 degree
inalength equal to 20 times the shaft diameter. For a given torque or horsepower, the diam-
eter of a shaft having this maximum deflection is given by:

D=013T  (150) or D = 4.owﬁ (15b)

Example: Find the diameter of a steel lineshaft to transmit 10 horsepower at 150 revolu-
tions per minute with a torsional deflection not exceeding 0.08 degree per foot of length.

By Formula (14b),
_ 10 _ .
D = 4.6 x4/— = 2.35 inches
150

This diameter is larger than that obtained for the same horsepower and rpm in the exam-
ple given for Formula (5b) in which the diameter was calculated for strength consider-
ations only. The usual procedure in the design of shafting which is to have a specified
maximum angular deflection is to compute the diameter first by means of Formulas (13),
(14a), (14b), (15a), or (15b) and then by means of Formulas (3a), (3b), (4b), (5b), or (6b),
using the larger of the two diameters thus found.

Linear Deflection of Shafting.—For steel line shafting, it is considered good practice to
limit the linear deflection to a maximum of 0.010 inch per foot of length. The maximum
distance in feet between bearings, for average conditions, in order to avoid excessive linear
deflection, is determined by the formulas:

L= 8.95%;2 for shafting subject to no bending action except its own weight

L=523/D? for shafting subject to bending action of pulleys, etc.

in which D = diameter of shaft in inches and L = maximum distance between bearings in
feet. Pulleys should be placed as close to the bearings as possible.

In general, shafting up to three inches in diameter is almost always made from cold-rolled
steel. This shafting is true and straight and needs no turning, but if keyways are cut in the
shaft, it must usually be straightened afterwards, as the cutting of the keyways relieves the
tension on the surface of the shaft produced by the cold-rolling process. Sizes of shafting
from three to five inches in diameter may be either cold-rolled or turned, more frequently
the latter, and all larger sizes of shafting must be turned because cold-rolled shafting is not
available in diameters larger than 5 inches.



SHAFTS 299

Diameters of Finished Shafting (former American Standard ASA B17.1)

Diameters, Inches Minus Diameters, Inches Minus Diameters, Inches
Transmis- Machinery Toler- Transmis- Machinery Toler- Transmis- Machinery Minus
sion Shafting ances, sion Shafting ances sion Shafting Tolerances,
Shafting Inches? Shafting Inches? Shafting Inches®

Y 0.002 1% 0.003 3% 0.004
%s 0.002 1% 0.003 3% 0.004
% 0.002 1%, 1% 0.003 3% 4 0.004
Y 0.002 2 0.003 4% 0.005
% 0.002 2Ys 0.004 4% 4% 0.005
e 0.002 2% 0.004 43, 0.005
% 0.002 2% 2% 0.004 4%, 5 0.005

B s 0.002 2% 0.004 5% 0.005
1 0.002 2% 0.004 5% 5% 0.005
1% 0.003 2% 0.004 5% 0.005
1% 0.003 2% 2% 0.004 5% 6 0.005

1%, 1% 0.003 2Y 0.004 6% 0.006
1%, 0.003 2% 0.004 6% 6% 0.006
1% 0.003 2%, 0.004 6% 0.006
1% 0.003 2% 2% 0.004 7 7 0.006

1% 1% 0.003 3 0.004 714 0.006
1% 0.003 3% 0.004 A A 0.006
1% 0.003 3% 0.004 7% 0.006
1% 0.003 3% 0.004 8 8 0.006

1% 1% 0.003 3 3% 0.004
% 0.003 3% 0.004

@ Note:—These tolerances are negative or minus and represent the maximum allowable variation
below the exact nominal size. For instance the maximum diameter of the 1%%4 inch shaft is 1.938 inch
and its minimum allowable diameter is 1.935 inch. Stock lengths of finished transmission shafting
shall be: 16, 20 and 24 feet.

Design of Transmission Shafting.—The following guidelines for the design of shafting
for transmitting a given amount of power under various conditions of loading are based
upon formulas given in the former American Standard ASA B17c¢ Code for the Design of
Transmission Shafting. These formulas are based on the maximum-shear theory of failure
which assumes that the elastic limit of a ductile ferrous material in shear is practically one-
half its elastic limit in tension. This theory agrees, very nearly, with the results of tests on
ductile materials and has gained wide acceptance in practice.

The formulas given apply in all shaft designs including shafts for special machinery. The
limitation of these formulas is that they provide only for the strength of shafting and are not
concerned with the torsional or lineal deformations which may, in shafts used in machine
design, be the controlling factor (see Torsional Deflection of Circular Shafts on page 297
and Linear Deflection of Shafting on page 298 for deflection considerations). In the formu-
las that follow,

B=3/1+(1-K") (see Table )

D =outside diameter of shaft in inches
D, =inside diameter of a hollow shaft in inches
K, =shock and fatigue factor to be applied in every case to the computed bending
moment (see Table 1)
K, =combined shock and fatigue factor to be applied in every case to the computed
torsional moment (see Table 1)
M =maximum bending moment in inch-pounds
N =revolutions per minute
P =maximum power to be transmitted by the shaft in horsepower
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p, =maximum allowable shearing stress under combined loading conditions in
pounds per square inch (see Table 2)

S =maximum allowable flexural (bending) stress, in either tension or compres-
sion in pounds per square inch (see Table 2)

S, =maximum allowable torsional shearing stress in pounds per square inch (see
Table 2)
T =maximum torsional moment in inch-pounds
V =maximum transverse shearing load in pounds
For shafts subjected to pure torsional loads only,

51K, T 321,000K.P
D = B3 ! (16a) or D = B3——————  (16h)
S, SN

For stationary shafts subjected to bending only,

102K M
D = B3—S'" 17)

For shafts subjected to combined torsion and bending,

D =B f/% j(KmM)2 +(K,T) (18a)

63 000K,
Bx f/ilA/(K M’ P) (18b)

Formulas (16a) to (18b) may be used for solid shafts or for hollow shafts. For solid shafts
the factor B is equal to 1, whereas for hollow shafts the value of B depends on the value of
Kwhich, inturn, depends on the ratio of the inside diameter of the shaft to the outside diam-
eter (D, + D = K). Table 3 gives values of B corresponding to various values of .

For short solid shafts subjected only to heavy transverse shear, the diameter of shaft
required is:

or

D

1.7V
D= |=—2 19
S (19)

N

Formulas (16a), (17), (18a) and (19), can be used unchanged with metric SI units.
Formula (16b) becomes:

48.7K, P
D = B3 and Formula (18b) becomes:
SN
5.1 2 (9-5519
= B3==
D Bth A/(KmM) + ~

Throughout the formulas, D = outside diameter of shaft in millimeters; 7T = maxi-
mum torsional moment in newton-millimeters; S, = maximum allowable torsional
shearing stress in newtons per millimeter squared (see Table 2); P = maximum power
to be transmitted in milliwatts; V = revolutions per minute; M = maximum bending
moment in newton-millimeters; S = maximum allowable flexural (bending) stress,
either in tension or compression in newtons per millimeter squared (see Table 2); p, =
maximum allowable shearing stress under combined loading conditions in newtons
per millimeter squared; and V = maximum transverse shearing load in kilograms.
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The factors K,,, K,, and B are unchanged, and D, = the inside diameter of a hollow
shaft in millimeters.

Table 1. Recommended Values of the Combined Shock and Fatigue
Factors for Various Types of Load

Stationary Shafts Rotating Shafts
Type of Load K, K, K., K,
Gradually applied and steady 1.0 1.0 15 1.0
Suddenly applied, minor shocks only 1.5-2.0 1.5-2.0 1.5-2.0 1.0-15
Suddenly applied, heavy shocks 2.0-3.0 1.5-3.0

Table 2. Recommended Maximum Allowable Working Stresses
for Shafts Under Various Types of Load

Type of Load
Combined
Material Simple Bending | Pure Torsion Stress
“Commercial Steel” shafting without keyways S =16,000 S, =8000 p, = 8000
“Commercial Steel” shafting with keyways §=12,000 S, = 6000 p, = 6000
Steel purchased under definite physical specs. (See note 2) (See note ?) (See note b)

2§ =60 per cent of the elastic limit in tension but not more than 36 per cent of the ultimate tensile
strength.

bS_and p, = 30 per cent of the elastic limit in tension but not more than 18 per cent of the ultimate
tensile strength.

If the values in the Table are converted to metric SI units, note that 1000 pounds per square
inch = 6.895 newtons per square millimeter.

Table 3. Values of the Factor B Corresponding to Various
Values of K for Hollow Shafts

K=-—== 095 | 090 | 0.85 | 0.80 | 0.75 | 0.70 | 0.65 | 0.60 | 0.55 | 0.50

B:3/1+(1—K4) 175143 | 128 | 1.19 | 1.14 | 1.10 | 1.07 | 1.05 | 1.03 | 1.02

For solid shafts, B = 1 because K =0, as follows: B = 3A/1+(1-K4) =31+(1-0 =1

Effect of Keyways on Shaft Strength.— Keyways cut into a shaft reduce its load carry-
ing ability, particularly when impact loads or stress reversals are involved. To ensure an
adequate factor of safety in the design of a shaft with standard keyway (width, one-quarter,
and depth, one-eighth of shaft diameter), the former Code for Transmission Shafting tenta-
tively recommended that shafts with keyways be designed on the basis of a solid circular
shaft using not more than 75 per cent of the working stress recommended for the solid
shaft. See also page 2460.

Formula for Shafts of Brittle Materials.— The preceding formulas are applicable to
ductile materials and are based on the maximum-shear theory of failure which assumes
that the elastic limit of a ductile material in shear is one-half its elastic limit in tension.

Brittle materials are generally stronger in shear than in tension; therefore, the maximum-
shear theory is not applicable. The maximum-normal-stress theory of failure is now gener-
ally accepted for the design of shafts made from brittle materials. A material may be con-
sidered to be brittle if its elongation in a 2-inch gage length is less than 5 per cent. Materials
such as cast iron, hardened tool steel, hard bronze, etc., conform to this rule. The diameter
of a shaft made of a brittle material may be determined from the following formula which
is based on the maximum-normal-stress theory of failure:

D= Bi/%[(KmMH JE M)+ (KD
t
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where S, is the maximum allowable tensile stress in pounds per square inch and the other
quantities are as previously defined.

The formula can be used unchanged with metric SI units, where D = outside diame-
ter of shaft in millimeters; S, = the maximum allowable tensile stress in newtons per
millimeter squared; M = maximum bending moment in newton-millimeters; and 7' =
maximum torsional moment in newton-millimeters. The factors K,,, K,, and B are
unchanged.

Critical Speed of Rotating Shafts.— At certain speeds, a rotating shaft will become
dynamically unstable and the resulting vibrations and deflections can result in damage not
only to the shaft but to the machine of which it is a part. The speeds at which such dynamic
instability occurs are called the critical speeds of the shaft. On page 198 are given formulas
for the critical speeds of shafts subject to various conditions of loading and support. A shaft
may be safely operated either above or below its critical speed, good practice indicating
that the operating speed be at least 20 per cent above or below the critical.

The formulas commonly used to determine critical speeds are sufficiently accurate for
general purposes. However, the torque applied to a shaft has an important effect on its crit-
ical speed. Investigations have shown that the critical speeds of a uniform shaft are
decreased as the applied torque is increased, and that there exist critical torques which will
reduce the corresponding critical speed of the shaft to zero. A detailed analysis of the
effects of applied torques on critical speeds may be found in a paper. “Critical Speeds of
Uniform Shafts under Axial Torque,” by Golomb and Rosenberg presented at the First
U.S. National Congress of Applied Mechanics in 1951.

Shaft Couplings.— A shaft coupling is a device for fastening together the ends of two
shafts, so that the rotary motion of one causes rotary motion of the other. One of the most
simple and common forms of coupling is the flange coupling Figs. 1aand 1b. It consists of
two flanged sleeves or hubs, each of which is keyed to the end of one of the two shafts to be
connected. The sleeves are held together and prevented from rotating relative to each other
by bolts through the flanges as indicated.

Flange Coupling

Flexible Couplings: Flexible couplings are the most common mechanical means of com-
pensating for unavoidable errors in alignment of shafts and shafting. When correctly
applied, they are highly efficient for joining lengths of shafting without causing loss of
power from bearing friction due to misalignment, and for use in direct motor drives for all
kinds of machinery. Flexible couplings are not intended to be used for connecting a driven
shaft and a driving shaft that are purposely placed in different planes or at an angle but are
intended simply to overcome slight unavoidable errors in alignment that develop in ser-
vice. There is a wide variety of flexible coupling designs; most of them consist essentially
of two flanged members or hubs, fastened to the shafts and connected by some yielding
arrangement. Balance is an important factor in coupling selection or design; it is not suffi-
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cient that the coupling be perfectly balanced when installed, but it must remain in balance
after wear has taken place.

Comparison of Hollow and Solid Shafting with Same Outside Diameter.—Table 4
that follows gives the per cent decrease in strength and weight of a hollow shaft relative to
the strength and weight of a solid shaft of the same diameter. The upper figures in each line
give the per cent decrease in strength and the lower figures give the per cent decrease in
weight.

Example: A 4-inch shaft, with a 2-inch hole through it, has a weight 25 per cent less than
asolid 4-inch shaft, but its strength is decreased only 6.25 per cent.

Table 4. Comparative Torsional Strengths and Weights of Hollow
and Solid Shafting with Same Outside Diameter

Dia. of Diameter of Axial Hole in Hollow Shaft, Inches
Solid and
Hollow Shaft,
Inches 1 1% 1% 1% 2 2% 3 3% 4 4%
19.76 48.23
B 44.44 69.44
1 10.67 26.04 53.98
32.66 51.02 73.49
9 6.25 15.26 31.65 58.62
25.00 39.07 56.25 76.54
2 3.91 9.53 19.76 36.60 62.43
19.75 30.87 44.44 60.49 79.00
2% 2.56 6.25 12.96 24.01 40.96
16.00 25.00 36.00 49.00 64.00
% 1.75 4.28 8.86 16.40 27.98 68.30
13.22 20.66 29.74 40.48 52.89 82.63
3 1.24 3.01 6.25 11.58 19.76 48.23
11.11 17.36 25.00 34.01 44.44 69.44
3y, 0.87 2.19 454 8.41 14.35 35.02 72.61
9.46 14.80 21.30 29.00 37.87 59.17 85.22
3y 0.67 1.63 3.38 6.25 10.67 26.04 53.98
8.16 12.76 18.36 25.00 32.66 51.02 73.49
3y 0.51 1.24 2.56 4.75 8.09 19.76 40.96 75.89
7.11 11.11 16.00 2177 28.45 44.44 64.00 87.10
4 0.40 0.96 1.98 3.68 6.25 15.26 31.65 58.62
6.25 9.77 14.06 19.14 25.00 39.07 56.25 76.56
, 0.31 0.74 1.56 2.89 491 11.99 24.83 46.00 78.47
5.54 8.65 12.45 16.95 22.15 34.61 49.85 67.83 88.59
W 0.25 0.70 1.24 2.29 3.91 9.53 19.76 36.60 62.43
4.94 7.72 1111 15.12 19.75 30.87 44.44 60.49 79.00
43/4 0.20 0.50 1.00 1.85 3.15 7.68 15.92 29.48 50.29 80.56
4.43 6.93 9.97 13.57 17.73 27.70 39.90 54.29 70.91 89.75
5 0.16 0.40 0.81 151 2.56 6.25 12.96 24.01 40.96 65.61
4.00 6.25 8.10 12.25 16.00 25.00 36.00 49.00 64.00 81.00
5% 0.11 0.27 0.55 1.03 1.75 4.27 8.86 16.40 27.98 44.82
3.30 5.17 7.43 10.12 13.22 20.66 29.76 40.48 52.89 66.94
6 0.09 0.19 0.40 0.73 1.24 3.02 6.25 11.58 19.76 31.65
2.77 4.34 6.25 8.50 1111 17.36 25.00 34.02 44.44 56.25
6% 0.06 0.14 0.29 0.59 0.90 2.19 4.54 8.41 14.35 23.98
2.36 3.70 5.32 7.24 9.47 14.79 21.30 28.99 37.87 47.93
7 0.05 0.11 0.22 0.40 0.67 1.63 3.38 6.25 10.67 17.08
2.04 3.19 4.59 6.25 8.16 12.76 18.36 25.00 32.66 41.33
o 0.04 0.08 0.16 0.30 0.51 1.24 2.56 4.75 8.09 12.96
1.77 2.77 4.00 5.44 7.11 1111 16.00 21.77 28.45 36.00
8 0.03 0.06 0.13 0.23 0.40 0.96 1.98 3.68 6.25 10.02
1.56 2.44 3.51 4.78 6.25 9.77 14.06 19.14 25.00 31.64

The upper figures in each line give number of per cent decrease in strength; the lower figures give
per cent decrease in weight.
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SPRINGS

Introduction to Spring Design

Many advances have been made in the spring industry in recent years. For example:
developments in materials permit longer fatigue life at higher stresses; simplified design
procedures reduce the complexities of design, and improved methods of manufacture help
to speed up some of the complicated fabricating procedures and increase production. New
types of testing instruments and revised tolerances also permit higher standards of accu-
racy. Designers should also consider the possibility of using standard springs now avail-
able from stock. They can be obtained from spring manufacturing companies located in
different areas, and small shipments usually can be made quickly.

Designers of springs require information in the following order of precedence to simplify
design procedures.

1) Spring materials and their applications

2) Allowable spring stresses

3) Spring design data with tables of spring characteristics, tables of formulas, and toler-
ances.

Only the more commonly used types of springs are covered in detail here. Special types
and designs rarely used such as torsion bars, volute springs, Belleville washers, constant
force, ring and spiral springs and those made from rectangular wire are only described
briefly. Belleville and disc springs are discussed in the section DISC SPRINGS starting on
page 350
Notation.— The following symbols are used in spring equations:

AC = Active coils
b =Widest width of rectangular wire, inches
CL = Compressed length, inches
D =Mean coil diameter, inches = OD —d
d =Diameter of wire or side of square, inches
E =Modulus of elasticity in tension, pounds per square inch
F =Deflection, for N coils, inches
F° =Deflection, for N coils, rotary, degrees
f=Deflection, for one active coil
FL = Free length, unloaded spring, inches
G =Modulus of elasticity in torsion, pounds per square inch
IT = Initial tension, pounds
K =Curvature stress correction factor
L =Active length subject to deflection, inches
N =Number of active coils, total
P =Load, pounds
p =pitch, inches
R =Distance from load to central axis, inches
SorS, = Stress, torsional, pounds per square inch
S, = Stress, bending, pounds per square inch
SH = Solid height
S, = Stress, torsional, due to initial tension, pounds per square inch
T=Torque = P xR, pound-inches
TC =Total coils
t =Thickness, inches
U =Number of revolutions = F °/360°
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Spring Materials

The spring materials most commonly used include high-carbon spring steels, alloy
spring steels, stainless spring steels, copper-base spring alloys, and nickel-base spring
alloys.

High-Carbon Spring Steels in Wire Form.—These spring steels are the most com-
monly used of all spring materials because they are the least expensive, are easily worked,
and are readily available. However, they are not satisfactory for springs operating at high
or low temperatures or for shock or impact loading. The following wire forms are avail-
able:

Music Wire, ASTM A228 : (0.80-0.95 per cent carbon) This is the most widely used of
all spring materials for small springs operating at temperatures up to about 250 degrees F.
Itistough, has a high tensile strength, and can withstand high stresses under repeated load-
ing. The material is readily available in round form in diameters ranging from 0.005 to
0.125 inch and in some larger sizes up to ¥4 inch. It is not available with high tensile

strengths in square or rectangular sections. Music wire can be plated easily and is obtain-
able pretinned or preplated with cadmium, but plating after spring manufacture is usually
preferred for maximum corrosion resistance.

Oil-Tempered MB Grade, ASTM A229 : (0.60-0.70 per cent carbon) This general-pur-
pose spring steel is commonly used for many types of coil springs where the cost of music
wire is prohibitive and in sizes larger than are available in music wire. It is readily available
in diameters ranging from 0.125 to 0.500 inch, but both smaller and larger sizes may be
obtained. The material should not be used under shock and impact loading conditions, at
temperatures above 350 degrees F., or at temperatures in the sub-zero range. Square and
rectangular sections of wire are obtainable in fractional sizes. Annealed stock also can be
obtained for hardening and tempering after coiling. This material has a heat-treating scale
that must be removed before plating.

Oil-Tempered HB Grade, SAE 1080 : (0.75-0.85 per cent carbon) This material is simi-
lar to the MB Grade except that it has a higher carbon content and a higher tensile strength.
It is obtainable in the same sizes and is used for more accurate requirements than the MB
Grade, but is not so readily available. In lieu of using this material it may be better to use an
alloy spring steel, particularly if a long fatigue life or high endurance properties are
needed. Round and square sections are obtainable in the oil-tempered or annealed condi-
tions.

Hard-Drawn MB Grade, ASTM A227 : (0.60-0.70 per cent carbon) This grade is used
for general-purpose springs where cost is the most important factor. Although increased
use in recent years has resulted in improved quality, it is best not to use it where long life
and accuracy of loads and deflections are important. It is available in diameters ranging
from 0.031 to 0.500 inch and in some smaller and larger sizes also. The material is avail-
able in square sections but at reduced tensile strengths. It is readily plated. Applications
should be limited to those in the temperature range of 0 to 250 degrees F.

High-Carbon Spring Steels in Flat Strip Form.—Two types of thin, flat, high-carbon
spring steel strip are most widely used although several other types are obtainable for spe-
cific applications in watches, clocks, and certain instruments. These two compositions are
used for over 95 per cent of all such applications. Thin sections of these materials under
0.015 inch having a carbon content of over 0.85 per cent and a hardness of over 47 on the
Rockwell C scale are susceptible to hydrogen-embrittlement even though special plating
and heating operations are employed. The two types are described as follows:
Cold-Rolled Spring Steel, Blue-Tempered or Annealed, SAE 1074, also 1064, and 1070 :
(0.60to 0.80 per cent carbon) This very popular spring steel is available in thicknesses
ranging from 0.005 to 0.062 inch and in some thinner and thicker sections. The material is
available in the annealed condition for forming in 4-slide machines and in presses, and can
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readily be hardened and tempered after forming. It is also available in the heat-treated or
blue-tempered condition. The steel is obtainable in several finishes such as straw color,
blue color, black, or plain. Hardnesses ranging from 42 to 46 Rockwell C are recom-
mended for spring applications. Uses include spring clips, flat springs, clock springs, and
motor, power, and spiral springs.

Cold-Rolled Spring Steel, Blue-Tempered Clock Steel, SAE 1095 : (0.90 to 1.05 per cent
carbon) This popular type should be used principally in the blue-tempered condition.
Although obtainable in the annealed condition, it does not always harden properly during
heat-treatment as itis a “shallow” hardening type. It is used principally in clocks and motor
springs. End sections of springs made from this steel are annealed for bending or piercing
operations. Hardnesses usually range from 47 to 51 Rockwell C.

Other materials available in strip form and used for flat springs are brass, phosphor-
bronze, beryllium-copper, stainless steels, and nickel alloys.

Alloy Spring Steels.— These spring steels are used for conditions of high stress, and
shock or impact loadings. They can withstand both higher and lower temperatures than the
high-carbon steels and are obtainable in either the annealed or pretempered conditions.

Chromium Vanadium, ASTM A231: This very popular spring steel is used under condi-
tions involving higher stresses than those for which the high-carbon spring steels are rec-
ommended and is also used where good fatigue strength and endurance are needed. It
behaves well under shock and impact loading. The material is available in diameters rang-
ing from 0.031 to 0.500 inch and in some larger sizes also. In square sections it is available
in fractional sizes. Both the annealed and pretempered types are available in round, square,
and rectangular sections. It is used extensively in aircraft-engine valve springs and for
springs operating at temperatures up to 425 degrees F.

Silicon Manganese: This alloy steel is quite popular in Great Britain. It is less expensive
than chromium-vanadium steel and is available in round, square, and rectangular sections
in both annealed and pretempered conditions in sizes ranging from 0.031 to 0.500 inch. It
was formerly used for knee-action springs in automobiles. It is used in flat leaf springs for
trucks and as a substitute for more expensive spring steels.

Chromium Silicon, ASTM A401: This alloy is used for highly stressed springs that
require long life and are subjected to shock loading. It can be heat-treated to higher hard-
nesses than other spring steels so that high tensile strengths are obtainable. The most pop-
ular sizes range from 0.031 to 0.500 inch in diameter. Very rarely are square, flat, or
rectangular sections used. Hardnesses ranging from 50 to 53 Rockwell C are quite com-
mon and the alloy may be used at temperatures up to 475 degrees F. This material is usually
ordered specially for each job.

Stainless Spring Steels.—The use of stainless spring steels has increased and several
compositions are available all of which may be used for temperatures up to 550 degrees F.
They are all corrosion resistant. Only the stainless 18-8 compositions should be used at
sub-zero temperatures.

Stainless Type 302, ASTM A313 : (18 per cent chromium, 8 per cent nickel) This stain-
less spring steel is very popular because it has the highest tensile strength and quite uni-
form properties. It is cold-drawn to obtain its mechanical properties and cannot be
hardened by heat treatment. This material is nonmagnetic only when fully annealed and
becomes slightly magnetic due to the cold-working performed to produce spring proper-
ties. It is suitable for use at temperatures up to 550 degrees F. and for sub-zero tempera-
tures. It is very corrosion resistant. The material best exhibits its desirable mechanical
properties in diameters ranging from 0.005 to 0.1875 inch although some larger diameters
are available. It is also available as hard-rolled flat strip. Square and rectangular sections
are available but are infrequently used.
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Stainless Type 304, ASTM A313 : (18 per cent chromium, 8 per cent nickel) This mate-
rial is quite similar to Type 302, but has better bending properties and about 5 per cent
lower tensile strength. It is a little easier to draw, due to the slightly lower carbon content.

Stainless Type 316, ASTM A313 : (18 per cent chromium, 12 per cent nickel, 2 per cent
molybdenum) This material is quite similar to Type 302 but is slightly more corrosion
resistant because of its higher nickel content. Its tensile strength is 10 to 15 per cent lower
than Type 302. Itis used for aircraft springs.

Stainless Type 17-7 PH ASTM A313 : (17 per cent chromium, 7 per cent nickel) This
alloy, which also contains small amounts of aluminum and titanium, is formed in a moder-
ately hard state and then precipitation hardened at relatively low temperatures for several
hours to produce tensile strengths nearly comparable to music wire. This material is not
readily available in all sizes, and has limited applications due to its high manufacturing
cost.

Stainless Type 414, SAE 51414 : (12 per cent chromium, 2 per cent nickel) This alloy
has tensile strengths about 15 per cent lower than Type 302 and can be hardened by heat-
treatment. For best corrosion resistance it should be highly polished or kept clean. It can be
obtained hard drawn in diameters up to 0.1875 inch and is commonly used in flat cold-
rolled strip for stampings. The material is not satisfactory for use at low temperatures.

Stainless Type 420, SAE 51420 : (13 per cent chromium) This is the best stainless steel
for use in large diameters above 0.1875 inch and is frequently used in smaller sizes. It is
formed in the annealed condition and then hardened and tempered. It does not exhibit its
stainless properties until after it is hardened. Clean bright surfaces provide the best corro-
sion resistance, therefore the heat-treating scale must be removed. Bright hardening meth-
ods are preferred.

Stainless Type 431, SAE 51431 : (16 per cent chromium, 2 per cent nickel) This spring
alloy acquires high tensile properties (nearly the same as music wire) by a combination of
heat-treatment to harden the wire plus cold-drawing after heat-treatment. Its corrosion
resistance is not equal to Type 302.

Copper-Base Spring Alloys.—Copper-base alloys are important spring materials
because of their good electrical properties combined with their good resistance to corro-
sion. Although these materials are more expensive than the high-carbon and the alloy
steels, they nevertheless are frequently used in electrical components and in sub-zero tem-
peratures.

Spring Brass, ASTM B 134 : (70 per cent copper, 30 per centzinc) This material is the
least expensive and has the highest electrical conductivity of the copper-base alloys. It has
a low tensile strength and poor spring qualities, but is extensively used in flat stampings
and where sharp bends are needed. It cannot be hardened by heat-treatment and should not
be used at temperatures above 150 degrees F., but is especially good at sub-zero tempera-
tures. Available in round sections and flat strips, this hard-drawn material is usually used
in the “spring hard” temper.

Phosphor Bronze, ASTM B 159 : (95 per cent copper, 5 per centtin) This alloy is the
most popular of this group because it combines the best qualities of tensile strength, hard-
ness, electrical conductivity, and corrosion resistance with the least cost. It is more expen-
sive than brass, but can withstand stresses 50 per cent higher.The material cannot be
hardened by heat-treatment. It can be used at temperatures up to 212 degrees F. and at sub-
zero temperatures. Itisavailable in round sections and flat strip, usually in the “extra-hard”
or “spring hard” tempers. It is frequently used for contact fingers in switches because of its
low arcing properties. An 8 per cent tin composition is used for flat springs and a superfine
grain composition called “Duraflex,” has good endurance properties.

Beryllium Copper, ASTM B 197 : (98 per cent copper, 2 per cent beryllium) This alloy
can be formed in the annealed condition and then precipitation hardened after forming at
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temperatures around 600 degrees F, for 2 to 3 hours. This treatment produces a high hard-
ness combined with a high tensile strength. After hardening, the material becomes quite
brittle and can withstand very little or no forming. It is the most expensive alloy in the
group and heat-treating is expensive due to the need for holding the parts in fixtures to pre-
vent distortion. The principal use of this alloy is for carrying electric current in switches
and in electrical components. Flat strip is frequently used for contact fingers.

Nickel-Base Spring Alloys.—Nickel-base alloys are corrosion resistant, withstand both
elevated and sub-zero temperatures, and their non-magnetic characteristic makes them
useful for such applications as gyroscopes, chronoscopes, and indicating instruments.
These materials have a high electrical resistance and therefore should not be used for con-
ductors of electrical current.

Monel*: (67 per cent nickel, 30 per cent copper) This material is the least expensive of
the nickel-base alloys. It also has the lowest tensile strength but is useful due to its resis-
tance to the corrosive effects of sea water and because it is nearly non-magnetic. The alloy
can be subjected to stresses slightly higher than phosphor bronze and nearly as high as
beryllium copper. Its high tensile strength and hardness are obtained as a result of cold-
drawing and cold-rolling only, since it can not be hardened by heat-treatment. It can be
used at temperatures ranging from —100 to +425 degrees F. at normal operating stresses
and is available in round wires up to % inch in diameter with quite high tensile strengths.

Larger diameters and flat strip are available with lower tensile strengths.

“K” Monel *: (66 per cent nickel, 29 per cent copper, 3 per centaluminum) This mate-
rial is quite similar to Monel except that the addition of the aluminum makes it a precipita-
tion-hardening alloy. It may be formed in the soft or fairly hard condition and then
hardened by a long-time age-hardening heat-treatment to obtain a tensile strength and
hardness above Monel and nearly as high as stainless steel. It is used in sizes larger than
those usually used with Monel, is non-magnetic and can be used in temperatures ranging
from — 100 to + 450 degrees F. at normal working stresses under 45,000 pounds per square
inch.

Inconel”: (78 per cent nickel, 14 per cent chromium, 7 per centiron) This is one of the
most popular of the non-magnetic nickel-base alloys because of its corrosion resistance
and because it can be used at temperatures up to 700 degrees F. It is more expensive than
stainless steel but less expensive than beryllium copper. Its hardness and tensile strength is
higher than that of “K” Monel and is obtained as a result of cold-drawing and cold-rolling
only. It cannot be hardened by heat treatment. Wire diameters up to % inch have the best
tensile properties. Itis often used in steam valves, regulating valves, and for springs in boil-
ers, compressors, turbines, and jet engines.

Inconel “X”*: (70 per cent nickel, 16 per cent chromium, 7 per cent iron) This material
is quite similar to Inconel but the small amounts of titanium, columbium and aluminum in
its composition make it a precipitation-hardening alloy. It can be formed in the soft or par-
tially hard condition and then hardened by holding it at 1200 degrees F. for 4 hours. It is
non-magnetic and is used in larger sections than Inconel. This alloy is used at temperatures
up to 850 degrees F. and at stresses up to 55,000 pounds per square inch.

Duranickel” (“Z” Nickel): (98 per cent nickel) This alloy is non-magnetic, corrosion
resistant, has a high tensile strength and is hardenable by precipitation hardening at 900
degrees F. for 6 hours. It may be used at the same stresses as Inconel but should not be used
at temperatures above 500 degrees F.

Nickel-Base Spring Alloys with Constant Moduli of Elasticity.—Some special nickel
alloys have a constant modulus of elasticity over a wide temperature range. These materi-
als are especially useful where springs undergo temperature changes and must exhibit uni-
form spring characteristics. These materials have a low or zero thermo-elastic coefficient

*Trade name of the International Nickel Company.
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and therefore do not undergo variations in spring stiffness because of modulus changes due
to temperature differentials. They also have low hysteresis and creep values which makes
them preferred for use in food-weighing scales, precision instruments, gyroscopes, mea-
suring devices, recording instruments and computing scales where the temperature ranges
from — 50 to + 150 degrees F. These materials are expensive, none being regularly stocked
inawide variety of sizes. They should not be specified without prior discussion with spring
manufacturers because some suppliers may not fabricate springs from these alloys due to
the special manufacturing processes required. All of these alloys are used in small wire
diameters and in thin strip only and are covered by U.S. patents. They are more specifically
described as follows:

Elinvar™: (nickel, iron, chromium) This alloy, the first constant-modulus alloy used for
hairsprings in watches, is an austenitic alloy hardened only by cold-drawing and cold-roll-
ing. Additions of titanium, tungsten, molybdenum and other alloying elements have
brought about improved characteristics and precipitation-hardening abilities. These
improved alloys are known by the following trade names: Elinvar Extra, Durinval, Modul-
var and Nivarox.

Ni-Span C*: (nickel, iron, chromium, titanium) This very popular constant-modulus
alloy is usually formed in the 50 per cent cold-worked condition and precipitation-hard-
ened at 900 degrees F. for 8 hours, although heating up to 1250 degrees F. for 3 hours pro-
duces hardnesses of 40 to 44 Rockwell C, permitting safe torsional stresses of 60,000 to
80,000 pounds per square inch. This material is ferromagnetic up to 400 degrees F; above
that temperature it becomes non-magnetic.

Iso-Elastic: (nickel, iron, chromium, molybdenum) This popular alloy is relatively
easy to fabricate and is used at safe torsional stresses of 40,000 to 60,000 pounds per square
inch and hardnesses of 30 to 36 Rockwell C. Itis used principally in dynamometers, instru-
ments, and food-weighing scales.

Elgiloy*: (nickel, iron, chromium, cobalt) This alloy, also known by the trade names 8J
Alloy, Durapower, and Cobenium, is a non-magnetic alloy suitable for sub-zero tempera-
tures and temperatures up to about 1000 degrees F., provided that torsional stresses are
kept under 75,000 pounds per square inch. It is precipitation-hardened at 900 degrees F. for
8 hours to produce hardnesses of 48 to 50 Rockwell C. The alloy is used in watch and
instrument springs.

Dynavar™*: (nickel, iron, chromium, cobalt) This alloy is a non-magnetic, corrosion-
resistant material suitable for sub-zero temperatures and temperatures up to about 750
degrees F., provided that torsional stresses are kept below 75,000 pounds per square inch.
It is precipitation-hardened to produce hardnesses of 48 to 50 Rockwell C and is used in
watch and instrument springs.

Spring Stresses

Allowable Working Stresses for Springs.—The safe working stress for any particular
spring depends to a large extent on the following items:

1) Type of spring — whether compression, extension, torsion, etc.

2) Size of spring— small or large, long or short

3) Spring material

4) Size of spring material

5) Type of service — light, average, or severe

6) Stress range — low, average, or high
*Trade name of Soc. Anon. de Commentry Fourchambault et Decazeville, Paris, France.
T Trade name of John Chatillon & Sons.
*Trade name of Elgin National Watch Company.
**Trade name of Hamilton Watch Company.
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7) Loading — static, dynamic, or shock
8) Operating temperature
9) Design of spring — spring index, sharp bends, hooks.

Consideration should also be given to other factors that affect spring life: corrosion,
buckling, friction, and hydrogen embrittlement decrease spring life; manufacturing opera-
tions such as high-heat stress-equalizing, presetting, and shot-peening increase spring life.

Item 5, the type of service to which a spring is subjected, is a major factor in determining
a safe working stress once consideration has been given to type of spring, kind and size of
material, temperature, type of loading, and so on. The types of service are:

Light Service: Thisincludes springs subjected to static loads or small deflections and sel-
dom-used springs such as those in bomb fuses, projectiles, and safety devices. This service
is for 1,000 to 10,000 deflections.

Average Service: This includes springs in general use in machine tools, mechanical
products, and electrical components. Normal frequency of deflections not exceeding
18,000 per hour permit such springs to withstand 100,000 to 1,000,000 deflections.

Severe Service: This includes springs subjected to rapid deflections over long periods of
time and to shock loading such as in pneumatic hammers, hydraulic controls and valves.
This service is for 1,000,000 deflections, and above. Lowering the values 10 per cent per-
mits 10,000,000 deflections.

Figs. 1 through 6 show curves that relate the three types of service conditions to allow-
able working stresses and wire sizes for compression and extension springs, and safe val-
uesare provided. Figs. 7 through 10 provide similar information for helical torsion springs.
In each chart, the values obtained from the curves may be increased by 20 per cent (but not
beyond the top curves on the charts if permanent set is to be avoided) for springs that are
baked, and shot-peened, and compression springs that are pressed. Springs stressed
slightly above the Light Service curves will take a permanent set.

A curvature correction factor is included in all curves, and is used in spring design calcu-
lations (see examples beginning page 317). The curves may be used for materials other
than those designated in Figs. 1 through 10, by applying multiplication factors as given in
Table 1.
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Fig. 1. Allowable Working Stresses for Compression Springs — Hard Drawn Steel Wire2
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Fig. 5. Allowable Working Stresses for Compression Springs — Corrosion-Resisting Steel Wire?
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Fig. 7. Recommended Design Stresses in Bending for Helical Torsion Springs — Round Music Wire



STRESSES IN SPRINGS 313

Oil-tempered MB Grade,
240 ASTM A229 Type I

210 \ Ve Light service
200 N g Ve Average service
190 N N Severe service

N
160 AN pam=

140 ™ e

130 ~—~

Stress, Pounds per Square Inch
(thousands)

<

020

R R A R 1
TLXCSCATLOXXS AT ATORXSA T O
>SS A ANttt T

500

Wire Diameter (inch)

Fig. 8. Recommended Design Stresses in Bending for Helical Torsion Springs —
Oil-Tempered MB Round Wire

220
2101
200\
N
180
170]—\
160 N
\\ N
150 N
140 N\
130 N S
120 N
110 e
100 - S
T—

Stainless Steel, “18-8,” Types 302 & 304
ASTM A313

/V

Light Service
B

Average Service
/ Severe Service

/

™~

Stress, Pounds per Square Inch
(thousands)

90 1~
80
70

<>

T
T

[

/
11

—

i i i
AT RXCSCATLCRXS AT T O
ST == A A AAQ oo

400

SS S
aA T O
A 4

480
.500

Wire Diameter (inch)

Fig. 9. Recommended Design Stresses in Bending for Helical Torsion Springs —
Stainless Steel Round Wire

290
280 Chrome-silicon,

270 ASTM A401

260 \\ |~ Light service

250 Average service

igg T~ ] Severe service
220 = ]
210 ~ ram——
200

190 ~
180 e =

170 = /]
160
150
140

/

Stress, Pounds per Square Inch
(thousands)

020
040
060
080
100
120
140
160
180

SIS
S AT O
TN AN AN

280
300
320
340

PSS
CRXSA T\ X
PEZ I T T A S S 4

500

Wire Diameter (inch)
Fig. 10. Recommended Design Stresses in Bending for Helical Torsion Springs —
Chrome-Silicon Round Wire

2 Although Figs. 1 through 6 are for compression springs, they may also be used for extension
springs; for extension springs, reduce the values obtained from the curves by 10 to 15 per cent.
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Table 1. Correction Factors for Other Materials

Compression and Tension Springs
Material Factor Material Factor
Multiply the values in the chro-
Silicon-manganese mium-vanadium curves (Fig. 6) Multiply the values in the corro-
by 0.90 Stainless Steel, 316 sion-resisting steel curves (Fig.
Valve-spring quality | Use the values in the chromium- 5) by 0.90
wire vanadium curves (Fig. 6)
Stainless Steel, 304 M;'gﬁ_%;?&i\rl]zlL;fseilnctmgs E;)i:’ Stainless Steel, 431 | Multiply the valqes in the music
and 420 5) by 0.95 & and 17-7PH wire curves (Fig. 2) by 0.90
Helical Torsion Springs
Material Factor? Material Factor?
Hard Drawn MB 0.70 Stainless Steel, 431
Stainless Steel, 316 Up to %, inch diameter 0.80
Up to %, inch diameter 0.75 Over %, to % inch 0.85
Over %, to % inch 0.70 Over % to % inch 0.95
Over ¥ to % inch 0.65 Over % inch 1.00
Over % inch 0.50 Chromium-Vanadium
Stainless Steel, 17-7 PH Up to ¥ inch diameter 1.05
Up to % inch diameter 1.00 Over ¥%ginch 1.10
Over %to %ginch 1.07 Phosphor Bronze
Over ¥ inch 112 Up to % inch diameter 0.45
Stainless Steel, 420 Over %inch 0.55
Up to %, inch diameter 0.70 Beryllium Copper®
Over %, to % inch 0.75 Up to %, inch diameter 0.55
Over %5 to % inch 0.80 Over %, to % inch 0.60
Over % to ¥ginch 0.90 Over % to % inch 0.70
Over ¥ inch 1.00 Over % inch 0.80

aMultiply the values in the curves for oil-tempered MB grade ASTM A229 Type 1 steel (Fig. 8) by
these factors to obtain required values.
bHard drawn and heat treated after coiling.

For use with design stress curves shown in Figs. 2, 5, 6,and 8.

Endurance Limit for Spring Materials.—When a spring is deflected continually it will
become “tired” and fail at a stress far below its elastic limit. This type of failure is called
fatigue failure and usually occurs without warning. Endurance limit is the highest stress, or
range of stress, in pounds per square inch that can be repeated indefinitely without failure
of the spring. Usually ten million cycles of deflection is called “infinite life” and is satisfac-
tory for determining this limit.

For severely worked springs of long life, such as those used in automobile or aircraft
engines and in similar applications, it is best to determine the allowable working stresses
by referring to the endurance limit curves seen in Fig. 11. These curves are based princi-
pally upon the range or difference between the stress caused by the first or initial load and
the stress caused by the final load. Experience with springs designed to stresses within the
limits of these curves indicates that they should have infinite or unlimited fatigue life. All
values include Wahl curvature correction factor. The stress ranges shown may be
increased 20 to 30 per cent for springs that have been properly heated, pressed to remove
set, and then shot peened, provided that the increased values are lower than the torsional
elastic limit by at least 10 per cent.
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Fig. 11. Endurance Limit Curves for Compression Springs

Notes: For commercial spring materials with wire diameters up to % inch except as noted. Stress
ranges may be increased by approximately 30 per cent for properly heated, preset, shot-peened
springs.

Materials preceeded by * are not ordinarily recommended for long continued service under severe
operating conditions.

Working Stresses at Elevated Temperatures.—Since modulus of elasticity decreases
with increase in temperature, springs used at high temperatures exert less load and have
larger deflections under load than at room temperature. The torsional modulus of elasticity
for steel may be 11,200,000 pounds per square inch at room temperature, but it will drop to
10,600,000 pounds per square inch at 400°F. and will be only 10,000,000 pounds per
square inch at 600°F. Also, the elastic limit is reduced, thereby lowering the permissible
working stress.

Design stresses should be as low as possible for all springs used at elevated temperatures.
In addition, corrosive conditions that usually exist at high temperatures, especially with
steam, may require the use of corrosion-resistant material. Table 2 shows the permissible
elevated temperatures at which various spring materials may be operated, together with the
maximum recommended working stresses at these temperatures. The loss in load at the
temperatures shown is less than 5 per cent in 48 hours; however, if the temperatures listed
are increased by 20 to 40 degrees, the loss of load may be nearer 10 per cent. Maximum
stresses shown in the table are for compression and extension springs and may be increased
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by 75 per cent for torsion and flat springs. In using the data in Table 2 it should be noted that
the values given are for materials in the heat-treated or spring temper condition.

Table 2. Recommended Maximum Working Temperatures and
Corresponding Maximum Working Stresses for Springs

Max. Max. Max. Max.
Working Working Working Working
Spring Material Temp., °F | Stress, psi Spring Material Temp, °F | Stress, psi

Brass Spring Wire 150 30,000 Permanickel? 500 50,000
Phosphor Bronze 225 35,000 Stainless Steel 18-8 550 55,000
Music Wire 250 75,000 Stainless Chromium 431 600 50,000
Beryllium-Copper 300 40,000 Inconel 700 50,000
Hard Drawn Steel Wire 325 50,000 High Speed Steel 775 70,000
Carbon Spring Steels 375 55,000 Inconel X 850 55,000
Alloy Spring Steels 400 65,000 | Chromium-Molybdenum- 900 55,000
Monel 425 40,000 Cobenium, Elgiloy 1000 75,000
K-Monel 450 45,000

aFormerly called Z-Nickel, Type B.
Loss of load at temperatures shown is less than 5 per cent in 48 hours.

Spring Design Data

Spring Characteristics.— This section provides tables of spring characteristics, tables of
principal formulas, and other information of a practical nature for designing the more com-
monly used types of springs.

Standard wire gages for springs: Information on wire gages is given in the section
beginning on page 2604, and gages in decimals of an inch are given in the table on
page 2605. It should be noted that the range in this table extends from Number 7/0 through
Number 80. However, in spring design, the range most commonly used extends only from
Gage Number 4/0 through Number 40. When selecting wire use Steel Wire Gage or Wash-
burn and Moen gage for all carbon steels and alloy steels except music wire; use Brown &
Sharpe gage for brass and phosphor bronze wire; use Birmingham gage for flat spring
steels, and cold rolled strip; and use piano or music wire gage for music wire.

Spring index: The spring index is the ratio of the mean coil diameter of a spring to the
wire diameter (D/d). This ratio is one of the most important considerations in spring design
because the deflection, stress, number of coils, and selection of either annealed or tem-
pered material depend to a considerable extent on this ratio. The best proportioned springs
have an index of 7 through 9. Indexes of 4 through 7, and 9 through 16 are often used.
Springs with values larger than 16 require tolerances wider than standard for manufactur-
ing; those with values less than 5 are difficult to coil on automatic coiling machines.

Direction of helix: Unless functional requirements call for a definite hand, the helix of
compression and extension springs should be specified as optional. When springs are
designed to operate, one inside the other, the helices should be opposite hand to prevent
intermeshing. For the same reason, a spring that is to operate freely over a threaded mem-
ber should have a helix of opposite hand to that of the thread. When a spring is to engage
with a screw or bolt, it should, of course, have the same helix as that of the thread.

Helical Compression Spring Design.— After selecting a suitable material and a safe
stress value for a given spring, designers should next determine the type of end coil forma-
tion best suited for the particular application. Springs with unground ends are less expen-
sive but they do not stand perfectly upright; if this requirement has to be met, closed ground
ends are used. Helical compression springs with different types of ends are shown in Fig.
12.



SPRING DESIGN 317

OPEN ENDS NOT GROUND, CLOSED ENDS NOT GROUND,
RIGHT HAND HELIX RIGHT HAND HELIX

CLOSED ENDS GROUND, OPEN ENDS GROUND,
LEFT HAND HELIX LEFT HAND HELIX

Fig. 12. Types of Helical Compression Spring Ends

Spring design formulas: Table 3 gives formulas for compression spring dimensional
characteristics, and Table 4 gives design formulas for compression and extension springs.

Curvature correction: In addition to the stress obtained from the formulas for load or
deflection, there is a direct shearing stress and an increased stress on the inside of the sec-
tion due to curvature. Therefore, the stress obtained by the usual formulas should be multi-
plied by a factor K taken from the curve in Fig. 13. The corrected stress thus obtained is
used only for comparison with the allowable working stress (fatigue strength) curves to
determine if it is a safe stress and should not be used in formulas for deflection. The curva-
ture correction factor K is for compression and extension springs made from round wire.
For square wire reduce the K value by approximately 4 per cent.

Design procedure: The limiting dimensions of a spring are often determined by the
available space in the product or assembly in which it is to be used. The loads and deflec-
tions on a spring may also be known or can be estimated, but the wire size and number of
coils are usually unknown. Design can be carried out with the aid of the tabular data that
appears later in this section (see Table 5, which is a simple method, or by calculation alone
using the formulas in Tables 3 and 4.

Example: A compression spring with closed and ground ends is to be made from ASTM
A229 high carbon steel wire, as shown in Fig. 14. Determine the wire size and number of
coils.

Method 1, using table: Referring to Table 5, starting on page 321, locate the spring out-
side diameter (¥¥,ginches, from Fig. 14 on page 319) in the left-hand column. Note from the
drawing that the spring load is 36 pounds. Move to the right in the table to the figure nearest
this value, which is 41.7 pounds. This is somewhat above the required value but safe.
Immediately above the load value, the deflection fis given, which in this instance is 0.1594
inch. This is the deflection of one coil under a load of 41.7 pounds with an uncorrected tor-
sional stress S of 100,000 pounds per square inch for ASTM A229 oil-tempered MB steel.
For other spring materials, see the footnotes to Table 5. Moving vertically in Table 5 from
the load entry, the wire diameter is found to be 0.0915 inch.

The remaining spring design calculations are completed as follows:

Step 1: The stress with a load of 36 pounds is obtained by proportion, as follows: The 36
pound load is 86.3 per cent of the 41.7 pound load; therefore, the stress S at 36 pounds =
0.863 x 100,000 = 86,300 pounds per square inch.



318

SPRING DESIGN

Table 3. Formulas for Compression Springs

Type of End
Open Open or Plain Squared or Closed
or Plain (with ends Closed and
(not ground) ground) (not ground) Ground
Feature Formula?
Pitch FL-d FL FL-3d FL-2d
) N TC N N
SO"?SHH)e'ght (TC +1)d TCx d (TC +1)d TCx d
Number of N=TC N=TC-1 N=TC-2 N=TC-2
Active Coils _FL-d - FL_4 _ FL-3d _ FL-2d
) P P P P
Total Coils FL-d FL FL-3d , , FL-2d  ,
(TC) p p p p
Free Length
(FL) (pxTC)+d pxTC (pxN)+3d (pxN)+2d

@The symbol notation is given on page 304.

Table 4. Formulas for Compression and Extension Springs

Formula® b
Feature Springs made from round wire | Springs made from square wire
Load, P p = 0.3938d® _ Gd*F p = 041684 _ _Gd'F
Pounds D 8ND3 5.58ND3
Stress, Torsional, S g = Gdr _ _PD g=_GdF _ p D
Pounds per square inch nND?  0.3934° 2.32ND? 0.4164°
Deflection, F F = 8PND3 _ nSND? F = 5.58PND3 _ 2.32SND?
Inch Gd* Gd Gd* Gd
Number of _ Gd*F _ GdF _ _Gd*F _ _GdF
Active Coils, N 8PD3  1SD2 558PD3  2.325D2
Wire Diameter, d 4 = TSND? _ 3l2.55PD 4 = 2:32SND? _ 3/ PD
Inch GF N GF 0.416S
Stress due to _S _S
Initial Tension, S, Si = pxIT Si = pxIT

2The symbol notation is given on page 304.

bTwo formulas are given for each feature, and designers can use the one found to be appropriate for
a given design. The end result from either of any two formulas is the same.

Step 2: The 86.3 per cent figure is also used to determine the deflection per coil f at 36
pounds load: 0.863 x 0.1594 = 0.1375 inch.
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aFor springs made from round wire. For springs made from square wire, reduce the K factor
values by approximately 4 per cent.

r

13 n

I
% : T < 36 Pounds (P)
L4
1 IR
— 1— Max (SH) "T
lll [ 1"
e——1— (CL)—== 14 (P

ll!
2 3 (FL)
Fig. 14. Compression Spring Design Example

Step 4: Total CoilsTC=AC+2 (Table3)=9+2=11
Therefore, a quick answer is: 11 coils of 0.0915 inch diameter wire. However, the design
procedure should be completed by carrying out these remaining steps:

Step 5: From Table 3, Solid Height=SH=TCxd =11x0.0915=1 inch
Therefore, Total Deflection = FL — SH = 1.5 inches
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Step 6: Stress Solid = 8—————?’320 x 1.5 = 103,500 pounds per square inch
; 0.D. 0.8125
N | = l = 1 = 7
Step 7: Spring Index 00915 9

Step 8: From Fig. 13 on page 319, the curvature correction factor K =1.185

Step 9: Total Stress at 36 pounds load = S x K = 86,300 x 1.185 = 102,300 pounds per
square inch. This stress is below the 117,000 pounds per square inch permitted for 0.0915
inch wire shown on the middle curve in Fig. 3 on page 311, so it is a safe working stress.

Step 10: Total Stress at Solid = 103,500 x 1.185 = 122,800 pounds per square inch. This
stress is also safe, as it is below the 131,000 pounds per square inch shown on the top curve
of Fig. 3, and therefore the spring will not set.

Method 2, using formulas: The procedure for design using formulas is as follows (the
design example is the same as in Method 1, and the spring is shown in Fig. 14):

Step 1: Select a safe stress S below the middle fatigue strength curve Fig. 3 on page 311
for ASTM A229 steel wire, say 90,000 pounds per square inch. Assume a mean diameter
D slightly below the ¥-inch 0.D., say 0.7 inch. Note that the value of G is 11,200,000
pounds per square inch (Table 20 on page 346).

Step 2: A trial wire diameter d and other values are found by formulas from Table 4 as
follows:

U
|

- i/Z.SSPD _ J2.55x36x0.7
S 90,000

3/0.000714 = 0.0894 inch

Note: Table 21 on page 347 can be used to avoid solving the cube root.

Step 3: From Table 21 (also see the table on page 2605), select the nearest wire gauge
size, which is 0.0915 inch diameter. Using this value, the mean diameter D = 134 inch —
0.0915=0.721 inch.

Step 4: The stress § = PD _ _36x0721 _ 86,300 Ib/in2

0.3934°®  0.393 x 0.0915°2

Step 5: The number of active coils is

N = GdE _ 11,200,000x00915x125 _ g (¢ )
nSD?  3.1416 x 86,300 x 0.7212

The answer is the same as before, which is to use 11 total coils of 0.0915-inch diameter
wire. The total coils, solid height, etc., are determined in the same manner as in Method 1.

Table of Spring Characteristics.—Table 5 gives characteristics for compression and
extension springs made from ASTM A229 oil-tempered MB spring steel having a tor-
sional modulus of elasticity G of 11,200,000 pounds per square inch, and an uncorrected
torsional stress S of 100,000 pounds per square inch. The deflection ffor one coil under a
load P is shown in the body of the table. The method of using these data is explained in the
problems for compression and extension spring design. The table may be used for other
materials by applying factors to /. The factors are given in a footnote to the table.
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Table 5. Compression and Extension Spring Deflections?

Spring Wire Size or Washburn and Moen Gauge, and Decimal Equivalent®
Outside 19 18 17 16
Dia. .010 .012 014 .016 .018 .020 .022 024 .026 .028 .030 .032 .034 .036 .038 .041 .0475 .054 .0625
Nom. | Dec. Deflection f (inch) per coil, at Load P (pounds)®
y 1094 0277 | .0222 |.01824 | .01529 | .01302 | .01121 | .00974 | .00853 | .00751 | .00664 | .00589
o ' .395 .697 1.130 | 1.722 2.51 3.52 4.79 6.36 8.28 10.59 13.35
% 125 .0371 | .0299 | .0247 | .0208 | .01784 | .01548 | .01353 | .01192 | .01058 | .00943 | .00844 | .00758 | .00683 | .00617
342 .600 971 | 1.475 2.14 2.99 4.06 5.37 6.97 8.89 11.16 13.83 16.95 20.6
¥ 1406 .0478 | .0387 | .0321 | .0272 .0234 .0204 .01794 | .01590 | .01417 | .01271 | .01144 | .01034 | .00937 | .00852 | .00777
& .301 528 852 | 1.291 | 1.868 2.61 353 4.65 6.02 7.66 9.58 11.84 14.47 17.51 21.0
5 1563 .0600 | .0487 [ .0406 | .0345 | .0298 .0261 .0230 .0205 | .01832 | 0.1649 | .01491 | .01354 | .01234 | .01128 | .01033 | .00909
2| .268 A70 758 | 1.146 | 1.656 231 311 4.10 5.30 6.72 8.39 10.35 12.62 15.23 18.22 235
1 1719 0735 | .0598 [ .0500 | .0426 | .0369 0324 .0287 .0256 .0230 .0208 | .01883 | .01716 | .01569 | .01439 | .01324 | .01172 | .00914
& ' .243 424 .683 1.031 1.488 2.07 2.79 3.67 4.73 5.99 7.47 9.19 11.19 13.48 16.09 21.8 338
5 1875 .0884 | .0720 | .0603 | .0516 | .0448 .0394 .0349 .0313 .0281 .0255 0232 0212 | .01944 | .01788 | .01650 | .01468 | .01157 | .00926
® ' 221 .387 .621 .938 1.351 1.876 2.53 3.32 4.27 5.40 6.73 8.27 10.05 12.09 1441 18.47 30.07 46.3
1 2031 1046 | .0854 | .0717 | .0614 | .0534 .0470 .0418 .0375 .0338 .0307 .0280 .0257 .0236 .0218 0201 | .01798 | .01430 | .01155
& ' .203 .355 570 .859 1.237 1.716 231 3.03 3.90 4.92 6.12 7.52 9.13 10.96 13.05 16.69 27.1 415
Yo 2188 .1000 | .0841 | .0721 | .0628 .0555 .0494 .0444 .0401 .0365 .0333 .0306 .0282 .0260 .0241 0216 | .01733 | .01411 | .01096
' .328 526 793 1.140 1.580 213 2.79 3.58 452 5.61 6.88 8.35 10.02 11.92 15.22 24.6 375 61.3
15, 9344 1156 | .0974 | .0836 .0730 .0645 .0575 .0518 .0469 .0427 .0391 .0359 .0331 .0307 .0285 .0256 .0206 .01690 | .01326
.305 489 736 1.058 1.465 1.969 2.58 321 418 5.19 6.35 7.70 9.23 10.97 13.99 225 34.3 55.8
Y 250 1116 | .0960 | .0839 0742 .0663 .0597 .0541 .0494 .0453 0417 .0385 .0357 .0332 .0299 .0242 | .01996 | .01578
457 .687 .987 1.366 1.834 2.40 3.08 3.88 4.82 5.90 7.14 8.56 10.17 12.95 20.8 31.6 51.1
% | 2813 1432 | 1234 | .1080 .0958 .0857 0774 .0703 .0643 .0591 .0545 .0505 .0469 .0437 .0395 .0323 .0268 .0215
403 .606 .870 1.202 1.613 211 2.70 3.40 4.22 5.16 6.24 7.47 8.86 11.26 18.01 27.2 43.8
5. | 31